

Recent results from the DarkSide experiment

Claudio Giganti Seminar @ LLR 12/04/2015

Outline

Dark Matter and WIMP hypothesis
WIMPs searches with noble liquids
Darkside-50 detector
Physics results
Next steps

Indications of Dark Matter

- Several compelling gravitational indications for Dark Matter from different sources
 - Galactic rotation curves
 - Large Scale structures
 - Acoustic peaks in CMB
 - Gravitational lensing

3

Dark Matter and WIMPs

The ordinary matter can make the ~5% of the Universe

27% Dark Matter, 68% Dark Energy

Among the different candidates WIMPs (Weakly Interacting Massive Particles) are well motivated

- Arise naturally in theories beyond the SM
- ❑ WIMP miracle → relic density of the DM coincides with the selfannihilation cross-section of the weak force

Dark Matter detection

Production of DM at accelerators

Indirect detection: annihilation of DM

Direct detection: scattering of DM

Direct dark matter detection

Dark Matter Direct Detection

Low rates (~1 ev/ton/ yr @ σ =10⁻⁴⁷cm⁻²⁾ \rightarrow large target masses

Low energy recoil → low detector thresholds

□ Noble liquids TPC

large target masses with low thresholds
 Deep underground
 Passive and active shielding
 Low radioactivity
 Discrimination of electron recoils from nuclear recoils

Background suppression

Noble Liquid TPCs

 Today the best limits for the WIMPs cross-section are obtained with Liquid Xenon Double Phase TPC (Xenon100 and LUX)

WIMP scattering in Ar (or Xe)

What we see in the detector: Scintillation

What we see in the detector: Ionization

Electrons drift towards the top of the TPC and are extracted in the gas phase where they are accelerated emitting secondary light \rightarrow S2

Why Liquid Argon

- Relatively inexpensive and dense
- Easy to purify
 - Most impurities freeze out in colder liquids
- Ionization electrons:
 - High ionization (W=21.5 eV)
 - High electron mobility and low diffusion
- Scintillation photons:
 - Very high scintillation yields (40000 ph/MeV)
 - Transparent to its own scintillation
- Exceptional discrimination power
 - S1/S2
 - Pulse Shape Discrimination

One problem
 ³⁹Ar contamination

WIMPs and Backgrounds

 \blacksquare Typical WIMPs rate (M=100 GeV, $\sigma_{\rm SI}{=}10^{\text{-}45}$ cm²) \sim 10^{\text{-}4} evt/kg/day

• A WIMP will produce a nuclear recoil in the TPC

Electron recoils:

 39 Ar \rightarrow 10⁴ evt/kg/day (atmospheric argon)

 $\gamma \rightarrow 10^2 \text{ evt/kg/day}$

Nuclear recoils: $\mu \rightarrow 30 \text{ evt/m}^2/\text{day}$ $\alpha \rightarrow 10 \text{ evt/m}^2/\text{day}$ Radiogenic neutrons $\rightarrow 6x10^{-4} \text{ ev/kg/day}$

Underground argon

- In atmospheric Argon there is a small component of cosmogenic ³⁹Ar → β decay producing electron recoils with a rate of 10⁴ evts/kg/day
 - ³⁹Ar/WIMPs ~ 10⁸
- Pile-up for large LAr detector

- Underground Argon do not contain ³⁹Ar (cosmogenic) → ³⁹Ar(UAr)/³⁹Ar(AAr)<1/150
- We can build large LAr detectors using Uar
- Still ³⁹Ar/WIMPs ~ $10^6 \rightarrow$ Need to discriminate ER from NR

Pulse shape discrimination

- What is unique in LAr is the capability of distinguish electron recoils from nuclear recoils thanks to the different shape of the scintillation signal
 - ER → most of the excitation goes in the triplet state (decay-time ~1600 ns)
 - NR → most of the excitation goes in the singlet state (decay-time ~7 ns)

	Singlet	Triplet
Time constant	${\sim}7~{\rm ns}$	$\sim 1.6 \ \mu s$
Population ratio for Electron ionizing	33%	67%
Population ratio for Nucleus ionizing	75%	25%

Pulse shape discrimination

- The shape difference allow to distinguish with an exceptional power (>10⁸) ER from NR
- This is a unique feature of LAr detectors
 - In Liquid Xenon the PSD is not possible (singlet and triplet have similar decay-time)
 - They can only distinguish ER from NR with S1/S2 \rightarrow rejection power of 10²

Pulse shape discrimination

- f₉₀ → charge collected in S1 in the first 90 ns divided by the total S1 → fraction of singlet state
 - ~0.3 for ER, ~0.7 for NR
 - Fundamental to have large light yield (>7-8 pe/keVee)
 - Expect discrimination power > 10⁸ (for 60 keVr and 8 pe/ keV_{ee} of light yield)

Neutron Veto

- Once the ER have been rejected we are left with a background from neutrons producing NR similar to WIMPs
- Expected rate ~ 6x10⁻⁴ evts/kg/day (WIMPs < 10⁻⁴ evts/kg/ day)
- Can be distinguished either with multiple scattering in the TPC or using coincidence with a Veto
 - DarkSide is the first experiment with an active neutron veto

The DarkSide physics program

- Phased approach \rightarrow goal to reach the neutrino floor

DarkSide collaboration

ITALY

INFN Laboratori Nazionali del Gran Sasso – Assergi Università degli Studi and INFN – Cagliari Università degli Studi and INFN – Genova Università degli Studi and INFN – Milano Università degli Studi Federico II and INFN – Napoli Università degli Studi and INFN – Perugia Università degli Studi Roma Tre and INFN – Roma

USA

Augustana College – SD Black Hills State University – SD Fermilab – IL Princeton University – NJ SLAC National Accelerator Center – CA Temple University – PA University of Arkansas – AR University of California – Los Angeles, CA University of California – Davis, CA University of California – Davis, CA University of Chicago – IL University of Hawaii – HI University of Houston – TX University of Massachusetts – MA Virginia Tech – VA

FRANCE

APC - Paris LPNHE - Paris IPHC - Strasbourg

CHINA

IHEP – Beijing

POLAND Jagiellonian University – Krakow

> Ukraine KINR, NAS Ukraine – Kiev

RUSSIA

Joint Institute for Nuclear Research – Dubna Lomonosov Moscow State University – Moscow National Research Centre Kurchatov Institute – Moscow Saint Petersburg Nuclear Physics Institute – Gatchina

What is DarkSide-50?

a two phase liquid argon (LAr) detector, within a neutron veto, within a muon veto, under a mountain

and all because of backgrounds

© Stephen Pordes, FNAŁ

DarkSide-50

- Experiment installed in the Gran Sasso Laboratory → passive shielding
- 2 vetoes system
 - Water Cerenkov muon veto ,
 - Liquid scintillator veto (active background measurement)
- Double phase TPC with 50 kg of liquid Argon
- Started data taking in January 2014 with Atm. Ar

DarkSide-50 goals

 Demonstrate that double phase Liquid Argon TPC is the best technique for Direct Dark Matter Searches

Background reduction Depleted Underground Argon Low background materials Active Shields against neutrons and muons Background identification Pulse Shape Discrimination S1/S2 discrimination Measure neutron flux in borate scintillator Position reconstruction

Demonstrate the potential of the technology for multi ton background-free detector

DarkSide TPC

- 50 kg active mass of UAr (37 kg FV)
- 19 top + 19 bottom High Quantum Efficiency 3" PMTs (R11065)
 - Main source of neutron background (1neutron per year)

36 cm height, 36 cm diameter

- All inner surfaces coated with TPB (used to shift wavelength of Ar scintillation from 128 nm to 420 nm)
- Low field (0.2 kV/cm) in the Liquid phase to maximize the S1 light yield
 2.8 kV extraction field

 Electron lifetime ~ 10 ms and drift velocity of ~1 mm/μs

DarkSide vetoes

- Liquid Scintillator Veto
 - 30 ton boron-loaded liquid scintillator detector, 2 m sphere
 - 110 low-radioactivity PMTs
 - Tag neutrons from TPC to measure the neutron flux

Muon Veto

1 kton ultra pure water
~10 meters, 80 PMTs
Tag cosmogenic neutrons

Most of the neutrons are produced in the PMTs and cannot be distinguished from WIMPs in the TPC

Expected veto efficiency >99% Both vetoes are designed to host a ~5 ton TPC 26

Borated Liquid Scintillator veto

- High neutron capture cross section on ¹⁰B allow for a compact veto size
- Neutrons are captured and emit a 1.5 MeV α
 - Quenched to ~ 50
 keV_{ee} → easy to detect
 with high efficiency
 - Expect > 99% efficiency in tagging neutrons

Electron recoils calibration

- One crucial parameter for DS-50 is the light yield ->
 pulse shape discrimination power critically depends on
 the number of collected photoelectrons
- Measured using the ³⁹Ar end-point (E=565 keV) and injected ^{83m}Kr (E=41.5 keV)

7.9 pe/keV at null field 7.0 pe/keV at 0.2 V/cm

Nuclear recoils calibration

- Calibrate the response to NR is more difficult → need to have single scatter in the TPC
- SCENE: small TPC exposed to a neutron beam to measure scintillation produced by single scatter nuclear recoils of known energy

On-going calibration

 Extensive calibration campaign with γ and neutron sources recently completed

- Data compared with a Geant4 based MC simulation → developed by French groups for DS-50
- %-level agreement

f90 for nuclear and electron recoils

First DarkSide-50 results

Published on PLB 743, 456 (2015)

- 2 months of data with Atmospheric Argon
- Collected ~1.5x10⁷ events of ³⁹Ar
- Enormous statistics of ER to prove the Pulse Shape discrimination → correspond to 20 years with Underground Argon

Event distribution after all quality cuts

Single hits in TPC

 Without coincidences in the vetoes

The importance of the veto

- DarkSide is the only experiment in the field with a veto system
- Expected veto efficiency to tag neutrons \rightarrow 99.5%
- During the first two months of data taking 4 events were tagged in the neutron veto → all with f90>0.6

WIMP acceptance band

Define the WIMP acceptance band to have <0.01 ER entering the WIMP search region in a 5 pe window
 f₉₀ from the ³⁹AR spectrum, fit with a two gaussian ratio model in bins of S1

WIMPs limit

13/03/2015

- No events observed in the WIMPs search region limit on spin-independent cross section of 6.1x10⁻⁴⁴ cm² for M=100 GeV/c²
- Most sensitive dark matter search with Argon as target

The future

- Today limits from Xenon experiments are better than the ones from Argon
- But before reaching the neutrino floor we still need to gain 5 order of magnitudes

• Which is the best technology to reach σ ~10⁻⁴⁹ cm²?

Xenon experiments

- Xenon based experiment cannot distinguish ER from NR with Pulse Shape Discrimination
 - Need to use S1/S2 ratio \rightarrow discrimination power ~ 100
- Liquid Argon can reach PSD > $10^8 \rightarrow$ background free!

 $LUX \rightarrow 0.6$ ER events expected below NR mean, some more observed close to the NR mean Will get worst with larger Xenon detectors

ER background in LXe and LAr

LXe → Electron Recoils close to the NR mean
 LAr → no ER leaking in the NR region (not even taking the 90% acceptance line for the NR)
 DarkSide results obtained with 50 days of AAr → correspond to more than 20 years of running with UAr

Underground Argon

- Underground argon is extracted from a mine in Colorado
- All necessary UAr for DarkSide-50 (150 kg) has been extracted and shipped to Gran Sasso
- DarkSide-50 is now filled with UAr
- 3 years of data taking foreseen

 CO₂ wells in SW Colorado (near Cortez)
 Contains ~500 ppm Argon
 ³⁹Ar activity < 0.65% of atmos. argon (arXiv:1204.6011)

Ton-scale experiment

- Build a ton-scale Double Phase LAr TPC ready for taking data in 3-4 years
- An LOI will be presented at the Gran Sasso Laboratory in April
- Water and Scintillator veto will be the existing ones
- The TPC will be replaced with a larger TPC instrumented with SiPM
- Intermediate step toward the final DM experiment able to reach the neutrino floor (~100 ton)

French contributions in DarkSide

- APC, LPNHE and IPHC are part of the DarkSide collaboration and involved in the efforts for the next generation detector
- For DarkSide-50 we have written and we are responsible for the Geant4-based MC simulation of the experiment
 - The MC includes geometries with larger detector and is being used to assess the sensitivity of future DarkSide detectors
- Contribute to the analysis of DarkSide-50 with Underground Argon → new results expected soon
- ANR proposal to study directionality of NR

Directionality with LAr

- For a given recoil energy S1 and S2 are different if the recoil is parallel or perpendicular to the drift field because of the different recombination probability
- If confirmed this effect might allow to distinguish isotropic neutrons recoils from WIMP that have a preferred direction
- ANR project including APC, IPHC, IPNO and LPNHE to build a small TPC and expose it to the IPN neutron beam

http://arxiv.org/abs/1406.4825

Conclusions

 DarkSide-50 has produced the first physics results with Atmospheric Argon (PLB 743, 456 (2015)

Best WIMP limit with LAr as target

- Excellent Pulse Shape Discrimination
 - $1.5 \times 10^7 \text{ ER} \rightarrow \text{none of them in the WIMP search region}$
 - No background in 20 years of running with UAr
- DarkSide-50 is now filled with Underground Argon
 - Results on ³⁹Ar contamination expected soon
 - Take data for 3 years to produce WIMP limits
- Design study for a intermediate detector on-going
 - Final goal is to build a 100 ton LAr detector to reach the neutrino floor
- Active French community participating to data analysis of DarkSide-50 and to the design of the next generations

Back-up slides