Constraints on BSM theories at LHC with Higgs decays into two photons

Abdelhak DJOUADI

(LPT CNRS & U. Paris-Sud)

- 1. What next after the Higgs discovery?
- 2. Theoretical uncertainties on the Higgs rates
 - 3. Search for BSM with $R_{\gamma\gamma}$
 - 4. Conclusion

Now that the Higgs is discovered and proved to be approximately SM-like.

Is particle physics closed and we should all go home?

What should we be doing the next 10–30 years in Particle Physics?

Need to check that H is indeed responsible of sEWSB (and SM-like?)

- ⇒ measure its fundamental properties in the most precise way:
- its mass and total decay width (invisible width due to dark matter?),
- its spin-parity quantum numbers (CP violation for baryogenesis?),
- its couplings to fermions and gauge bosons and check if they are only proportional to particle masses (no new physics contributions?),
- ullet its self-couplings to reconstruct the potential $V_{\!S}$ that makes EWSB.

Possible for $M_{
m H}$ pprox 125 GeV as all production/decay channels useful!

In fact part of this second chapter has alreday started. Latest results on

$$\mu_{\mathbf{XX}} = \sigma^{\mathbf{p}}(\mathbf{pp} \to \mathbf{H}) \times \mathbf{BR}(\mathbf{H} \to \mathbf{XX})|_{\mathbf{exp/SM}}$$

Measurement for couplings already precise at the 10–15% level!

This is particularly the case in the ${f H} o\gamma\gamma,\ {f H} o{f VV}\ ({f V}={f W},{f Z})$ cases.

Is this enough to probe effects of new physics or BSM? No! Not in the case of weakly interacting theories like 2HDM, SUSY, etc... effects expected to be at level of $\Delta\mu_{\mathbf{XX}} pprox \frac{\mathbf{C_{NEW}}\alpha_{\mathbf{W}}}{\pi} pprox \frac{\mathbf{M_h^2}}{\mathbf{M_{NEW}^2}} pprox$ a few %

Is a 1% accuracy achievable at upgraded LHC with high luminosities?

- Statistical uncertainty: $20\%/\sqrt{3\times100}\lesssim1\%$ at least in the clean $H\to\gamma\gamma,VV$ channels
- Systematical uncertainties: can be reduced at the level of a few % some common to many channels (lumi...).
- Theoretical uncertainty: will be by far the limiting issue!
- \Rightarrow How big is it? How much can it be reduced? Can it be removed?

Main Higgs production channels

Large production cross sections

with $gg \rightarrow H$ by far dominant process

$$\sigma pprox 20~{
m fb^{-1}} @ 8~{
m TeV}$$

$$\sigma pprox 50~\mathrm{fb^{-1}@14~TeV}$$

Takes pprox 85% of total Higgs rate.

VBF 2d largest:
$$\sigma_{\mathrm{VBF}}/\sigma_{\mathrm{ggH}}\lesssim \frac{1}{10}$$

Note BR(H $\rightarrow \gamma\gamma, \mathbf{ZZ} \rightarrow 4\ell) \approx 10^{-3}$

... not so small # of events at the end...

Paris, 19/05/2015

BSM with photons

Abdelhak Djouadi – p.6/18

LO^a: already at one loop QCD: exact NLO b : K pprox2 **EFT NLO**^c: good approx. EFT NNLO d : K pprox3 EFT NNLL e : $\approx +10\%$ EFT other HO^f: a few %. EW: EFT NLO: g : $pprox \pm$ very small exact NLO h : $pprox \pm$ a few % QCD+EW': a few % **Very recent:** N³LO calculation^j \approx +3% ^aGeorgi+Glashow+Machacek+Nanopoulos ^bSpira+Graudenz+Zerwas+AD (exact) ^cSpira+Zerwas+AD; Dawson (EFT) ^dHarlander+Kilgore, Anastasiou+Melnikov Ravindran+Smith+van Neerven ^eCatani+de Florian+Grazzini+Nason ¹Moch+Vogt; Ahrens et al., Bonvini et al. ^gGambino+AD; Degrassi et al. ^hActis+Passarino+Sturm+Uccirati 'Anastasiou+Boughezal+Pietriello ^jAnastasiou et al.

Despite of that, the $\mathbf{g}\mathbf{g}\! o \! \mathbf{H}$ cross section still affected by uncertainties

Higher-order or scale uncertainties:
 K-factors large ⇒ HO could be important
 HO estimated by varying scales of process

$$\begin{array}{l} \mu_{\mathbf{0}}/\kappa \leq \mu_{\mathbf{R}}, \mu_{\mathbf{F}} \leq \kappa \mu_{\mathbf{0}} \\ \text{at LHC: } \mu_{\mathbf{0}} = \frac{1}{2} \mathbf{M_{H}}, \kappa = 2 \Rightarrow \Delta_{\mathbf{scale}}^{\mathbf{NNLO}} \approx 10\% \\ \Rightarrow \text{now 4-5% with N}^{3} \text{LO result} \end{array}$$

- gluon PDF+associated α_s uncertainties: gluon PDF at high-x less constrained by data α_s uncertainty (WA, DIS?) affects $\sigma \propto \alpha_s^2$ PDF4LHC recommend: $\Delta_{pdf} \approx 10\% \text{@LHC}$ \Rightarrow to be improved to 3-4% in future?
- Uncertainty from EFT approach at NNLO $m_{loop}\gg M_H$ good for top if $M_H\!\lesssim\! 2m_t$ but not above and not b ($\approx\! 10\%$), W/Z loops Estimate from (exact) NLO: $\Delta_{EFT}\!\approx\! 5\%$ total $\Delta\sigma_{gg\to H}^{TH}\approx 15$ –20%@LHC

 \Rightarrow could be improved to pprox 10% ??

 $\sigma(\mathbf{gg} \to \mathbf{H}) \ [\mathbf{pb}]$

Large σ for small M_H and high \sqrt{s}

 \Rightarrow most important after gg o H.

Radiative corrections well under control:

- NLO QCD corrections order 10% (also with cuts and for distributions).
- Dominant NNLO corrections also calculated: very small.
- EW corrections are also rather small, of order of a few %.

for inclusive $\Delta\sigma_{
m VBF}^{
m TH} pprox 5\% \Rightarrow$ very clean!

But need to perform specific kinematics cuts to select the VBF topology:

- forward jet tagging: the two final jets are very forward peaked.
- ullet jets with large energies of \mathcal{O} (1 TeV) and sizeable $P_{\mathbf{T}}$ of $\mathcal{O}(M_{\mathbf{V}})$.
- central jet vetoing: Higgs decay products are central and isotropic.
- small hadronic activity in the central region no QCD (trigger uppon).
- \Rightarrow allows to suppress backgrounds to the level of H signal: ${
 m S/B}\!\sim\!1$.

However, the various VBF cuts make the signal theoretically less clean:

- dependence on many cuts and variables, impact of HO less clear,
- ullet contamination from the ${
 m gg}\! o\! H\!+\! jj$ process not that small...

There are also theoretical uncertainties on the Higgs BRs

ullet Input quark masses in ${
m H}
ightarrow {
m bar b}, {
m car c}$

$$\mathbf{m}_{\mathbf{Q}}^{\mathbf{pole}} o \overline{\mathbf{m}}_{\mathbf{Q}}(\mu = \mathbf{M}_{\mathbf{H}})$$

- $-\overline{m}_{\mathbf{b}}(\mathbf{M}_{\mathbf{b}}) = 4.19 \pm 0.03$ GeV
- $-\overline{\mathrm{m}}_{\mathbf{c}}(\mathrm{M}_{\mathbf{c}}) = 1.27 \pm 0.08$ GeV
- ullet Theory+experimental error on $lpha_{f s}$:

$$lpha_{\mathrm{s}}(\mathbf{M_Z^2})\!=\!0.118\pm0.0014$$
 @NNLO

- Scale error for higher orders
- ⇒ non-negligible uncertainties on BRs

$$\Gamma(extbf{H}
ightarrow extbf{b}ar{ extbf{b}}) pprox 60\% \Gamma_{ extbf{H}}^{ ext{tot}}
ightarrow \mathcal{O}(5{-}8\%)$$

$$\Rightarrow \Delta \mathbf{BR}(\mathbf{H} \to \gamma \gamma, \mathbf{VV}, \tau \tau, \mathbf{bb}) \approx 5\%$$

To be added to ${f \Delta^{TH}}\sigma({f pp} o {f H})$

Note: total width not known and subject to theoretical ambiguities (invisible, etc..)

Best way to eliminate the theory uncertainty is to use ratios of signal rates ${f Take}$ for instance ${f H} o {f VV}$ with ${f V}={f W} o \ell
u$ or ${f Z} o \ell \ell$ as reference, and for detection channel ${f H} o {f XX}$ with Higgs produced in process p:

$$\begin{aligned} \mathbf{D_{XX}} &= \sigma^{\mathbf{p}}(\mathbf{pp} \to \mathbf{H} \to \mathbf{XX})/\sigma^{\mathbf{p}}(\mathbf{pp} \to \mathbf{H} \to \mathbf{VV}) \\ &= \sigma^{\mathbf{p}}(\mathbf{pp} \to \mathbf{H}) \times \mathbf{BR}(\mathbf{H} \to \mathbf{XX})/\sigma^{\mathbf{p}}(\mathbf{pp} \to \mathbf{H}) \times \mathbf{BR}(\mathbf{H} \to \mathbf{VV}) \\ &= \mathbf{BR}(\mathbf{H} \to \mathbf{XX})/\mathbf{BR}(\mathbf{H} \to \mathbf{VV}) \\ &= \Gamma(\mathbf{H} \to \mathbf{XX})/\Gamma(\mathbf{H} \to \mathbf{VV}) \end{aligned}$$

$$\mathbf{D_{XX}} = \mathbf{c_X^2}/\mathbf{c_V^2}$$

Works only if one selects exactly the same kinematical configuration (same selection cuts and hence "efficiencies") for the channels X and V!

$$\begin{split} \mathbf{D_{XX}} &= \frac{\epsilon_{\mathbf{gg}}^{\mathbf{X}} \sigma(\mathbf{gg} \!\!\to\!\! \mathbf{H} \!\!\to\!\! \mathbf{XX}) \!\!+\!\! \epsilon_{\mathbf{VBF}}^{\mathbf{X}} \sigma(\mathbf{qq} \!\!\to\!\! \mathbf{Hqq} \!\!\to\!\! \mathbf{qqXX}) \!\!+\!\! \epsilon_{\mathbf{HV}}^{\mathbf{X}} \sigma(\mathbf{q\bar{q}} \!\!\to\!\! \mathbf{VH} \!\!\to\!\! \mathbf{VXX})}{\epsilon_{\mathbf{gg}}^{\mathbf{X}} \sigma(\mathbf{gg} \!\!\to\!\! \mathbf{H} \!\!\to\!\! \mathbf{VV}) \!\!+\!\! \epsilon_{\mathbf{VBF}}^{\mathbf{V}} \sigma(\mathbf{qq} \!\!\to\!\! \mathbf{Hqq} \!\!\to\!\! \mathbf{qqVV}) \!\!+\!\! \epsilon_{\mathbf{HV}}^{\mathbf{V}} \sigma(\mathbf{q\bar{q}} \!\!\to\!\! \mathbf{VH} \!\!\to\!\! \mathbf{VVV})}} \\ &= \frac{\epsilon_{\mathbf{gg}}^{\mathbf{X}} \sigma(\mathbf{gg} \!\!\to\!\! \mathbf{H}) \!\!+\!\! \epsilon_{\mathbf{VBF}}^{\mathbf{X}} \sigma(\mathbf{qq} \!\!\to\!\! \mathbf{Hqq}) \!\!+\!\! \epsilon_{\mathbf{HV}}^{\mathbf{X}} \sigma(\mathbf{q\bar{q}} \!\!\to\!\! \mathbf{VH})}{\epsilon_{\mathbf{Vg}}^{\mathbf{V}} \sigma(\mathbf{q\bar{q}} \!\!\to\!\! \mathbf{VH})} \times \frac{\Gamma(\mathbf{H} \!\!\to\!\! \mathbf{XX})}{\Gamma(\mathbf{H} \!\!\to\!\! \mathbf{VV})} \\ &= \frac{\Gamma(\mathbf{H} \!\!\to\!\! \mathbf{XX})}{\Gamma(\mathbf{H} \!\!\to\!\! \mathbf{VV})} = \mathbf{c_X}^2 / \mathbf{c_V}^2 \end{split}$$

- The theoretical uncertainties from the cross sections drop out
- The parametric uncertainties from the branching ratios drop out
- The theoretical ambiguities in the Higgs total width also drop out
 - $\Rightarrow D_{XX}$ measures only the ratio of squared couplings!

Extremely clean theoretically. And maybe also experimentally useful:

- Some common experimental systematical errors also drop out:
- common uncertainty from the luminosity measurement
- other common systematics such as errors on efficiencies etc...?

The ratios that can already be built are the following ones:

$$\begin{split} \mathbf{D_{ww}} &= \frac{\sigma(\mathbf{pp} \to \mathbf{H} \to \mathbf{WW})}{\sigma(\mathbf{pp} \to \mathbf{H} \to \mathbf{VV})} = \frac{\Gamma(\mathbf{H} \to \mathbf{WW})}{\Gamma(\mathbf{H} \to \mathbf{VV})} = \mathbf{d_{ww}} \frac{\mathbf{c_{W}^{2}}}{\mathbf{c_{V}^{2}}} \\ \mathbf{D_{\tau\tau}} &= \frac{\sigma(\mathbf{pp} \to \mathbf{H} \to \tau\tau)}{\sigma(\mathbf{pp} \to \mathbf{H} \to \mathbf{VV})} = \frac{\Gamma(\mathbf{H} \to \tau\tau)}{\Gamma(\mathbf{H} \to \mathbf{VV})} = \mathbf{d_{\tau\tau}} \frac{\mathbf{c_{\tau}^{2}}}{\mathbf{c_{V}^{2}}} \\ \mathbf{D_{bb}} &= \frac{\sigma(\mathbf{q\bar{q}} \to \mathbf{HV} \to \mathbf{bbV})}{\sigma(\mathbf{q\bar{q}} \to \mathbf{HV} \to \mathbf{VVV})} = \frac{\Gamma(\mathbf{H} \to \mathbf{bb})}{\Gamma(\mathbf{H} \to \mathbf{VV})} = \mathbf{d_{bb}} \frac{\mathbf{c_{\tau}^{2}}}{\mathbf{c_{V}^{2}}} \\ \mathbf{D_{\gamma\gamma}} &= \frac{\sigma(\mathbf{pp} \to \mathbf{H} \to \gamma\gamma)}{\sigma(\mathbf{pp} \to \mathbf{H} \to \mathbf{VV})} = \frac{\Gamma(\mathbf{H} \to \gamma\gamma)}{\Gamma(\mathbf{H} \to \mathbf{VV})} = \mathbf{d_{\gamma\gamma}} \frac{\mathbf{c_{\gamma}^{2}}}{\mathbf{c_{V}^{2}}} \end{split}$$

Best probe by far is $\mathbf{D}_{\gamma\gamma}$ which measures the deviation of the $\gamma\gamma$ loop!

- Photon massless and Higgs has no charge: must be a loop decay.
- In SM: only W-loop and top-loop are relevant (b-loop too small).
- For $m_i \to \infty \Rightarrow A_{1/2} = \frac{4}{3}$ and $A_1 = -7$: W loop dominating! (approximation $\tau_W \to 0$ valid only for $M_H \lesssim 2 M_W$: relevant here!).

 $\gamma\gamma$ width counts the number of charged particles coupling to Higgs!

Contrubution A_s^p of particle p of spin s with Higgs coupling g_{Hpp} :

$$egin{align*} A_0^p &= -rac{1}{3} g_{Hpp}^2/m_P^2 , A_{1/2}^p = +rac{4}{3} g_{Hpp}^2/m_P^2 , A_1^p = -7 g_{Hpp}^2/m_P^2 , \ & ext{If } g_{Hpp} \propto m_p \Rightarrow A_0^p
ightarrow -rac{4}{3}, A_{1/2}^p
ightarrow +rac{1}{3}, A_1^p
ightarrow +7. \end{split}$$

Small/calculated QCD and EW corrections: only of order few percent.

In the SM, the top and W loop contributions to the ratio $\gamma\gamma$ amplitude is

$$|\mathbf{c}_{\gamma}pprox1.26 imes|\mathbf{c_W}-0.21\,\mathbf{c_t}|$$

Assuming the custodial symmetry relation $g_{HZZ}=g_{HWW}=c_V$ (which is well checked experimentally and hard to violate in theory) The SM value of the ratio $D_{\gamma\gamma}=c_{\gamma}^2/c_V^2$ is simply given by

$$m c_{\gamma}^2/c_V^2 pprox 6.5 imes |1-rac{1}{5}c_t/c_V|^2$$

with $c_{\mathrm{V}}=c_{\mathrm{t}}=1$ in SM. Any new physics effects will alter this value.

How well this observable can be experimentally measured? If it is

 $\mathcal{O}(1\%)$ best probe of new physics atht you can imagine at the LHC

(equivalent to $\sin^2\!\theta_{\mathbf{W}}$ at LEP and $M_{\mathbf{W}}$ at the Tevatron/LHC).

Examples of BSM searches that can be done with the observable follow.

$$\mathbf{c_{\gamma}^2} pprox 6.5 imes |\mathbf{c_W} - \mathbf{0.21}\,\mathbf{c_t}|^2$$

From central values of $\mu_{\gamma\gamma}, \mu_{\mathbf{ZZ}}$ of march 2013 (ATLAS excess in $\gamma\gamma$..), extrapolation to HL–LHC with error scaling as $\Delta^{\mathbf{EX}}/\sqrt{\mathcal{L}}$, one finds:

AD+Moreau

In alignment limit in extended Higgs models $\Rightarrow
m g_{HVV}=g_{Hff}=1$ new physics effects appear only in the $m H\gamma\gamma$ vertex: $m c_{\gamma}pprox |1+
m \hat{c}_{\gamma}|$

- ullet In 2HDM: contribution of ${f H}^\pm$ states with $\lambda_{f I} \propto {f g_{HH^+H^-}} = {f f}(aneta)$
- \bullet In triplet Higgs models: contribution of both H^\pm and $H^{\pm\pm}$
- ⇒ probe large masses of the new Higgs states witha 1% accuracy

Akeroyd+Arhrib

MSSM with heavy sparticles: Higgs sector needs only two inputs (hMSSM fits of the h couplings \Rightarrow constraints on the MSSM $[{f M_A}, an\!eta]$ plane.

AD Maiani Moreau Polosa Quevillon Riquer (2013)

Can SUSY loop contributions significantly change the ${f h} o \gamma \gamma$ rate?

discussed in last years for 2 $\sigma\gamma\gamma$ excess..

- ⇒ much better job with a 1% probe!
- light stau's and large $g_{h\tilde{ au}\tilde{ au}}\!\propto\!\mu tan\beta$ (staus difficult to search at LHC..)

Carena+Gori+Shah+Wagner

• light χ_1^\pm in non-universal MSSM

$$\mathcal{O}(rac{\mathbf{gM_W}}{\mathbf{m_{\chi_1^\pm}}})$$
 with $\mathbf{g_{h\chi_1^\pm\chi_1^\pm}} \propto rac{\mu \mathbf{M_2}}{\mathbf{M_2^2} + \mu^2}$

Driesen+Illana+Hollik+AD

• light t with large Higgs couplings:

$$1 + m_t^2/(4m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2) \times (m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2 - X_t^2)$$

- \Rightarrow max-mixing: $\sigma(gg \rightarrow h)$ suppressed.
- \Rightarrow no mixing: but then stops very heavy.

Arvanitaki+Villadoro,AD

• light $\tilde{\mathbf{b}}$ with large $\mathbf{g}_{\mathbf{h}\tilde{\mathbf{b}}\tilde{\mathbf{b}}} \propto \mu \mathbf{tan}\beta$ similar to the $\tilde{\tau}$ case at high $\tan\beta$.

Very efficient probe! complementary to direct SUSY searches...