Development of FFAG Accelerators in Japan

Yoshiharu Mori Kyoto University, research Reactor Institute

FFAG R&D Activities in Japan

- KEK
 - POP FFAG 0.05-0.5MeV(IMeV):2000

proof-of-principle, scaling(DFD), proton, MA rf cavity

I 50MeV FFAG :2006

scaling(DFD), prototype for particle therapy, 100Hz

- 🍚 Kyoto Univ., RRI
 - ADS(Accelerator Driven System) project, FFAG+Reactor:2007

3 rings (Injector(2.5MeV spiral), booster(20MeV DFD), main ring(150MeV,DFD)

- NEDO project/site KURRI
 - ABNS(accelerator-based neutron source) for BNCT (boron neutron capture therapy):2008

ERIT (emittance/energy recovery internal target): FFAG proton strorage ring + internal target, IIMeV proton+ Be target, ionization cooling

History of FFAG Proton Accelerator

- 1953: Basic concept by Ohkawa Proton FFAG accelerator was not successful until recent
- →difficulty in fabricating RF cavity with variable frequency & high gradient field
 1998: Development of RF cavity
- using Magnetic Alloy
 - Grant-in-Aid for Scientific Res. by MEXT: Y. Mori, KEK
- 2000: Development of Proton FFAG Accelerator
 - Grant-in-Aid for Scientific Res. by MEXT: Y. Mori, KEK
- 2005: Development of 150MeV multipurpose FFAG accelerator
 - **100Hz** Operation!
 - Grant-in-Aid for Creative Basic Res.

RF Cavity

Proof-of-Principle (PoP)-Proton FFAG Accel

EPAC06, June 26-30, 2006, Edinburgh

Fast spot scanning exeriments & simulations

呼吸同期に対応するスキャンニング照射

multipurpose FFAG with 100Hz operation

EPAC06, June 26-30, 2006, Edinburgh

Neutron Source for BNCT

Requirements

- Large neutron flux
 |x|0⁹ n/cm²/sec at patient
- Low energy spectrum thermal/epi-thermal neutron

Nuclear reactor only can provide these neutrons.

Limited to extend the use of BNCT widely in society.

FFAG R&D Activities in Japan

• PRISM project <-- Dr. Arimoto

Mu-e conversion: Muon phase rotation ring

• Mitsubishi Elect. Co.

- table-top electron accelerator X-CT:FFAG+synchrotron hybrid
- Others
 - Collaboration btw Fukui Univ. & Kyoto Univ. Dev. FFAGs & education

PRISM project

Mitsubishi Elect. Co (MELCO)

combination of FFAG and synchrotron
-->compact ring(small orbit excursion)

Accelerator-driven Subcritical Reactor (ADSR)

Radiotoxicity

 Radiotoxicity:ratio of the mass of nuclide to the permissible limit of annual intake

 Raiotoxicity of FP's is dominant within 100 years after reprocessing, and that of MA's thereafter

Half-lives: Sr-90 28yrs. Cs-137 30yrs. Np-237 2.14 M. yrs. Am-241 433yrs Am-243 7370yrs.

☆Long term risks could be reduced if MA's are reduced

Example of Accelerator-driven Transmuter

Subjects on ADSR

Beam for Scientific Res.

Accelerator R&D

Development of stable high power accelerator with high acceleration efficiency

Subcritical System Neutronics

Neutronics and dynamics of the subcritical core coupled with the accelerator system

Thermal-hydraulics

Heat removal from target & reactor core at very high thermal load and thermal stress analysis

Material Research

Energy-dependent irradiation effects & development of new reactor materials

Feasibility Study on ADSR Using FFAG Accelerator

(FFAG: Fixed Field Alternating Gradient)

Accelerator R&D

Development of variableenergy FFAG accelerator with high acceleration efficiency

Main Feature of Proposed ADSR

Concept of FFAG-KUCA Experiment on ADSR

<u>Advantage of FFAG</u>

Fast acceleration

DC magnetic field allows the beam acceleration only by RF pattern. No needs of synchronization between RF and magnets.

High average current with large repetition rate and modest number of particles in the ring

Space charge and collective effects are below threshold.

Large acceptance

Transverse (hor.)>10,000mm.mrad

Longitudinal dp/p>10%

<u>Comparison between Synchrotron and FFAG</u>

	FFAG	Synchrotron
1. Magnetic field	static (fixed)	varying with time
2. Closed orbit	moving	fixed
3. Focusing	strong	strong
 Duty factor (Repetition cycle) 	large~10-50% (max.~1kHz)	small~1% (~50Hz)
5. Space charge instability	not critical	severe

Problems to be solved to develop FFAG synchrotron * Complicated magnetic field → 3D Codes (TOSCA, etc.) * RF system: high acceleration+rapid tuning → Development of high gradient & broad band RF cavity

Beam Specifications of FFAG Accelerator

Beam Species	H+
Energy	20 – 150 MeV
Average Beam Current	1κΑ
Pulse Repetition Rate	120Hz

<u>Configuration of FFAG Accelerator Complex</u>

- Spiral focusing: 1st for ion accelerator in the world
- Acceleration by induction core: 1^{s†} for ion accelerator in the world
 - Magnetic field by multi-coil:1st in the world
- Continuous injection by static field:1^{s†} in the world

System Parameters of FFAG Accelerator

	Ion Beta	Booster	Main Ring
Focusing	Spiral	Radial DFD	Radial DFD
Acceleration	Induction	RF	RF
Number of Cells	8	8	12
k-value	2.5	4.5	7.6
Injection Energy	100keV	2.5MeV	20MeV
Exit Energy	2.5MeV	20MeV	150MeV
Pext/Pinj	5.00	2.84	2.83
Injection Orbit	0.60m	1.42m	4.54m
Exit Orbit	0.99m	1.71m	5.12m

Layout of FFAG Accelerator Complex

Variable Energy FFAG Accelerator Complex

Extraction proton energy can be varied by changing k-value of Ion Beta

<u>Ion-Beta - Spiral Type FFAG Accelerator</u>

uFocusing by spiral magnetic field
uMagnetic field shaping with multi-coil magnets
Acceleration by induction

core

item	specs	
Energy	2.5 MeV	
< >	0 _γ 2μΑ	
Rep. rate	120Hz-1kHz	
Pulse length	1 _γ 5μs	
k	2	
spiral angle	42 degree	
tune	(1.85, 0.80)	
Size	3500Wx6000Dx250	0H

FFAG complex at KURRI

Neutronic Study of Subcritical Core

KUCA-A Core - solid moderated and reflected -

Concept of KUCA A-Core Set-up

Example of Core Configuration in KUCA-A Core

Previous Results of R&D for ADSR

 Characteristics of ASDR depends significantly on neutronics in the subcritical core

 ◆ Neutronic design of ADSR requires much higher accuracy in calculations
 ∵ neutron multiplication µ1/(1-k_{eff})

 Method for analyzing ADSR dynamics should be developed
 Monte-Carlo calculation taking account of delayed neutrons

<u>Calculated Thermal Power of KUR-type ADSR</u>

Thermal power of KUR-type ADSR (proton beam current=1mA) as a function of target material and effective multiplication factor

Temporal variation of neutron spectrum in ADSR after injection of pulsed proton

Comparison of Neutron Multiplication between Experiment and Calculation

Subcriticality ($\&\Delta k/k$)

Objectives of Present Neutronic Study on ADSR

KUCA Preliminary Experiment Using 14MeV incident

neutrons

Measurement of subcriticality and neutron decay constant in subcritical enriched-U and mixed U/Th thermal neutron systems
 Optimization of neutron beam collimator

Analysis of preliminary KUCA experiment using continuous energy Monte-Carlo codes MVP, MCNP and MCNP-X

 \blacksquare Evaluation of criticality of enriched-U and mixed U/Th thermal neutron systems

Evaluation of prediction accuracy of criticality and subcriticality by analyzing critical and subcritical KUCA experiments

Comparison of prediction accuracy between MVP, MCNP and MCNP-X codes

ADSR experiment using coupled FFAG accelerator and KUCA

Measurement of neutronic characteristics of ADSR

Subcriticality Measurement by Pulsed Neutron Method

C/E ratio for k_{eff} in solid moderated cores obtained by MVP, MCNP and MCNP-X codes

Status of accelerators (commissioning)

- Injector (Spiral-induction FFAG)
 - completed. Jan. 2006.
 - E=1.2MeV (because of limited core voltage) : I=50nA
- Booster
 - completed. Jun. 2006
 - E=11.5MeV, I=0.8nA
- Main Ring: still in commissioning stage
 - accidental failures : Electricity-line off caused by severe thunder storm
 - Injector core power supply : 36 IGBTs (2kV-1600A each) were broken. Insulating rectifier, High voltage breakdown (ion source etc.) Nov.2006 -Feb.2007
Status of accelerators (commissioning)

• Main Ring:

- RF cavity
 - Replace MELCO type(amorphous core) with KEK type (FINEMET core).
 - Disturbed B-field (amorphous MA, not FINEMET)
- Inadequate power supply for main D magnets
 I=700A -> I=1300A: Inadequate operational tunes (Qv=1)
- Elect. current: half of the requested one design mistake
- Vacuum chamber
 - Wrong design: horizontal beam apertures are very limited.(almost nothing)

Conclusions

Basic research on ADS has been performed using KUCA driven by 14 MeV pulsed neutrons:

- Subcriticality
- neutron flux (reaction rate) distribution
- fast neutron spectrum
- neutron noise analysis

Results of preliminary experiments have been analyzed by MVP, MCNP and MCNP-X codes.

■ In FY2007, new experiment will start at KUCA coupled with a 150 MeV FFAG accelerator.

Material and thermal-hydraulic R & D should be needed. Intense Neutron Source Project for BNCT(Boron Neutron Capture Therapy)

FFAG-ERIT neutron source-NEDO project

Purpose of Project (NEDO 3-year project:2005-2007)

- Development of a prototype of compact accelerator-based thermal/epithermal neutron source for boron neutron capture therapy
- Perforemance
 - Neutron flux enough for 1 hour treatment
 - thermal/epithermal neutron flux: $\phi \sim 1 \times 10^9 \text{ n/cm}^2/\text{sec}$ @patient

Principle of BNCT

世界における中性子捕捉療法治療施設

限られた研究用原子炉での臨床研究に留まっている

Progression-Free Survival

gliobrastomer

18_{F-BPA-PET}

BPA-PET (T/N 7.8)Pre BNCT T1Gd

T/N : T / Normal Brain ratio

著しいがん細胞の 成長により体内に 止まらず皮膚をも 破りさらに増大 絶大なるがん細胞縮小の
 効果を得ただけでなく
 他の放射線治療では
 成し得ない、
 皮膚の再生を確認。

腫瘍はほぼ完全に縮退。 高いQOLを達成。

Department of Neurosurgery

lung, liver etc.

SKY PerfecTV!

サイエンス チャンネル

⁶03,3月2日 18:00 放映 Japan Science and Technology Corporation(JST)

Total amount of the dose Caner: 12 - 13 Gy-eq/h Lung: 2.5 - 4.5 Gy-eq/h

Dose concentration: better than hadron therapy

¹⁰B-concentration: normal lung ;11.4ppm, Lung cancer; 38.8ppm

Neutron production process

neutron production cross section

proton energy

Problems of ordinary accelerator-based

neutron source: scheme with external target

• Beam(proton) energy

- feasible with ordinary acclerator technology
 - Light nuclei (compound nucleus) low energy -10MeV
 - Heavy nuclei (spallation) high energy >50MeV
- Beam current
 - technically difficult
 - Light nuclei (compound nucleus) high intensity >10mA
 - Heavy nuclei (spallation) medium intensity >0.5-1mA
- Neutron production target
 - technically difficult
 - Large heat load beam power >10kW
 - Large radiation damage
- Gamma-ray irradiation prohibits for treatment
 - Problems for high energy reaction(cf. spallation) : Large gamma-ray production from target/moderator → Difficult for shield

Example of ABNS(acceleratorbased neutron source) with external target

- Taskaev et al. (Budker Inst. Russia) ICNCT-12, 2006,Kagawa.
 - Threshold resonance(compound) Li, Ep=1.9MeV
 - Electro-static accelerator
 - Beam current

 - γ ray production E=489keV

∽10mA

- Lifetime of target one/day(thermal errosion)

2MV

- Thin target $1\gamma/1$ neutron OK
- Thick target $>>1 \gamma / 1$ neutron problem

ABNS with internal target FFAG-ERIT

FFAG Accelerator with Emittance/Energy Recovery Internal Target Y.Mori, Nucl. Instr. Meth., PRS, A562(2006) 591-595.

Ionization Beam Cooling

- 3-dimension energy loss : cooling
- recovery of beam energy : rf acceleration
- competition :multiple scattering(heating process)
 - equilibrium beam profile

ABNS with FFAG-ERIT: characteristics

- Large beam current/beam power
 - circulating beam
 - ciruculating beam current(beam power) >50mA(500kW) 10times more than those for external target
- Low loads for the target and injector
 - heat load/radiation damage with thin target
 - heat load ~kW -> radiation cooling :Temeprature ~650C
 - radiation damage 0.1 dps
 - Lifetime >month
 - small beam current for injector
 - required beam current circ. beam current/circu. turn number
 - beam current $50 \,\mu \, \text{A}(1000 \,\text{turns})$
- Small gamma-ray production
 - thin target, no cooling medium and no beam dump at target region
- multi-target & -directional irradiations
- Small radiation shielding
 - modest beam current
 - small buildings and low infrastructure cost

Performance

 circ. beam current 	70mA	
 number of turns 	1000ターン	
Injector		
 beam energy 	11MeV	
- averaged beam current	70 µ A	
 Neutron production target 		
- Be,10μm	Lifetime>one month	
Modearotr		
- thermal+epithermal	10 ⁹ n/cm²/sec	
- γ • fast neutron	Nuclear reactor level (IAEA)	

Design issues of ABNS with FFAG-ERIT(I)

- Beam optics and dynamics
 - Acceptance
 - Av>500mm.mrad(rms)
 - dp/p>+-5%(full)
 - Beam lifetime : ionization cooling
 - >1000 turns
- Larege aperture magnet
 - accuracy, fringing filed
 - <10-3, gap:15cm
- rf cavity
 - frequency
 - ~20MHz(harmonic number ~5)
 - rf voltage
 - >200kV
- Target
 - heat load
 - $<6.6W/cm^2$
 - homogeneous beam profile
 - off center beam injection

Design issues of ABNS with FFAG-ERIT(II)

Injector

- beam current
 - NH ion source
 - av. beam current >100 μ A (20-200Hz, duty ~2%)
 - Linac
 - av. beam current $>70 \mu$ A (20–200Hz, duty ~2%)
- Moderator
 - optimized design
 - neutron flux at patient
 - $10^9 n/cm^2/sec$
 - reduction of fast neutrons (E>100keV) & γ rays

Beam focusing of FFAG Spiral sector & Radial sector

Spiral sector :

Small size Small beam focus for vertical plane Difficult of operational tunes

Radial sector :

Large size Large beam focus for vertical plane Change of operational tunes : feasible

We choose Radial Sector (FDF).

Radial sector FFAG

FDF lattice Cell num. = 8 F-Mag. = 6.4[deg], D-Mag. = 5.1[deg], F-D gap 3.75[deg], F-Clamp gap = 1.9[deg], Clamp thick = 4[cm]Mean radius = 2.35[m]

 $n_X \sim 1.75, n_Y \sim 2.23$ FD ratio ~ 3

Radial sector (FDF) FFAG Ring parameters

beam energy	11 MeV
ave. radius	2.35 m
most ext. radius of magnet	3.06 m
Fmagnet	
field strength	0.825 T
AT	58500 AT
orbit length(@ave. radius)	26.25 cm
mass	4.1 ton
Dmagnet	
filed strength	0.727 T
AT	54500 AT
orbit length(@ave. radius)	20.92 cm
mass	3.4 ton

Vertical beta function & acceptance

Vertical beta function@target ~ 0.83 [m]

Vertical acceptance $\sim 3000\pi$ [mm-mrad]

(Horizontal acceptance > 7000π [mm-mrad])

RMS emittance / energy spread

Number of survivals

Ave. turn numbers for beam survival ~ 910 turns

ERIT rf cavity - basic design

•Inner diameter ϕ 200cm, •axial length 40cm, cap. electrode: ϕ 160cm × t2cm,

- gap btw cap. electrode and cavity end plate 3cm,
- •tuner: ϕ 20cm × L50cm,
- •beam duct : w38cm × h20cm,
- •coupler : diameter 12cm × L30cm, ϕ 2cm

Field map and surface current

RF cavity for ERIT -cold model

- Q(measured) ~6000: 66% of MAFIA result
- ->surface roughness

	六旅向次釵の測正		
	2006/3/14		
	角度	共振周波数	
	度	MHz	
	0.0	18.075	
	22.5	18.050	
	45.0	17.950	
	67.5	17.875	
1.3	90.0	17.850	
	周波数幅	0.225	

容量板 φ1500 を取り付けた状態

測定方法

②ネットワークアナライザーでチューナー各位置での共振周波数を (アンテナのインピーダンス補正は無し)

Beam Loading

Admittance/rf power

Ave. rf power ~60kW (duty 30%) Peak rf power ~210kW

Vacuum duct

sag $<1mm \rightarrow$ thickness 7mm+ 5t rib

Neuron production target lifetime

• Lifetime is mainly determined by evapolation.

 \rightarrow Low temperature operation(<650C) is essential.

• Heat power density <6.6W/cm2 for 3 months operation.

Target layout & performance

Tilted target : input heat power density ~1/2
Beam profile distribution

parameters

proton energy 11MeV beam current 70mA Be thickness $10 \,\mu$ m stopping power 6.46keV.um 64.6keV energy loss heat radiation 4523 W beam size(H) 34cm beam size(V) 10cm 30degree target angle irradiation area 14cm2 radiation factor 0.61 $6.6W/cm^2$ power density 720C target temp. lifetime 38davs

Moderator

basic layout

1st moderator: $5 \sim 10$ cm, 2nd moderator: $10 \sim 30$ cm, 3rd moderator: $10 \sim 20$ cm, γ -ray shield: $5 \sim 10$ cm

example (under optimization)

Summary of Moderator (in progress)

Thermal neutron flux : 7×10^8 (cm⁻²s⁻¹) Epi-thermal neutron flux : 5×10^8 (cm⁻²s⁻¹) Total (thermal + epi-thermal) : 1.2×10^9 (cm⁻²s⁻¹) @ patient

Contamination of fast neutron ; 2-2.5 times larger than IAEA standards, however, comparable with those from ordinary nuclear reactors(KUR, JRR4 etc.) Contamination of γ -ray : lower than IAEA standards, however, not includes those from target nucleus.

Optimaization is in progress.
Ion Source

- particle: negative hydrogen
- extraction energy: 30 keV
- rep. rate: 200Hz(goal: 500Hz)
- beam duration: 2%, maximu
- beam current:
 - 100 µ A(ave.)
 - 5mA(peak:goal10mA)
 - commissioning(12/12/06) 1mA(cw)achieved
- nor. emittance:<1πmm-mrad

Proton linac

AccSys Inc. PULSAR-7

DTL

PULSAR-7: developed for PET。 12/19/06: ビームcommissioning (@7MeV)

Proton linac

Summary of ABNS with FFAG-ERIT

- Physical design is completed. Fabrication is in process.
- Ion source is almost completed.
 - cw operation. beam current $^{\sim}1mA_{\circ}$
- Proton linac
 - beam commissioning started: 12/19/2006~
- Preparation of infrastructure(water, electricity etc.) at KURRI
- Completion (hope) : Sept. 2007

Next FFAG workshop in Japan

- November , 2007. Date will be fixed soon.
- Place: Kyoto University, Kyoto/Osaka area
- Support for participation (traveling etc.) , especially for young scientists.

