

#### Christoph Englert

# Interference effects in (B)SM Higgs searches

LLR - Palaiseau 20.05.2015









# "Yang-Mills+Higgs had to be true"

`t Hooft, "Under the Spell of the Gauge Principle"

#### Ws and Zs in 1983 at UA1/UA2

$$m_W \simeq 80.42 \text{ GeV}$$

$$m_Z \simeq 91.19 \text{ GeV}$$

# How do you accommodate this in QFT?



answer to this in 1964

- [Higgs `64] [Brout, Englert `64] [Guralnik, Hagen, Kibble `64]
- non-linear realisation of gauge symmetry in a Yang Mills+scalar sector is compatible with  $\langle H \rangle \neq 0$ 
  - "spontaneous" symmetry breaking
- massive gauge bosons, but no ghost problems at small distances
  - renormalizability, unitarity

# "Yang-Mills+Higgs had to be true"





SM seemingly complete after July 4th 2012, evidence for  $J^{CP}=0^+$  and couplings to (longitudinal) massive gauge bosons

#### Higgs properties sui generis:

particle relates to unitarity conservation and an excitation of an isotropic and translationally invariant background field.

# "Yang-Mills+Higgs had to be true"



## Higgs properties sui generis:

particle relates to unitarity conservation and an excitation of an isotropic and translationally invariant background field.

# What's next? Where can new physics hide?

1. unitarity

- 2. number of Higgs fields
- 3. gauge representation
- 4. experimental and theoretical extraction
- 5. mechanism of ELW symmetry breaking
- 6. spectrum through quantum effects

 $\sqrt{s} = 7 \text{ TeV}$ ,  $L \le 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}$ ,  $L \le 19.6 \text{ fb}^{-1}$ coupling measurements are Phenomenology is Fermiophobic 

Bkg. only dominated by interference non-resonant BSM beyond NW,  $\Gamma_{\rm H}$ **EWSB** 

specific couplings, top

interactions [Corbett, Eboli, Gonzaiez-Frane, et al. 12] Trott `12] [Espina

naturalness

leaving footprints?

# What's next? Where can new physics hide?

coupling measurements are determined by

- 1. unitarity
- 2. number of Higgs fields
- 3. gauge representation
- 4. experimental and theoretical extraction
- 5. mechanism of ELW symmetry breaking
- 6. spectrum through quantum effects



- similar analyses by [Ellis, You `12]
  - [Masso, Sanz `12]
- [Carmi, Falkowski, Kuflik, Volansky `12]
- [Klute, Lafaye, Plehn, Rauch, Zerwas `12]
- [Corbett, Eboli, Gonzalez-Fraile, et al. `12]
- [Espinosa, Grojean, Mühlleitner, Trott `12]

### Why is this important?



only U(1) and sterile neutrino mixing + Higgs Portals  $\sim \lambda |H|^2 |\phi|^2$ 

$$\Gamma_H = \Gamma_H^{\rm SM} + \Gamma_{\rm inv}$$

$$\Gamma_H = \Gamma_H^{\rm SM} + \Gamma_{\rm inv}$$

→ a model-independent constraint on the total Higgs decay width is a game changer for particle physics and cosmology!

## A two-step programme in ZZ

[Kauer, Passarino `12][Caola, Melnikov `13] [Campbell, Ellis, Williams `13]







#### A two-step programme in ZZ

[Kauer, Passarino `12][Caola, Melnikov `13] [Campbell, Ellis, Williams `13]







#### 1. on-shell measurement

dominated by h signal

$$\sigma_{h,g} \times \mathrm{BR}(H \to ZZ \to 4\ell) \sim \frac{g_{ggh}^2 g_{hZZ}^2}{\Gamma_h}$$

#### A two-step programme in ZZ

[Kauer, Passarino `12][Caola, Melnikov `13] [Campbell, Ellis, Williams `13]





#### 1. on-shell measurement

dominated by h signal

$$\sigma_{h,g} \times \mathrm{BR}(H \to ZZ \to 4\ell) \sim \frac{g_{ggh}^2 g_{hZZ}^2}{\Gamma_h}$$

#### 2. off-shell measurement

threshold effects and unitarity driven interference, but de-coupling of width parameter  $\sim i/(s-m_h^2+i\Gamma_h m_h)$ 

$$d\overline{\sigma}_h \sim \frac{g_{ggh}^2(\sqrt{s}) g_{hZZ}^2(\sqrt{s})}{s} dLIPS \times pdfs.$$

#### A two-step programme in ZZ

[Caola, Melnikov `13] [CMS-HIG-14-002] [ATLAS-CONF-2014-042]





#### correlate measurements

for off-shell an on-shell Higgs couplings are correlated:

$$\Gamma_h > \Gamma_h^{\text{SM}}, \qquad \iff g_{ggh}g_{hZZ} > [g_{ggh}g_{hZZ}]^{\text{SM}} \qquad \iff \overline{\sigma} > \overline{\sigma}^{\text{SM}}$$

$$\sigma \times \text{BR} \simeq [\sigma \times \text{BR}]^{\text{SM}}$$

### ... is there a loophole?



light (non-chiral) masses:

$$\mathcal{L} = |D_{\mu}\phi|^{2} - m^{2}\phi + \lambda |H|^{2} |\phi|^{2}$$





# Higgs "off-shell" measurements

...so much for the theory, but is this really a measurement of the width?



Naive and inconsistent rescaling arguments violate unitarity in the 100 GeV region where the measurement picks up the sensitivity. We constrain unphysical models.

## Higgs "off-shell" measurements

...nonetheless rescaling arguments should not be a guiding principle!



[CE, Spannowsky `14]

| $m_{\phi}$          | $\mu$ (h peak) | $\Gamma_h/\Gamma_h^{ m SM}$ | $\overline{\sigma}/\overline{\sigma}^{\rm SM} \ [m(4\ell) \ge 330 \ {\rm GeV}]^a$ |
|---------------------|----------------|-----------------------------|-----------------------------------------------------------------------------------|
| $70  \mathrm{GeV}$  | $\simeq 1.0$   | $\simeq 5$                  | -2%                                                                               |
| $170~{\rm GeV}$     | $\simeq 1.0$   | $\simeq 4.7$                | +80%                                                                              |
| $170  \mathrm{GeV}$ | $\simeq 1.0$   | $\simeq 1.7$                | +6%                                                                               |

- · cannot control loop contributions in QCD processes at hadron colliders
- width interpretation not possible in BSM scenarios without uniform convergence to the SM template, statistical pull always from  $\sigma$ BR!

[CE, Spannowsky, Soreq `14]

- new contributions to continuum ZZ suppressed and bound to be small in light of electroweak precision constraints
- interpreted SM-like width measurement this analysis is not competitive: 2-like WWh coupling and zero hidden width bias gave  $\Gamma_{\rm H} < 1.4 \ \Gamma_{\rm H}^{\rm SM}$  already with very early data! [Dobrescu, Lykken `14]



• <u>remove loop argument with WBF:</u> adapt to weak boson fusion + custodial isospin (small interference with GF, GF can be suppressed, H couplings to ZZ and WW directly reflect electroweak properties)

[Kauer, Passarino `12]

## LEP as a off-shell Higgs factory

[CE, McCullough, Spannowsky `15]

- in models that allow a width interpretation, we can use LEP measurements as an input to break the on-shell signal strength degeneracy
- "UV off-shell" measurement is replaced by "IR off-shell+UV sensitivity"



## LEP as a off-shell Higgs factory

[CE, McCullough, Spannowsky `15]

- in models that allow a width interpretation, we can use LEP measurements as an input to break the on-shell signal strength degeneracy
- "UV off-shell" measurement is replaced by "IR off-shell+UV sensitivity"



#### Guidelines for Run II and after

Is there evidence for new degrees of freedom?

[following the HXSWG]



# Higgs Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$$

[Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10]



#### concrete models

- Higgs portals
- (N)MSSM
- compositeness

•

#### Guidelines for Run II and after

## Higgs Effective Field Theory







#### Guidelines for Run II and after

#### concrete models

extra Higgs-like states

[following the HXSWG]

additional (wide)
resonance in the TeV
regime





# Impact of width modelling

dip structure is sensitive to width and propagator modelling



how do we treat a systematic resummation in theory?





# Impact of width modelling

dip structure is sensitive to width and propagator modelling



how do we treat a systematic resummation in theory?

[CE, Low, Spannowsky `15]



# A bottom-up (B)SM Higgs programme

coupling measurements are determined by

## 1. unitarity





$$\mathcal{L}_{H} = (D_{\mu}H)^{\dagger}D^{\mu}H - V(\langle H \rangle) - V'(\langle H \rangle)(H - \langle H \rangle)$$

$$= 0$$

$$-\frac{1}{2}V''(\langle H \rangle)(H - \langle H \rangle)^{2} - \dots$$

$$\sim m_{H}^{2} \qquad \text{self-couplings}?$$

# The Higgs trilinear coupling



[Plehn, Baur, Rainwater `03]

[Dolan, CE, Spannowsky `12]

[Papaefstathiou, Yang, Zurita `13]

[Barr, Dolan, CE, Spannowsky `13]

[Dolan, CE, Greiner, Spannowsky `13]

destructive interference sensitive to modifications of

•  $b\bar{b}\gamma\gamma$ : 1.3 $\sigma$  at 3/ab, limited statistics [ATLAS PHYS-PUB 2014-19]





# The Higgs trilinear coupling

- large backgrounds, small signal, but feasible in  $b\bar{b}\tau\tau$ ,  $b\bar{b}\gamma\gamma$ ?
- boosted regime unavoidable for  $b\bar{b} au au$
- use complementarity of MT2 to tackle  $t \bar{t}$

[Dolan, CE, Spannowsky `12] [Barr, Dolan, CE, Spannowsky `13] [Dolan, CE, Greiner, Spannowsky `13]

 $\lambda > 1...3 \lambda_{\rm SM} \text{ in } b\bar{b}\tau^+\tau^- \text{ for 3/ab}$ 





# The Higgs trilinear coupling



[Frederix, Frixione, Hirschi, Maltoni, et al. `14]

 multi-top and multi-Higgs adds complementary information!

[CE, Krauss, Spannowsky, Thompson `14] [Liu, Zhang `14]



[CE, Krauss, Spannowsky, Thompson `14]

# The Higgs quartic gauge couplings

• directly accessible in WBF  $pp \to hhjj$ ,  $\mathcal{O}(\mathrm{fb})$  cross section



• gluon fusion contribution beyond EFT is key to this channel, legacy of trilinear!

| 1.7                              | Signal with $\zeta \times \{g_{WWhh}, g_{ZZhh}\}$ |             |             | Background |          |
|----------------------------------|---------------------------------------------------|-------------|-------------|------------|----------|
| bb	au	au                         | $\zeta = 0$                                       | $\zeta = 1$ | $\zeta = 2$ | $tar{t}jj$ | Other BG |
| tau selection cuts               | 1.353                                             | 0.091       | 0.841       | 3101.0     | 57.06    |
| Higgs rec. from taus             | 1.352                                             | 0.091       | 0.840       | 683.5      | 31.92    |
| Higgs rec. from $b$ jets         | 0.321                                             | 0.016       | 0.207       | 7.444      | 0.303    |
| 2 tag jets/re-weighting          | 0.184                                             | 0.010       | 0.126       | 5.284      | 0.236    |
| incl. GF after cuts/re-weighting | 0.273                                             | 0.099       | 0.214       | 5.284      | 0.236    |

[Dolan, CE, Greiner, Spannowsky` 13]

1/50...but can be improved significantly... 1/4

[Dolan, CE, Greiner, Nordstrom, Spannowsky in prep.]





[Dolan, CE, Greiner, Spannowsky`13]

# model-independent top-Yukawa constraints

- of course  $t\bar{t}h$  production
- [Plehn, Salam, Spannowsky `10] [Soper, Spannowsky `12, `14] [Artoisenet et al. `13]
- but also thj production

[Farina et al. `12] [Biswas et al. `13] [Ellis et al. `13]



 cross sections are small but highly sensitive through interference

[Fisher, Becker, Kirkby `95]

• somewhat reminiscent of radiation zeros in  $W^{\pm}\gamma \rightsquigarrow \Delta y(tH) \sim 0$ 



[CE, Re `14]

• even in rare (but clean!) final states  $c_t \gtrsim 0.5$  at 95..99% confidence level



# A bottom-up (B)SM Higgs programme

coupling measurements are determined by

- 1. unitarity
- 2. number of Higgs fields
- 3. gauge representation
- 4. experimental and theoretical extraction
- 5. mechanism of ELW symmetry breaking
- 6. spectrum through quantum effects



similar analyses by [Ellis, You `12]

[Masso, Sanz `12]

[Carmi, Falkowski, Kuflik, Volansky `12]

[Klute, Lafaye, Plehn, Rauch, Zerwas `12]

[Corbett, Eboli, Gonzalez-Fraile, et al. `12]

[Espire Trott `12]

naturalness leaving footprints?

# Higgs couplings: a probe of naturalness

• obviously direct LHC measurements will have their sensitivity saturated by systematics ⇒ lepton collider physics



• don't forget the B<sub>0</sub> functions!

$$-\delta Z_h, \delta m_h^2 \sim --- - - - - - \sim \Lambda^0$$

worst case: dark sector enforces naturalness, e.g. the twin Higgs

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}\delta Z_h(\partial_\mu h)^2 + \dots$$

250 GeV linear collider full EW corrections



# **Summary & Conclusions**

- The Higgs sector and the Higgs interactions are the best places to look for BSM physics, there's a lot left to do
- run II & HL-LHC will give us more insights into the SM-likeness of the Higgs
  - exploit interference-induced sensitivity in fully differential measurements
  - high momentum transfers with reasonable statistics
  - more sensitive new resonance searches
  - there is already a case for 250 GeV linear collider for Higgs spectroscopy! (→ width & naturalness)