LABORATORY ASTROPHYSICS WITH HIGH POWER LASERS

Alessandra RAVASIO

MOTIVATIONS

• Astronomical observations bring us many interesting objets...

jets

planètes solaires et leur lunes

exoplanets

champs magnétiques cosmiques

• ...but their study is really challenging:

Mostly no evolution in the life time of a scientist
No possibility to change conditions in a controlled way
Many measurements are indirect
Measurements limited to electromagnetic emission

HIGH POWER LASERS CAN HELP

•Accessing the density/temperature regimes of some astrophysical objects

•This gave rise to laboratory astrophysics. Experiments allow to:

- Deliver material properties useful for astronomical objects
 Precise data not directly measurable in the universe
- Study phenomena relevant to astrophysical objects on small temporal and spatial scales
 Study temporal evolution and modify boundary conditions

OUTLINE

PLANETARY SCIENCE

- What do we need to measure
- How do we produce planetary conditions
- How do we probe them
- Application to super earths and giant planets

ASTROPHYSICS

- Examples of experiments
 - Magnetic field
 - Accretion shocks
 - Nested outflows

PLANETARY SCIENCE

- Study the formation and evolution of planets
- Fast growing science due to exoplanets discovery

1523 planets discovered since 1989

• Key questions

- What is the nature of the iron core at the center of Earth and other terrestrial planets?
- •What is the interior of Jupiter and the other giant planets?
- Why Saturn's luminosity is not comparable with its age?
- Which kinds of planets exist outside our solar system?

PLANETARY SCIENCE

• Layered structure and chemical composition defines properties

Our giant planets 165-170 K 100 kPa Molecular II. (Y~0.23) Temp (K) Inhomogeneous 6300-6800 K 200 GPa 135-145 K 100 kPa 10⁶ Molecular H_s (Y~0.14?) Metallic H 5850-8100 K 200 GPa (Y~0.27) 10⁵ Metallic 10 Jupiter (Y~~ 8500-10000 K 1000 GPa 104 mass 15000-21000 E 4000 GPa ~Jupiter Ices + Rocks core ? Earth to super Jupiter Saturn 10³ Earth cores ~Uranus ~75 K 100 kPa ~70 K 100 kPa Large Icy folecular H Helium + Io 10² ~2000 K ~2000 K satellites Ices Mixed with hydrogen Mixed with rocks? 10⁻² 10³ 10-1 10² 104 1 10 ~6000 K ~8000 K Rocks Pressure (Mbar) Uranus Neptune

• Main materials are hydrogen, helium, water, ammonia, CH₄, iron and silicates with pressures up to 15 Mbar

• At which conditions?

Material properties are crucial to relate planetary models with the astronomical observations

$$\nabla P = \rho \nabla (\vec{V} + Q)$$

$$\nabla P = \nabla (\vec{V} + Q)$$

$$\nabla Q(\vec{r}) = \frac{1}{2} \omega^2 r^2 \sin^2 \theta$$

$$\nabla M = 4\pi r^2 \rho$$
Few observational constrains

P is pressure, ρ the density, T the temperature and V & Q gravitational & centrifugal potentials. For giant planets Q \approx 0.1 V.

r is the radius with origin at the centre of the planet, θ the angle with respect to the rotation axis, & ω the rotation frequency at point r.

To close the system we need EOS; i.e. $f(\rho,T,P) = 0$

Equations of state in these regimes are very difficult to model at the frontier between plasma physics and condensed matter: non ideal plasmas

- perfect gas does not apply
- perturbation theory is invalid

• Results for JUPITER

- M_⊕ is the earth mass, Mz envelop mass with heavy elements
- Sophisticated EOS models ≠answers

≠ formation scenarios

o Core

 \Rightarrow accretion around solid mass

• No core or very small one

 \Rightarrow collapse due to condensation

HOW TO CREATE EXTREME STATES OF MATTER

LASER GENERATED SHOCK WAVE

- A shock wave is a discontinuity in pressure, density and energy that propagates in a medium
- We can generate a shock wave with lasers

- As the laser impact the solid target a hot low density plasma is created and releases into vacuum. As a reaction to this expansion a shock wave is launched in the target
- The shock compresses and heat the sample
- The pressure attaint depends on the laser characteristics

$$P \approx 12(I_L/\lambda)^{2/3}$$

Today severals tens of Mbar

SHOCK WAVE AND Equation Of State

• Equation Of State (EOS) is the relation between the thermodynamics quantities : f(P,E,Q)=0

• Conservation relations (*Hugoniot-Rankine*):

mass $\varrho_0 U_S = \varrho(U_S - U_P)$ momentum $\varrho_0 U_S U_P = P - P_0 \implies 3 \text{ equations et 5 parameters}$ energy $\varrho_0 U_S (E - E_0 + U_P^2/2) = PU_P$

 \Rightarrow <u>We need to measure 2 quantities to close the system</u>

2 parameters in the same material 1 parameter in 2 material one of which in well known (Al) \Rightarrow absolute measurement

compressed

matter

 P, ρ, E

 \Rightarrow relative measurement

non-

compressed

matter

WHAT DO WE MEASURE

Shock velocity Particle velocity	EOS	
Reflectivity/	conductivity	
Grey body	Temperature	

WHAT DO WE MEASURE

12

• More recent: X-RAY & Particle DIAGNOSTICS (microscopic probe)

TYPICAL EXPERIMENTAL SET-UP

LULI 2000 LASER

•2x 1kJ@1054nm (IR) 0.5-10ns

•1kJ@1054nm (IR), 0.5-3ns + 100J@1054nm, 1-5ps

THE EXPERIMENTAL HALL

THE EXPERIMENTAL CHAMBER

Ex. IRON : OUR EARTH but also FURTHER EARTHS

- Iron is the main component of Earth's core
- •Magnetic field +seismic wakes trajectories give us informations on internal structure: Earth's core is made of a solid core surrounded by liquid iron

 Which is the iron melting temperature at the solid/liquid boundary? (P=3,3 Mbar)

17

Puissance émise par le noyau ⇒Geodynamo + évolution

Necessity to explore Iron melting curve P(T)

• Life on super earths? B field (liquid iron) sustaining a magnetosphere

•The presence of molten metallic cores is less likely for as the size of terrestrial planets increases.

SHOCKED IRON

- The simultaneous measurement of the velocity and self emission allows to fill the temperature-pressure diagram
- Change in structure with pressure: Diffraction measurements. Phase transitions+melting

cold iron: bcc phase compressed iron: hcc phase

EX.WATER : OUR GIANT PLANETS

• Water (ices) at pressure of ~7Mbar

 The magnetic field of these two planets is more intense than expected and it is **asymmetric** (Voyager 2).

• Is there a fluid **conducting region**, able to explain this B field by dynamo effect?

SHOCKED WATER

• Different properties as pressure is risen

20

OUTLINE

PLANETARY SCIENCE

- What do we need to measure
- How do we produce planetary conditions
- How do we probe them
- Application to super earths and giant planets

ASTROPHYSICS

- Scaling laws
- Example of experiments
 - Magnetic field
 - Accretion shocks
 - Nested outflows

SCALING LAWS

Well designed experiments to simulate inIaboratorysomeastrophysical phenomena

same equations (same physics) and boundary conditions
scaling laws (dimensionless numbers)

\Rightarrow the two systems will show the same scaled evolution

- direct characterisation (a part) of the phenomenon
- ▶ test astrophysical models/codes

ASTROPHYSICAL JETS

Astrophysical jets are extremely collimated matter flows common to very different objects

- How do they stay collimated on such large distances?
- radiative losses
- interaction with IGM
- o magnetic fields but
- •no direct observational evidence for the dynamical role of B
- •how far from the star B remains dynamically important?
- •an outer boundary pressure to the magnetic coil to maintain the jet collimated?

NESTED OUTFLOWS

• Often jets are associated with accretion disk + Jets propagate in winds

YSO

• Connection between outflow and environment well established

Arce et al. 1998

AGN:

 Evidence of accretion disk in the form of Ultra Fast Outflows (UFO) helping collimating the inner jet.

Tombesi et al. 2012

• Observational evidence of structured jet: simultaneous presence of an inner highly relativistic jet, and an outer, more massive, mildly relativistic plasma.

Asada&Nakamura 2012, Ghisellini et al 2005,

Xie et al 2012

PNe- PPNe:

• Binary is emerging as the preferred method for shaping PNe

Soker 1998, 2006

•Very high accretion rate disks needed to account for the observed jets properties

Blackman&Lucchini 2014

• Fast collimated winds sweep into a slower denser wind ejected most strongly during the PPN phase

Bujarrabal et al. 2001, Rizzo et al. 2013

NESTED OUTFLOWS

• Often jets are associated with accretion disk + Jets propagate in winds

YSO

• Connection between outflow and environment well established

AGN:

• Evidence of accretion disk in the form of Ultra Fast Outflows (UFO) helping collimating the inner jet.

Tombesi et al. 2012

PNe- PPNe:

How different time-dependent ambient thermal and ram pressures affect jet collimation?

erred

method for shaping PNe

Soker 1998, 2006

Asada&Nakamura 2012, Ghisellini et al 2005,

more massive, milling

Xie et al 2012

•Very high accretion rate disks needed to account for the observed jets properties

Blackman&Lucchini 2014

• Fast collimated winds sweep into a slower denser wind ejected most strongly during the PPN phase

Bujarrabal et al. 2001, Rizzo et al. 2013

OUR EXPERIMENTAL APPROACH

- Create **nested** (*surrounding*) **outflows** (*dynamic "wind"*) from laser plasma interaction
 - Spatially shaping the laser focal spot
 - Specific target

- Focal Spot (Phase Plates)
 inner dot (100µm)
 - outer ring $(75\mu m)$

Data from rear-side Gated Optical Imager Snapshot of 2D emission

- inner Fe dot
- outer CH ring
- common CH-Al pusher

REAR SIDE TIME RESOLVED OPTICAL EMISSION

• Light emitted from rear side @ 450nm

Fe dot only, NO CH ring

- Emission from the expanding plasma after shock breaks out.
- Lateral expansion

•Shock transit in CH (transparent)

•Collision between CHFe:

-high emission
-iron seems constrained
• Collision between CH-CH at later times

Fe dot + 15 μ m CH ring

• Hard X-rays (Cu K α @~8 keV) \Rightarrow CH is transparent, Fe morphology

Quasi spherical expansion

Lateral expansion highly suppressed

XRAY RADIOGRAPHY TIME EVOLUTION

Fe + 15μ m CH ring

Yurchak et al. PRL 2014

- Different phases :
 - expansion
 - collision with CH *high absorption layers at the iron edge (in d. nicely visible)*
 - focusing on axis *convergence point* (*d.- e.*)
 - collimate propagation up to 80 ns (*f.-g.*)

DYNAMICS OF THE IRON FLOW

- Aspect ratio (AR=l/d)
 - Quasi spherical expansion without wind
 - Rapid increase in the AR with time when wind is added (more rapid for denser wind)
 - Saturation to a constant regime which is kept for long delays

- The iron expands linerly along the propagation axis: from few 100µm at early times to mm size
- Iron shrinks in the radial direction *(focusing)*

HYDRODYNAMIC SIMULATIONS

• FLASH code

- Multi-physics AMR code developed by the FLASH center at the University of Chicago
- Extensively used in astrophysics
- Recently extended to include high-energy density physics capabilities
- I_L calibrated with experimental optical data: shock velocities and breakout timings (*transverse and rear side SOPs*), electron density (*interferometry*) and morphology (*shadowgraphy*)

HYDRODYNAMIC SIMULATIONS

• FLASH code

- Multi-physics AMR code developed by the FLASH center at the University of Chicago
- Extensively used in astrophysics
- Recently extended to include high-energy density physics capabilities
- I_L calibrated with experimental optical data: shock velocities and breakout timings (*transverse and rear side SOPs*), electron density (*interferometry*) and morphology (*shadowgraphy*)

SYNTHETIC X-RAY RADIOGRAPHY

Evidence of the formation of a shock in the collision:
 2 pressure jumps, 3 density discontinuities

* Synthetic X-ray radiographies in really good agreement with the experiment :

- -presence of the iron jet
- -its time evolution: *expansion+collision+focusing*
- -convergence point
- -higher absorption layer at iron edge

SHOCK FOCUSING INERTIAL CONFINEMENT(SFIC)³²

- * The expanding Iron strikes the Shock surface at an **oblique angle** *Hugoniot-Rankine relations for obliques shocks:* **only the normal component of the velocity is affected**
- * The **shape of the shock** determines how the iron is deviated at the shock front *CH breaks out before Fe forming a converging conical shock in the collision*

STREAMLINES

- Iron flow is strongly deflected at the front shock
 - Focusing effect

FOCUSING vs NON FOCUSING

- * By changing the dynamics we change the shock shape
- * Done with Fe-V targets: varying thickness to vary the mutual timing (CH too fast !!)

• Wind (Fe!) breaks out~jet (V) *same as CH*

Wind (Fe!) breaks out later than jet (V)
 "diverging shock" NON FOCUSING

SFIC IN ASTROPHYSICS

* Many theoretical works ans simulations from the 80's-'90s...

* ...but never be verified: occurring in the innermost regions where the high opacity makes direct observations difficult. **Our work gives an experimental confirmation.**

z(AU)

SIMILARITY PROPERTIES

* Dimensionless analysis: highly collimated ($AR \sim 5$) supersonic flow ($M \sim 10$) in a pure HD regime where radiative ($\chi \gg 1$) and microphysical conductive ($Pe \gg 1$) effects are negligible

Parameter	Laboratory	YSO	PPN	AGN
Collimation scale	1 mm	10 ⁻³ pc	< 0.01 pc	0.1 pc
Int. Mach, $M_{\rm int} = V_i / c_{s,i}$	5-10	> 10	> 10	> 10
Ext. Mach, $M_{ext} = V_i/c_{s,a}$	5-10	> 10	> 10	> 10
Aspect ratio, $AR = l_i/r_i$	5	10	10	> 10
Density ratio, $\eta = \rho_i / \rho_a$	5-10	10	< 1	≪1
Cooling, $\chi = t_{\rm rad}/t_{\rm hydro}$	100	< 1	< 1	$\gg 1$
Peclet, $Pe = \rho r V_i / \chi$	10^{4}	$\gg 1$	$\gg 1$	$\gg 1$
$\beta = V_i/c$	10-4	10-3	10-3	0.9-0.99

- * YSO jets are the most similar to the experiment, except for cooling
- * In PPN young jets of low density seem to interact with the denser wind of the post-AGB star $\eta{>}1$
- * AGN also have $\eta > 1$ and more important they are relativistic $\beta \approx 1$

COLLAPSING OF CH PLASMA

- * As the CH overcomes the Iron, it collapses on axes
- * A very collimated mm-size CH jet is observed in both optical diagnostic and simulations

SHADOWGRAPHY ** I mm

* INTERFEROMETRY

The B fields play a role in numerous physical processes in the universe:

- ''Fluid'' like properties and behavior of cosmic plasma affecting transport properties (thermal conduction, viscosity, resistivity, etc..)
- Star formation and possibly determine the typical star mass
- Accretion and ejection flows
- Origin of energetic cosmic rays

AN INTRIGUING PHENOMENON

• Astronomical observations (Zeeman splitting, Synchrotron radiation, Faraday Rotation) indicate B fields in all observed objects, correlated on scales of the order of the object size and probably also present in voids outside galaxies and galaxy clusters

WHAT ARE THEIR ORIGINS?

- How do such ordered large-scale fields arise in galaxies and clusters?
- An initial primordial magnetic field seed then amplified?
- If so, what is the primordial seed?
- And what are the amplification mechanisms?

MAGNETIC FIELDS AT PROTOGALACTIC SHOCK WAVES

Today, as a result of gravitational instability, matter forms a weblike structure made of filaments and clusters.

Gas accretion onto clusters generates shock waves

Coshysical shocks generate

₿%fields

GNEDIN, FERRAR

39

FIG. 1.—Evolution of the mass-weighted (bold lines) and volumeweighted (thin lines) mean magnetic field strength (top) and the comoving mean free path to ionizing radiation (bottom) for runs A (solid lines), B (dotted lines), and (dotshed lines).

does not had to a subtrantial underesting to of the magnetic field strength produced in our simulations. This test is not however present in run C and therefore we cannot

EXPERIMENTAL SET-UP

40

hysics

 \rightarrow Induction coils are placed at ~30 mm from amples position and measure B-field as shock reaches their position

→ Twisted pairs used to avoid EM pickup

→ Coil voltage proportional to first derivative of B field

Field is larger at earlier times

- \rightarrow Field is predominantly in the perpendicular direction
- →Second bump in 2-beam case likely due to ejected material from target

BIERMANN BATTERY AT CURVED SHOCK FRONT 44

Biermann battery via shock vorticity associated to a shock asymmetry

$$B_{vort} = \frac{m_i \omega}{e} \approx \frac{(\rho - 1)^2}{\rho} \frac{m_i}{e} \left| \frac{\partial \mathbf{v}_{sh}}{\partial S} \right| \sim \frac{\kappa_v v_{sh}}{r} r$$

$$\frac{m_i \omega}{e} \approx \frac{(\rho - 1)^2}{\rho} \frac{m_i}{e} \left| \frac{\partial \mathbf{v}_{sh}}{\partial S} \right| \sim \frac{\kappa_v v_{sh}}{r} r$$

$$\frac{m_i \omega}{e} \approx \frac{(\rho - 1)^2}{\rho} \frac{m_i}{e} \left| \frac{\partial \mathbf{v}_{sh}}{\partial S} \right| \sim \frac{\kappa_v v_{sh}}{r} r$$

$$\frac{m_i \omega}{r} \approx \frac{(\rho - 1)^2}{e} \frac{m_i}{e} \left| \frac{\partial \mathbf{v}_{sh}}{\partial S} \right| \sim \frac{\kappa_v v_{sh}}{r} r$$

$$\frac{m_i \omega}{r} \approx \frac{(\rho - 1)^2}{e} \frac{m_i}{e} \left| \frac{\partial \mathbf{v}_{sh}}{\partial S} \right| \sim \frac{\kappa_v v_{sh}}{r} r$$

SCALING TO PROTOGALACTIC SHOCKS

First experimental confirmation of theoretical estimation $B \sim \omega \sim 1/t$ _{R.M.Kulsrud et al.} Astrophys. J. 480, 481 (1997)

45

WHAT'S NEXT

xford

hysics

Two possible research axis:

xford

hysics

different generation mechanismamplification

Plasma instabilities can drive stronger fields *(Weibel)*

The initial seed is amplified by dynamo or turbulence

46

• High power laser can help in reproducing pressure and temperature conditions typical of astrophysical objects

- Laboratory astrophysics can help in getting interesting hints on :
 - materials behaviour for planetology studies
 - the dynamics of (a part of) an astrophysical phenomenon through scaled experiments

COLLABORATIONS

48

Deuxième relation de Rankine-Hugoniot

RELATIVE MEASUREMENTS

Demonstration of precise EOS data with "small" laser $E \approx 100 \text{ J}$

M. Koenig et al., PRL, 1995

51