Higgs boson measurements with photons

Workshop on Photons Physics at the LHC, 18-19th May 2015, Paris (France)

Pasquale Musella (ETH Zurich)
on behalf of the CMS and ATLAS collaborations

Which Higgs physics with photons?

- Several important channels for Higgs physics contain photons in the final state.
 - \triangleright H → $\gamma\gamma$ decay
 - One of the most senstive channels at the LHC.
 - **Loop-mediated decay:** measurement of H $\gamma\gamma$ coupling sensitive to BSM physics.
 - H → Ilγ decay

 - Charm-mediated H→J/ ψ γ: extremely challenging experimentally, but may give information on Hcc couplings.
 - \triangleright Double Higgs production through HH \rightarrow bb $\gamma\gamma$
 - Sensitive to Higgs self-coupling.

LHC Run 1 dataset

- Excellent performance of the LHC machine throughout the Run 1.
- Also excellent performance of the CMS and ATLAS detectors
 - ~90% of the delivered data available for offline analysis.
- Available dataset:
 - $\sim 5 \text{fb}^{-1} \sqrt{s} = 7 \text{TeV} + \sim 20 \text{fb}^{-1} \sqrt{s} = 8 \text{TeV}$
- Challenging pile-up conditions.
 - Up to 30 average interactions per bunch-crossing.
 - Ingenious ideas needed to keep detector performances.

CMS Integrated Luminosity, pp

Anatomy

CMS A S

- Narrow peak on large smoothly falling background.
 - \triangleright QCD production of $\gamma \gamma$, but also γj and jj, with jet misindetified as photon.
- Particle identification very important to reject reducible background.
- Mass resolution crucial to minimize effective QCD background.
 - Energy resolution.
 - Primary vertex identification (angular resolution).
- Signal modelling through nearby standard candles.

Analysis strategy

ATTLAS CMS

- Both CMS and ALTAS analysis employ event categories to enhTance sensitivity.
 - Classify events according to kinematics and mass resolution.
 - "Exclusive categories" defined in terms of additional object in event (jets, leptons missing E_T) to enhance sensitivity to VBF and associated production.

ATLAS:

Cut-based categorization based on photon candidated rapidity and diphoton p_T. Use BDT classifier for VBF categories

Event classification based on BDT combining kinematics and mass resolution.

Higgs measurements with photons - P. Musella (ETH)

Analysis strategy (2)

- Photon identification: (See also S.Zenz presentation yesterday)
 - Categorized cut-based for ATLAS.
 - Using BDT classifier for CMS (also cross check with categorized cut-base ID). No explicit cut: fed-forward into event-classification BDT.
- ▶ Modelling in data using $Z \rightarrow ee$ and $Z \rightarrow II\gamma$

Analysis Strategy (3)

- \triangleright Angular term negligible if $\delta z < 1$ cm.
- Also important to compute isolation sums in high multiplicity environments.
- Intrinsic difference between ATLAS and CMS: pointing capability.
- Both collaborations use BDT classifier to indentify primary vertex.
 - Vertex tracks Σp_T^2 , recoil information,p ointing information (@CMS only for converted photons).

PU vtx

γγ vtx

CMS

Higgs measurements with photons - P. Musella (ETH)

Analysis strategy (4)

AT LAS

- Background modelling very important for accurate estimation of signal strenght.
 - Both colliaborations use m_{γ} sidebands to constrain background.
- Choice of background functional form is arbitrary.
 - Make sure that potential biases are small (namely <15-20% of the statistical uncertainty).</p>
 - Dedicated model for each event category.
- CMS
 - Discrete profiling method: choice of background model as a disctrete nuisance parameter (difference between models included in uncertainties).
 - Ensure that the resulting model is equivalent to other possible choices allowed by the data.

ATLAS

- Pick background model from a pool of possible parametrizations, ensuring that chose parametrization reproduces well the background shape in MC simulation.
- Difference between background shape in MC and background model (allowed to be as large as 10% of the expected signal) included in uncertainties.

×10

Higgs measurements from H → γγ

Mass.

- Signal strength and couplings.
- Fiducial cross sections.

Higgs mass measurement

- Higgs boson mass is a fundamental parameter for the determination of its properties.
 - SM predictions fully specified, once it's determined.
- ► H → $\gamma\gamma$ channel provides the best measurement of m_H.
 - > ALTAS:
 - Dedicated analysis for m_H, avoiding use of exclusive categories.
 - > CMS:
 - Consistent analysis for mass and couplings.
 - Minimize model dependence allowing production modes signal strengs to float independently.

Signal stenght

- Properties of the Higgs boson can be inferred correlating the event rates measured in different chanels.
- ▶ Being able to probe several production mechanisms, $H \rightarrow \gamma \gamma$ provides very important informations

Overall signal strength

Well in agreement with SM predictions.

$$\hat{\mu}_{CMS}(m_H = 124.7 \, GeV) = 1.14 \pm 0.24 \left[\pm 0.21 (stat)^{+0.09}_{-0.05} (theo)^{+0.13}_{-0.09} (syst) \right]$$

$$\hat{\mu}_{ATLAS}(m_H = 125.4 \, GeV) = 1.17 \pm 0.27 \left[\pm 0.23 (stat)^{+0.12}_{-0.08} (theo)^{+0.12}_{-0.08} (syst) \right]$$

"Fermionic" vs "Bosonic modes"

$$N^{ch} = \sum_{p,d} \left[\mu_{pd} \cdot (\epsilon \cdot A)_{pd}^{ch} \cdot \sigma_p^{SM} \cdot BR_d^{SM} \cdot L \right] + Bkg^{ch}$$

Per production mechanism

- Finest possible breakdown.
 - Worsening in precision.
 - Well in agreement with SM predictions

From signal strength to couplings: "k-framework"

- Simplest parametrization of Higgs-couplings deviations from SM values.
 - Strengths modifications from SM amplitudes (LO EWK, NLO QCD).
 - Assume kinematics unmodified.
 - Motivated for small deviations from SM.

$$\sigma_p \cdot BR_d = \sigma_p \cdot \frac{\Gamma_d}{\Gamma_{tot}} = \frac{k_p^2 \cdot k_d^2}{k_H^2} \cdot \sigma_p^{SM} \cdot \frac{\Gamma_d^{SM}}{\Gamma_{tot}^{SM}}$$

- Parametrise μ's in terms of k's
 - Can test different assumptions on relation between k's.

$$\mu_{pd} = \frac{k_p^2 \cdot k_d^2}{k_H^2}$$

- k_H paramatrises change in total width:
 - As an independent parameter or as a function of the other k's

Constraints on loop-induced couplings

Combining also other H decay modes

Expect to asses deviations on k_{γ} at 3-5% level in Run 2.

Fiducial cross-sections

- Analysis presented so far use the most advance techniques for event selection and classification.
 - Maximal amount of information extracted.
 - Assumption: signal kinematics is SM one.
- Complementary approach is to measure fiducial cross section.
 - Simple definition of fiducial region.
 - Assumptions on signal kinematics much reduced.
 - Reduced precision.

Results (ATLAS)

- Fiducial phase-space.
 - ightharpoonup pT(g1) > pT(g2) > |h|< ISO_0.3 <
- Differential cross-section measured as a function of several observables.
 - Overall good agreement with SM predictions.
- CMS measurement on the way to publication.

Higgs measurements with photons - P. Musella (ETH)

Fiducial cross sections: grand

summary

$H \rightarrow H\gamma$

Higgs decay channels with 2 leptons and a photon not as sensitive as H → γγ channel.

- Important to study.
 - Loop mediated HZγ coupling.
 - H→J/ψ γ

$H \rightarrow Z\gamma$

- Similar strategy to $H \rightarrow \gamma \gamma$.
 - Events categorized according to resolution.
 - CMS also uses VBF selection.
 - Limist from simultaneous fit to m_{IIv}.
- Exclusion sensitivity ~10 x SM for each experiment.
 - Will probe branching ratios close to SM by the end of LHC Run 2.

Dalitz decay and quarkonia

- CMS:
 - Search for H → g*g → llg (no the road to H → J,Y g).
- ATLAS:
 - Search for H → J,Y g and Z → J,Y g.
- Decays with quarkonia final states extremely challenging even for HL-LHC

Double Higgs production

H

- ightharpoonup HH ightharpoonup bb $m \gamma \gamma$ is the most promising channel.
- \triangleright Expect 1-2 σ sensitivity for 3ab⁻¹.
- For LHC Run 1 (and 2) focus is on resonant production. g
 - First step towards non-resonant production.
 - Set limit on exotic physics and extended Higgs sector.

00000

00000

Results

- Results interpreted in terms of 2HDM or extradimensional models.
 - Comparable sensitivities for CMS and ATLAS.
 - Moderate excess in ATLAS search, not seed in CMS one.

Summary

- Final states with photons are a very important part of the LHC Higgs program.
- ► H $\rightarrow \gamma \gamma$ channel is one of the most sensitive ones and allows precise determination of the Higgs sectors parameters.
 - ▶ Best determination of m_H comes from H → $\gamma\gamma$ channel.
 - Measurment of signal stenght(s) is among the most precise ones. Perspectives for LHC Run 2 is to constrain H $\gamma\gamma$ couplings at a few % level.
 - ▶ Best measurement of differential fiducial cross section also from H $\rightarrow \gamma \gamma$. Higher statistics in LHC Run 2 will considerably improve precision.
- ▶ Search for rare decays of H \rightarrow II γ allow to constrain BSM contributions to Higgs decay loops.
- In the long run HH \rightarrow bb $\gamma\gamma$ expected to provide information on the Higgs field self-coupling.

Thank you for your attention

- References.
- ATLAS Collaboration
 - "Measurement of the Higgs boson mass from the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^{*} \rightarrow 4$ ell channels with the ATLAS detector at the LHC", Phys. Rev. D. 90, 052004 (2014).
 - "Search for Higgs Boson Pair Production in the $\alpha \$ samma\gamma b\bar{b}\$ Final State using \$pp\$ Collision Data at $\alpha \$ TeV from the ATLAS Detector", Phys. Rev. Lett. 114, 081802 (2015). "Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\alpha \$ TeV with ATLAS", JHEP09(2014)112.
 - "Measurement of Higgs boson production in the diphoton decay channel in pp collisions at centerof-mass energies of 7 and 8 TeV with the ATLAS detector", Phys. Rev. D. 90, 112015 (2014). "Measurements of the Higgs boson production and decay rates and couplings using pp collision
 - "Measurements of the Higgs boson production and decay rates and couplings using pp collision data at sqrt(s) = 7 and 8 TeV in the ATLAS experiment", ATLAS-CONF-2015-007.
 - "Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data", Eur.Phys.J. C74 (2014) 3071.
- CMS Collaboration
 - "Observation of the diphoton decay of the Higgs boson and measurement of its properties", EPJ C 74 (2014) 3076.
 - "Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV", arXiv:1412.8662 accepted by EPJ C.
 - "Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $s\sqrt{8}$ =8 TeV", arXiv:1502.02702, submitted to JHEP
- CMS and ATLAS Collaboratins "Combined Measurement of the Higgs Boson Mass in pp Collisions at $s\sqrt{}=7$ and 8 TeV with the ATLAS and CMS Experiments", arXiv:1503.07589, accepted by Phys Rev Lett

Additional material

Energy scale data/MC corrections: ATLAS

Energy scale data/MC corrections: CMS

Photon energy scale uncertainties

0.5

1.5

Higgs measurements with photons - P. Musella (ETH)

m_{ee} (GeV)

19/05/2015

120

m_{vv} (GeV)

Photon energy scale uncertainties

- Contributions to systematic uncertainties on m_H in GeV.
 - Observed (expected) uncertainties are quoted.

	ATLAS	CMS
Non-linearity	0.14 (0.16)	0.10 (0.13)
Material in front of ECAL	0.15 (0.13)	0.07 (0.07)
ECAL longitudinal response	0.12 (0.13)	0.02 (0.01)
ECAL lateral shower shape	0.09 (0.08)	0.06 (0.06)
Photon energy resolution	0.03 (0.01)	0.01 (<0.01)
$Z \rightarrow$ ee calibration	0.05 (0.04)	0.05 (0.05)
Total	0.27 (0.27)	0.15 (0.17)

Interferometry - di-photon

- ► Can also exploit destructive interference between gg $\rightarrow \gamma \gamma$ and gg \rightarrow H $\rightarrow \gamma \gamma$.
 - Denerate effective mass shift, which magnitude varies as a function of the boson $p_{\scriptscriptstyle T}$.
 - \triangleright Constraint of the width from measurement of m_H vs p_{TH} .
 - ightharpoonup Projected sensitivity for 3ab⁻¹ Γ < 30 $\Gamma_{\rm SM}$ (95% CL).

