

BSM searches with photons

Workshop on Photon Physics at the LHC LPNHE 19/05/2015

Marie-Hélène Genest

• Photon-based BSM analyses (based on the 8 TeV run-1 data):

- γ + X resonance searches
- γ + X searches
- BSM through $H \to \gamma X$
- Non-pointing γ
- Using the photon as a tool in other BSM searches: an example
- Summary and perspectives

γ +X resonance searches

γγ resonance in CMS in the 150 - 850 GeV mass range

- Based on the SM-like Higgs boson search
- At least two photons with $E_T/m_{\chi\chi} > 1/3 (1/4)$
- Increase sensitivity by subdividing the events into classes (different mass resolution and predicted S/B):
 - Minimum R9 (Sum E of 3x3 crystals centered on the most energetic one divided by the energy of the supercluster)
 - Maximum η of the photons
- Describe BG using a functional form (can't go to higher masses as too few events)

$\gamma\gamma$ resonance in ATLAS in the 65 - 600 GeV mass range $_{\rm Phys.\ Rev.\ Lett.\ 113,\ 171801}$

- \geq 2 tight photons with $E_{T} > 22 \text{ GeV}$
- Two analyses:

Low mass: 65-110 GeV

- 3 categories (converted / unconverted combinations)
- Z peak: Z(ee) + e→γ corrections, normalized with e→γ rate (eγ/ee in Z(ee) peak)
- Fit of the continuum with a functional form

High-mass analysis: 110-600 GeV

- E_{T,1(2)}/m_{yy} > 0.4 (0.3)
- Higgs peak: double-sided Crystal Ball (m=125.9 GeV) + SM cross section
- Fit of the continuum with a functional form

γγ resonance in ATLAS in the 65 - 600 GeV mass range Phys. Rev. Lett. 113, 171801

- At least two tight photons with E_{τ} >50 GeV
- Use the two leading photons
- Isolated photons:
 - The expected contribution from photon leakage outside the central core is subtracted, but fluctuations around the expected leakage grows with ET
 - Significant inefficiencies if using a fixed cut on the isolation:
 - Vary the isolation requirement with E_{τ} , from <8 GeV to <13 GeV at 1 TeV

High-mass γγ resonance in ATLAS arxiv:1504.05511 submitted to PRD

- Main BG: SM diphoton, Pythia (LO) + DIPHOX (NLO + fragmentation)
- Normalized to data in the low-mass region

In lower-mass analyses, it is more accurate to rely on sidebands, but this can't be done here, as insufficient event yields...

High-mass $\gamma\gamma$ resonance in ATLAS

arxiv:1504.05511 submitted to PRD

- Main BG: SM diphoton, Pythia (LO) + DIPHOX (NLO + fragmentation)
- Normalized to data in the low-mass region
- Need to know the reducible (gamma+jet, dijet) BG component in this region:
 - Template fit to the isolation energy distribution
 - Fake template: loose but not tight photons
 - True template: tight fake contribution normalized in the E_Tiso>10 GeV region -

E_T^{iso} (leading photon) [GeV]

- Interpretation:
 - Randall-Sundrum (RS) model of extra dimension
 - Can address the hierarchy problem as gravity can propagate in extra dimension, diluting it

Limits on the lightest Kaluza-Klein graviton for different coupling strenghts :

photon+jet

Phys.Lett. B 728 C (2014) 562-578(ATLAS), Phys. Lett. B 738 (2014) 274-293 (CMS)

One advantage of the γ + jet search is that it can be sensitive in a lower mass region with respect to dijet searches (higher hadronic trigger thresholds)

photon+jet

Phys.Lett.B 728 C (2014) 562-578(ATLAS), Phys. Lett. B 738 (2014) 274-293 (CMS)

Excited quarks (same limit in ATLAS)

- Non-thermal quantum black hole (QBH):
- Extra dimensions model lowers the Planck mass • to M_{D} : possibility to create QBH.
- The ones produced near M_p would evaporate • faster than they thermalize: decay into a few particles rather than high-multiplicity final states.

4.5

4

CMS

 $q^* \rightarrow q\gamma$

- At least one tight photon $E_T > 40$ GeV, $E_T^{iso}(0.4) < 4$ GeV
- Isolated electons and muons p_T >25 GeV, $\Delta R(I, \gamma)$ >0.7
- **W SR**: 1 lepton, MET>35 GeV, m_{ey} != Z mass (±15 GeV)
- **Z SR**: 2 leptons SFOS m_{\parallel} in 65-115 GeV
- Functional form for BG (sum of two exponentials) between 180 and 1600 GeV

photon+W/Z(leptonic)

Phys. Lett. B 738 (2014) 428-447

Limits on narrow technimeson resonances in a model of low scale technicolour

Photon + X searches

Photon + MET

Phys. Rev. D 91, 012008 (2015) (ATLAS), arxiv:1410.8812 Submitted to Phys. Lett. B (CMS)

Data analysis # events Background Signal Relevant quantity

Selection:

S

ATLA

- \geq 1 photon E_T>125 GeV, $|\eta| < 1.37$, $E_{\tau}^{iso}(0.4) < 5 \text{ GeV}$
- MET>150 GeV, $\Delta \varphi$ (MET, γ)>0.4
- \leq 1 jet p_T>30 GeV, $\Delta \varphi$ (j,MET)>0.4
- Veto $e(\mu) p_T > 7(6)$ GeV

Background estimation:

- Z(vv)y and W(lv)y normalized using a fit to data in multiple CR (Z(ee) γ , $Z(\mu\mu)\gamma, W(\mu\nu)\gamma)$
- Jet fake using isolation / ID •
- Electron fake using tag & probe method on Z(ee) applied on a W(ev) CR

Cut and count

Selection:

- \geq 1 photon E_T>145 GeV, |n| < 1.44, E_{τ} -dependent iso $\Delta R=0.3$ $(\gamma, charged/neutral hadrons)$
- MET>140 GeV, $\Delta \phi$ (MET, χ)>2.0
- \leq 1 jet p₁>30 GeV
- Veto e, μ p_T>10 GeV

CMS **Background estimation:**

- $Z(vv)\gamma$, $W(lv)\gamma$ from MC (cross checked in $Z(||)\gamma$
- Jet fake using isolation / ID (shower width) •
- Electron fake using tag & probe method on Z(ee) applied on a W(ev) CR
- Non-collision BG: reverting the beam halo tag (evidence in ECAL of a MIP roughly parallel to the beam axis)

Limits using a shape fit to $E_{T_{y}}$

Photon + MET

Phys. Rev. D 91, 012008 (2015) (ATLAS) , arxiv:1410.8812 Submitted to Phys. Lett. B (CMS)

Data analysis

Signal

Relevant quantity

Background

events

Photon + MET

Phys. Rev. D 91, 012008 (2015) (ATLAS) , arxiv:1410.8812 Submitted to Phys. Lett. B (CMS)

18

Search for supersymmetry in photon+jets+MET

SUSY-14-004

Selection:

Trigger	γ - H_T trigger with $p_T^{\gamma} \ge 70 \text{ GeV}, H_T \ge 400 \text{ GeV}$ (using $p_T^{\text{jets}} \ge 40 \text{ GeV}, \eta < 3.0$)
Photon(s)	$\geq 1, p_T^{* \ \gamma} \geq 110 \ \text{GeV}, \eta < 1.4442$
Jet(s)	\geq 2, $p_T^{ ext{jets 1,2}} \geq$ 30 GeV, $ \eta <$ 2.5
H_T	\geq 500 GeV (using $p_T^{ ext{jets, }\gamma} \geq$ 40 GeV, $ \eta <$ 3.0)
isolated e, μ	veto, $p_T > 15$ GeV, $ \eta^{e(\mu)} < 2.5(2.4)$
$\not\!$	$\not\!$

Background estimation:

- Zy, Wy and ytt from MC
- QCD from a loose γ CR
- EW from t&p in Zee on CR

∉ _T Range [GeV]	[100,120)	[120,160)	[160,200)	[200,270)	[270,350)	[350,∞)
QCD	991 ± 164	529 ± 114	$180{\pm}69$	$95.6 {\pm} 45$	11.7 ± 12	9.1 ± 9
EWK	37.3 ± 4	42.5 ± 5	23.0 ± 3	19.2 ± 2	7.7 ± 1.0	$4.1 {\pm} 0.6$
ISR/FSR	53.6 ± 27	72.5 ± 36	$44.9 {\pm} 23$	$40.1 {\pm} 20$	$19.7 {\pm} 10$	14.7 ± 7
Background	$1082{\pm}166$	$644{\pm}119$	$248{\pm}73$	$155{\pm}50$	$39.0{\pm}16$	$27.8{\pm}12$
Data	1286	774	232	136	46	30

Search for supersymmetry in diphoton+MET

ATLAS-CONF-2014-001

Selection:

- Two tight photons with $E_T > 75$ GeV, $E_T^{iso}(0.4) < 4$ GeV
- 5 different SR (strong/weak production for high/low mass bino and a modelindependent SR)

Background estimation:

- Z(vv)yy from MC
- W(Iν)γγ from MC normalized in a W(Iν)γγ CR at lower MET
- QCD BG (γγ, γ+j): MET template in tight-nontight sample, normalised in MET<60 GeV.
 - SP1 and SP2: too low stat, so made in bins of M_{eff} and extrapolated to SR
- EW BG: from eγ CR scaled with e→γ probability from t&p in Z(ee)

SP1	SP2	WP1	WP2	MIS
0.5	0.0	0.5	0.0	0.0
0.5	0.5	0.5	0.5	0.5
1500	1800	(400)	(600)	0
250	150	200	150	250
	SP1 0.5 0.5 1500 250	SP1SP20.50.00.50.515001800250150	SP1SP2WP10.50.00.50.50.50.515001800(400)250150200	SP1SP2WP1WP20.50.00.50.00.50.50.50.515001800(400)(600)250150200150

Data analysis

Signal

Relevant quantity

Background

events

#

$\Delta \phi$ w.r.t MET. M_{eff}: scalar sum p_T's + MET

Background	SP1	SP2	WP1	WP2	MIS
QCD	$0.00^{+0.20}_{-0.00}$	$0.22^{+0.53}_{-0.22}$	0.29 ± 0.29	0.89 ± 0.60	0.73 ± 0.53
Electroweak	< 0.02	0.02 ± 0.02	0.15 ± 0.07	0.67 ± 0.22	0.24 ± 0.10
$W(\rightarrow \ell \nu) + \gamma \gamma$	0.03 ± 0.02	0.02 ± 0.01	0.44 ± 0.18	0.74 ± 0.27	0.47 ± 0.19
$Z(\to \nu\bar\nu) + \gamma\gamma$	< 0.01	< 0.01	0.13 ± 0.07	0.08 ± 0.04	0.15 ± 0.08
Total	$0.03^{+0.20}_{-0.02}$	$0.26\substack{+0.53 \\ -0.22}$	1.01 ± 0.36	2.38 ± 0.69	1.59 ± 0.58
Observed events	0	0	1	5	2

Supersymmetry in diphoton + razor

SUS-14-008

- Use the razor to describe a two-megajet topology coming from the pair production of sparticles each decaying into X + neutralino
 - Form two mega-jets by chosing the ones with lowest sum squared masses

 M_{Λ}

$$M_R = \sqrt{(|\vec{p}_{j_1}| + |\vec{p}_{j_2}|)^2 - (p_z^{j_1} + p_z^{j_2})^2} \qquad \begin{array}{l} \text{Peaks at} \\ M_\Delta = \frac{M_S^2 - M_{\text{LSP}}^2}{M_S} \end{array}$$
$$M_T^R = \sqrt{\frac{E_T^{miss}(p_T^{j_1} + p_T^{j_2}) - \vec{E}_j^2}{2}} R = \frac{M_T^R}{M_R} \frac{\vec{j}_2}{\vec{j}_T}}{M_R} \qquad \begin{array}{l} \text{Edge at} \ M_\Delta \end{array}$$

- Divide the (M_R, R^2) plane:
 - Signal region: $M_R > 600$ GeV and $R^2 > 0.02$
 - Control region: $M_R > 600$ GeV and $0.01 < R^2 \le 0.02$.
- Fit the BG in the CR and apply in the SR (normalized to yield)

900 1000 1100 1200 1300 1400 1500

m_ã [GeV]

Data analysis

Stealth SUSY in diphoton events

Phys. Lett. B 743 (2015) 503-525

Selection:

- 4 jets or \geq 5 jets p_T>30 GeV
- \geq 2 photons with E_T>40, 25 GeV
- H_T>60 GeV, S_T(H_T+MET)>1200 GeV

Background estimation:

- Fit S_{T} distribution in Njet=3 sideband
- Normalize in 1100<S_T<1200 GeV sideband
 19.7 fb⁻¹ (8 TeV)

BSM through $H\to \gamma X$

Veto lepton, \leq 1 non-VBF jet p_T>30 GeV •

Background estimation:

Background	Distributions	Normalization		
$W(\rightarrow ev)$	$W(\rightarrow ev)$ MC with $e \rightarrow \gamma$ misidentification rate from data	Data CR		
W/Z + jets	W/Z + jets MC with jet $\rightarrow \gamma$ misidentification rate from MC	Data CR		
$W\gamma/Z\gamma$	MC	Data CR		
Top and diboson	MC	MC		
γ + jets and multijet	Data CR	Data CR		
Total background $38.0 + 2.2 + 4.5$				

Total background	$38.0 \pm 2.2 \pm 4.5$
Data	50

Higgs to photon +MET (VBF) [GMSB, NMSSM] ATLAS-CONF-2015-001

Selection:

•

- VBF: ≥ 2 jets $p_T > 40$ GeV, $m_{ii} > 600$ GeV, $\Delta \eta_{ii} > 4.0$ •
- \geq 1 photon E_T>40 tight photon •
 - unconverted (to reduce $e \rightarrow \gamma$)
 - $E_{\tau}^{iso}(0.4) < 5 \text{ GeV} + p_{\tau}^{tracks}(0.2) < 0.05 E_{\tau}$
 - Between the VBF jets in η
- MET>50 GeV, $\Sigma p_T^{vec}(\gamma + jets) > 50 \text{ GeV}$ •

Supersymmetry through $H \rightarrow \gamma \gamma$

Phys. Rev. Lett. 112 (2014) 161802

Selection:

- \geq 2 photons E_T>40, 25 GeV
- 120<m_{yy}<131 GeV
- ≥2 jets p_T>30 GeV
 - loose(80-85%)+medium(50-75%) b-tag
- 3 categories:
 - 1. Additional loose b-tagged jet
 - 2. 95<m_{bb}<155 GeV
 - 3. Others

Background estimation:

- Fit in sidebands:
 - 103<m_{vv}<118 GeV
 - 133<m_{vv}<163 GeV

•••	\tilde{t}_R^* $\tilde{\chi}_1^ \tilde{\chi}_1^0$	$\overbrace{\tilde{G}}^{\mathrm{b}}$		$\tilde{\chi}_1^-$	$\tilde{\chi}^0_1$ f'	H Ĝ
	Catego	ries	1	2	3	
е	expected back	kground	6.7 ± 1.4	10.5 ± 1.8	29.7 =	± 2.8
	observe	ed	6	7	33	3
$m_{\chi^0}^{20}$ (GeV)	CMS, $\sqrt{5}$ 500 Natural G Br $(\tilde{\chi}_{1}^{0} \rightarrow H)$ $m_{\chi_{1}^{0}} = m_{\chi_{1}^{*}}$ 400 Obs $m_{\chi_{1}^{0}} = m_{\chi_{1}^{*}}$ 300 - 200 200	$\overline{S} = 8 \text{ TeV}, \int$ MSB Higgsino $ \overline{G}\rangle = 1, \text{ Strong}$ $- 5 \text{ GeV}, m_{\overline{\chi}_2^0} =$ erved 95% CLs ory uncertainty ected 95% CLs ected $\pm 1\sigma_{\text{experime}}$	L dt = 19.7 ft model and EW Product $m_{\chi_1^*} + 5 \text{ GeV}$ Limits Limits ental 400	b^{-1} tion	3.5 3 2.5 2 -1.5 -1 -0.5 0	Observed 95% Cross Section Exclusion (pb)

 $\tilde{\chi}_1^+$

Ĝ

 \tilde{t}_R

25

ATLAS-CONF-2013-081 (ATLAS) , Phys. Rev. D 90 (2014) 112013 (CMS)

Can be greatly enhanced by new physics like heavy vector-like quarks (quarksinglet model) or models of two Higgs doublets with/without flavour

conservation:

Process	SM	QS	2HDM-III	FC-2HDM	MSSM
$t \rightarrow u\gamma$	$3.7 \cdot 10^{-16}$	$7.5 \cdot 10^{-9}$			$2 \cdot 10^{-6}$
$t \rightarrow uZ$	$8 \cdot 10^{-17}$	$1.1 \cdot 10^{-4}$	_	_	$2 \cdot 10^{-6}$
$t \rightarrow uH$	$2 \cdot 10^{-17}$	$4.1 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$		10^{-5}
$t \rightarrow c \gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	$\sim 10^{-6}$	~ 10 ⁻⁹	$2 \cdot 10^{-6}$
$t \rightarrow cZ$	$1 \cdot 10^{-14}$	$1.1 \cdot 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 \cdot 10^{-6}$
$t \rightarrow cH$	$3 \cdot 10^{-15}$	$4.1\cdot 10^{-5}$	$1.5\cdot 10^{-3}$	$\sim 10^{-5}$	10^{-5}

- Two tight isolated photons
- Hadronic 2nd top:
 - ≥4 jets, ≥1 b-tagged
 - M_{ijj} , $m_{\gamma\gamma j}$ ~ top mass
 - Leptonic 2nd top:
 - ≥2 jets, ≥ 1 b-tagged
 - m₇>30 GeV
 - $m_{_{\gamma\gamma j}}$ and $m_{_{l\nu j}}$ ~ the top mass
 - Fit m_{y}

 $B(t \rightarrow cH) < 0.83(0.53)\%$

• Analysis also looking for additional Higgses : mul

- additional Higgses : multiple SRs (multilepton, diphoton+leptons, diphoton+dilepton...)
 - Two photons
 - 1 lepton (including tau)
 - 120<m,,<130 GeV
 - ≥ 1 b-tagged
 - Split in MET bins
 - Fit $m_{_{\gamma\gamma}}$ sidebands

 $B(t \rightarrow cH) < 0.56(0.65)\%$

CMS-PAS-B2G-14-003

Variable	Hadronic channel	Leptonic channel
$p_{\mathrm{T}}(\gamma_1)$	$> \frac{3}{4}m_{\gamma\gamma}$ GeV	$> \frac{1}{2}m_{\gamma\gamma}$ GeV
$p_{ m T}(\gamma_2)$	35 GeV	25 GeV
n _{jets}	≥ 2	≥ 2
$H_{ m T}$	$\geq 1000 \text{ GeV}$	\geq 770 GeV
leptons	0	≥ 1
b tags	≥ 1	-

- Advantage of γγ channel: can precisely measure m_{γγ}
 - Search for a narrow resonance centered around the Higgs mass
 - Estimate BG from data sidebands (ttH taken from MC)

Process	Hadronic	Leptonic
$T\overline{T}(m_T = 700 \text{ GeV})$	1.05	0.43
tīH	0.042	0.039
Background	$0.65\substack{+0.16 \\ -0.13}$	$0.11\substack{+0.07 \\ -0.03}$
Observed Data	2	0

$X \rightarrow H(bb)H(\gamma\gamma)$ CMS-PAS-HIG-13-032

• X : graviton in extra dimension models, heavy additional Higgs in SUSY,...

Events / (1 GeV

Selection:

- \geq 2 photons
- 100<m_{yy}<180 GeV
- At least two jets with:
 - 1b-tagged jet ("medium purity")
 - 2 b-tagged jets ("high purity")
- Two strategies:
 - Low-mass region:
 - 260 < m_x < 400 GeV:
 - Use m_{vv} shape
 - Mass-dependent m_{ii} and m_{vvii} cuts (BG has a peak ~ $m_{whh} \approx 300 \text{ GeV}$
 - High-mass region:
 - 400 < m_x < 1100 GeV:
 - Use m_{wbb} shape

Non-pointing photons

Non-pointing photons in supersymmetry

Phys. Rev. D 90, 112005 (2014)

- GMSB can have a neutralino NLSP with a finite lifetime before decaying into a photon and a gravitino
- The photons appear delayed and may not point back to the PV

Idea:

- Use the finely segmented ATLAS LAr EM calorimeters:
 - Flight direction using shower spread in the first two layers
 - Measure $|\Delta z_{\gamma}| = z_{\text{origin}} z_{PV}$
 - Only barrel photons (resolution worse in the end-caps)
 - Loose photon ID efficiency for signal:
 - 95% for $|z_{\text{origin}}|$ <250 mm down to 75% at $|z_{\text{origin}}|$ = 700 mm
- Also use the photon arrival time $t_{\boldsymbol{\gamma}}$ at the calorimeter
 - From pulse-shape of the 2nd-layer cell with max. energy
 - t_{γ} =0: prompt photon from the hard collision
 - Time resolution for large energy deposits is 256 ps
 - ≈ 220 ps due to LHC bunch-spread along the beamline (so LAr contribution to the time resolution is ≈ 130 ps)
 - Concentrate on lifetimes above 250 ps

Non-pointing photons in supersymmetry

Phys. Rev. D 90, 112005 (2014)

Selection:

- 2 loose isolated photons E_T >50 GeV, one in $|\eta|$ <1.37
- MET>75 GeV
- 2D search in $|\Delta z_{\gamma}|$ and t_{γ} of the barrel photon (or largest value)
 - Almost completely uncorrelated for prompt backgrounds

Photons as a tool for other BSM searches

An example: the jets+MET SUSY analysis

- Search for squarks and gluinos in 0-lepton+jets+MET channel
- How to estimate the Z(vv)+jets BG?
 - Select a sample of γ +jets events with E_T>130 GeV
 - Treat the reconstructed photon as contributing to MET
 - For E_{T,γ}>m_z kinematics very similar to Z+jets
 - Cross section (x BR) ratio N(photon CR) \rightarrow N(Z, SR):

$$R_{Z/\gamma} = \frac{d\sigma(Z + \text{jets})/dp_{\text{T}}}{d\sigma(\gamma + \text{jets})/dp_{\text{T}}}$$

• More stats than Z(II) CR...

Summary

- Very many models of new physics can be probed using photons:
 - supersymmetry, extra dimensions, dark matter, vector-like quarks, technicolour, FCNC, excited quarks, ...
- BSM searches use photons from ~20 GeV up to the TeV scale, converted and unconverted, timing and pointing info, ...
- Many data-driven background estimates: functional form fits, ABCD methods on ID/isolation, t&p on Z(ee) + CR(e), SR variable side-band,...
- They can also be used to control the BG in other BSM searches
- No new physics discovered yet, but run-2 is looming...
- Many analyses will become more sensitive than run-1 very quickly : expect many new results during the next year!

- Pflow isolation criteria photon + jet:
 - the energy deposited in the single HCAL tower closest to the supercluster position, inside a cone of $\Delta R = 0.15$ centered on the photon direction, must be less than 5% of the energy deposited in that ECAL supercluster;
 - the total pT of photons within a cone of $\Delta R = 0.3$, excluding strips of width $\Delta \eta = 0.015$ on each side of the supercluster, must be less than 0.5 GeV + 0.005pT
 - the total pT of all charged hadrons within a hollow cone of $0.02 < \Delta R < 0.3$ about the supercluster must be less than 0.7 GeV
 - the total pT of all neutral hadrons within a cone of $\Delta R = 0.3$ must be less than 0.4 GeV + 0.04pT

• Pflow isolation criteria photon + MET within a cone of $\Delta R = 0.3$:

- $E_{T^{iso}}(additional photons) < (0.7 + 0.005E_{T}) GeV$
- E_T^{iso}(neutral hadrons) < (1.0 + 0.04E_T)GeV
- E_t^{iso}(charged hadrons)<1.5 GeV

- ATLAS:
 - https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-05/
 - http://www.sciencedirect.com/science/article/pii/S0370269314001713
- CMS:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13006PubTWiki
 - http://arxiv.org/pdf/1307.5515.pdf