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Abstract

CHIPS is an R&D program focused on designing and fabricating a cost-
effective large water Cherenkov detector (WCD) to study neutrino
oscillations. Traditional WCD's with a low energy threshold have been
built in special large underground caverns. Civil construction of such
facilities is costly and the excavation phase significantly delays the
detector installation although, in the end, it offers a well-shielded
apparatus with versatile physics program.

Following concepts developed for the LBNE WCD (arXiv:1204.2295), we
propose to submerge a detector in a deep water reservoir, which
avoids the excavation and exploits the directionality of an accelerator
neutrino beam for optimizing the detector. Following the LOI (arXiv:
1307.5918), we have submerged a small test detector in a mine pit in
Minnesota, 7 mrad off NuMI axis. Borrowing technical ideas and
solutions from IceCube and KM3Net, we are now focusing on designing
a large (10-20kt) isolated water container to house photodetectors
with underwater readout and triggering. We will describe the CHIPS
concept and its physics potential in more detail, and will present the
ongoing R&D activities.
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Remarkable “Neutrino Years”
(painted with a broad brush)
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Neutrino mixing and oscillations

Pontecorvo — Maki — Nakagawa - Sakata (PMNS) matrix
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Present neutrino landscape
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Neutrino oscillations - MINOS

¢ Two-detector measurement
v long baseline (735km)

¢ High intensity beam
v (120 GeV from Main Injector)
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MINQOS recent results
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The CKM matrix:
Inspiration and aspiration for the PMNS matrix
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The main open v questions

What is the mass ordering of neutrino masses?

v
v
v

Neutrinos are fundamental constituents
Must know their properties
May affect the Majorana transition

Do neutrinos violate CP?

v

v
v
v

Fundamental parameter of vSM

Why is there more matter than anti-matter?
Can we explain via CPV in the leptonic sector?
There may be connections to dark matter

What is the absolute neutrino mass?

What is the nature of neutrinos:

v
v

Dirac?
Majorana ?

Is 6,5 =45° or which octantisitin ?
(i.e., is the mixing maximal?)

= 24x107eV?

==
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solar

7.5x10%eV?)
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The principles of measuring MO and 0,
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The context:
Long-term phases of long baseline neutrino program in the US
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Meanwhile: NuMI

NuMI beam Absorber

Decay Pipe
Horns

Target

5m
10m 30m 4_..-—-———-“"-——' Hadron Rock 12m

675 m Monitor

Flux x o (Arbitrary Units)

45?— \ Spectrum

Monte Carlo v, spectrum

3t Neutrino mode
30f Horns focus z*, K~

o High intensity, flexible beam
= running since 2005

= movable target / 2 horns (= adjustable energy spectrum)
= ~3.5 x 103 protons/pulse (~420 kW, 120 GeV beam)

= Recently reached 453 kW
= Proton Improvement Plan (PIP) underway (700 kW)
= 2.2sec. 2> 1.7sec. - 1.33sec. cycle time

o Medium energy beam since 2013 for
the off-axis NOVA
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Protons-on-target (POT) history of NuMI

Protons per week (x 10'8)

May 1 15.6x1 020 POT April 30 ~4.5 x102° POT
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|dea: Extend the reach of NuMI and exploit/fill the time gap

o NuMI will be the most powerful neutrino beam (700kW) for years

(Could be upgraded to 1.2MW)

o Adding a large detector extends the 6., reach of NOVA and T2K

GLOBES calclulations
assume MH is known
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Looking into the future: NOVA & T2K & CHIPS-10

¢ 10 kt CHIPS: 2024

¢ 10kt CHIPS + NOVA + T2K can push both mass ordering and
CPV discovery past 3-sigma
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CHIPS (Water CHerenkov In Mine PitS) concept

o Explore a new technique for a water Cherenkov
detector under shallow water overburden
v Large mass detector with a cost-saving construction
v No conventional civil construction/excavation
v Concept (advanced in earlier studies for LBNE)
v

Use applicable ideas (fisheries floating platforms, light
structures, ...), IceCube PMT (DOM) deployment

v Benefits from earlier studies for
«  GRANDE, MEMPHYS, KM3NeT,....

v Optimize for a 10 us long beam window and direction
v Goal: ~$200k/kt (presently about S1M/kt)

o Challenge the “Super-K paradigm”

K. Lang, U. of Texas at Austin: Cheap as CHIPS, LAPP, April 3, 2015
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Muon Rate ( kHz )
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Cosmic rays background with shallow overburdens

GEANT4/CRY simulation of cosmic muons

Muon rate expected to be 30-50kHz
(for large volumes, depending on details)

Inside detector events last up to 500ns

Expected (conservative) dead time 2.5%
during a beam spill of 10us

High efficiency veto tag (outer detector)
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The challenge: nt® versus v,CC

o The goal: find and reconstruct v, produced from the v, beam
o The main background to v,CC appearance is 7t°-->yy in NC

o Reject NC background: discriminate between e  and yy

o Then compare v, inv, beam with v, in VM beam

Detector response from 70 event (top cap) Detector response from e event (top cap)
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A suitable location: Wentworth Mine Pit 2W

site of Cliffs Natural Resources

Latitude

v, CC Events/250 MeV/KTon/6x10° PoT
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Wentworth pit: 7 mrad off NuMI axis

(©)
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GLOBES calculations

v Figure of Merit: resolution on J,

v 20% photocathode coverage of standard QE 10” PMTs, equivalent to 12% coverage of HQE 12”

Assume Super-K old-style efficiencies

v New algorithms a la MiniBooNE better for efficiency and background rejection are now
available

Off-axis between 7-10mrad gives best reach in o,
v" More on-axis increases background, more off-axis reduces rate

Ability to run in both ME and LE beam
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PMTs & underwater front-end readout & logic

PMTs and front-end electronics are the major IceCube DOM
cost drivers

Cost & time savings: learn, borrow, adopt,
and adapt from recent/past R&D

Discussions & visits with LBNE, KM3NeT,
lceCube, MEMPHYS teams

Small(er) PMTs offer an attractive
segmentation (topology) option

o Simulations and reconstruction work in progress

KM3NeT OM
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To get our feet wet: CHIPS-M

Spring 2014 June-July 2014 August 8, 2014

Construction accomplished mostly by students and postdocs!

K. Lang, U. of Texas at Austin: Cheap as CHIPS, LAPP, April 3, 2015
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CHIPS-M elements

lceCube DOMs (on loan) + “environmental tubes”
with a camera (inside and outside)
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Liner
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Deployment Day
August 8, 2014

:
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Umbilical: carries water and signals

K. Lang, U. of Texas at Austin: Cheap as CHIPS, LAPP, April 3, 2015



Tugging CHIPS-M

K. Lang, U. of Texas at Austin: Cheap as CHIPS, LAPP, April 3, 2015
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Sonar at the Wentworth mine pit

Edit View Sonar Chart Window Help
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Now (winter) at the pit
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Water filtration

¢ CHIPS —under ~6 bar pressure

v Bubbles (produce scattering centers
increasing light attenuation) are
squeezed

v Scattering attenuation length
difficult to measure in the lab as the
bubbles expand

e Super-K biggest problem is bubbles,
not a problem deep-see detectors

¢ Water filtering
v Need to remove particulates in the

v Need a carbon filter to eliminate life
+ a UV sterilizer to make sure

v Need reverse osmosis and de-
ionizing filter
¢ CHIPS-M with in-situ LEDs
v Presently LEDs on the IceCube
DOM'’s can be flashed
¢ Attenuation length important for
simulations / benchmarking

K. Lang, U. of Texas at Austin: Cheap as CHIPS, LAPP, April 3, 2015
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Shortly after submerging... (overnight changes)

& The MIPG-streasoer team | Design by Andreas Viklund

. Lang, U. of Texas at Austin: Cheap as CHIPS, LAPP, April 3, 2015
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Unfriendly water...

Investigating the reasons for (too) slow ¢ Filters getting very dirty
improvement despite continuous filtration v Zinc sulfide
(A light leak implies water leak) # Yet to be fully understood ...

This is (obviously) one of critical parameters
--> increasing the R&D effort

Need to improve reversed osmosis and
deionization stages

Post-filter Atten. Length
— 1 2 T T T T I T T T T l T T T T l T T

= 10
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[ attenuation length
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%0 350 400 450 500
Wavelength (nm)
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Some data analysis

o Trigger rate
v Light leak apparent
v" Jumps coincide with full moon
v" Run overnight only

Rate of PMT Triggers > 2pe / Hz

d

o Events rate
v’ 4 PMTs hit in coincidence
v" Slow rise could be effect of water

v" Sudden reduction in event rate is
correlated with pump stop/start
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CHIPS-M and beyond

CHIPS-M CHIPS-10

¢ Bring up and inspect
¢ Understand what went right
and wrong

CHIPS-M+

¢ Fix/improve environmental
monitoring units

¢ Test underwater photodetector
assembly modules

v KM3NeT FE board
(31x3”PMT’s)

v PARISROC FE board
(16 x12” PMT’s))

& Test structural ideas

¢ Main prongs of effort

AN NN

v

Simulations and reconstruction
Mechanical design and installation
Water filtration

Underwater front-end electronics
and daq

Environmental monitoring

¢ Possible time line

320

o
o

Maximum &, resolution (
(2]
o
III|III|III|III|III|III|

NOvA + T2K
+ CHIPS (slow)
+ CHIPS (fast)

10kt

2

8 10 12
Years from NOvVA start
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Simulations / reconstruction

¢ Simulations

v WCSIM package (based on GEANT4) - relatively easy, although needs
photodetector details (unknown at this point)

v Non-homogeneous PMT distribution, including different size PMT’s
v Guide geometry optimization for a directional neutrino beam

¢ Reconstruction - much more challenging

Hit Map v.CC Events PMT Charge Distribution for Electrons, A=40m
Charge per PMT

g

clllllllllllllll[llll]’5~

—5 =0 5 30 25
PMT Hits per event

|IIIII

21000 0 1000 —
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Reconstruction

o State of the SK/T2K art: APFit --> fitQun

v

D N NI NN

fitQun significantly improves low energy reco
Based on the miniBooNE algorithm

Includes charge and time likelihood

Improves efficiency for n° and resolutions

MC calculates the likelihood for a given
combination of track hypothesis and hit pattern

o CHIPS reco — builds upon fitQun ideas
v Non-uniform PMT size and their distribution

v Flexibility in geometry

v Alot of new code

o Preliminary fitter is working

... Will soon start helping guide our choices
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ldeas

Side view of the wall with PMT’s
o We optimize for the beam direction

o Including smaller PMT’s ?
v Has additional topological info

v Increase the effective fiducial volume
v New reconstruction code can cope with it

O @ @
En-face view of the wall O
<— homogenous PMT’s
and
non-homogenous PMT’s
: , ® @
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10", 5%, and 3” PMT diameter — v, event (crisp ring)

1000

¢ The same event in three
PMT sizes (all at 10%
surface coverage)

g

¢ Clear topological difference

¢ PMT numerology for FULL
coverage of the surface
(overkill, likely will need %)
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10”, 5”7, and 3” PMT diameter — v_ event (fuzzy ring)

The same event in three
PMT sizes (all at 10%

surface coverage)

Clear topological difference

PMT numerology for FULL

coverage of the surface

(overkill, likely will need %)
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10”7, 5”, and 3” PMT diameter — NC w/ 11" event (2 rings)

- 1000w w
¢ The same event in three

PMT sizes (all at 10%
surface coverage)
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¢ Clear topological difference

¢ PMT numerology for FULL
coverage of the surface
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Mechanics

¢ Large structure (“space frame”)
v Need to be modular for assembly

v Need a veto volume

¢ Wall material
v Flexible liner (a la CHIPS-M) ?
v More rigid (fiber glass) panel ?

¢ Buoyancy issue

v Choose neutral as much as possible

K. Lang, U. of Texas at Austin: Cheap as CHIPS, LAPP, April 3, 2015
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Spaceframe

¢ Radome (radar dome)?

¢ Contacting manufacturers

=t
ARSI LR
AV AN N
AN 4
MEARS

Need to establish flat
“landing” platform
for the bottom of pit

S “Heydar A_Iiileﬁ‘ciultt]i'éi Centre
. T"Bé k‘u;-mmm ~
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Wall panels (options)

¢ Ala MEMPHYS (below) ¢ NIKHEF idea (Paul Koojimans)
4 € Masters students with a UCL
student will build one plane of

KM3NeT tubes and electronics
2m (“unfolded” OM)

With Veto

/
/Zm

The Matrix: Global Design

Inner face Outer face

1 electronics -
unit Read-out

,\i unit
Total Weight ~251 kg

* PMTs grouping
* PMTs support
* Optical Shielding

16
(= —
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The front-end challenge: underwater intelligence

Bringing individual signals to surface is too
expensive (and cumbersome)

Signals, time stamping etc. must be
performed underwater

“Intelligent” hit information packets must be
(multiplexed) to an on-shore daqg PC

Underwater connections are a challenge to
cost

Integration of front-end and mechanics
under 6 bars may be also demanding

Examining/pursuing three ASIC’s /
approaches
v KM3NeT

v PARISROC (from MEMPHYS, 100 ASIC’s--> UCL)
v SAMPIC (from SuperNEMO, ...)

S
®
wn

>

Need underwater
signal processing,
trigger and timing

To daq (on surface)
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PMTs landscape: Hamamatsu, HZC, ETL/ADIT

¢ Hamamatsu (new and old)
v KM3NeT will use 3” PMTs in their OMs
v We have 400 of old 3” PMTs from NEMO-3

v We have worked extensively with an 8” (R5912)
for SuperNEMO

HPK
R 12199

(80mm )

® HZC (‘The Chinese Photonis’)
v Recently received a 3” PMT
v They are working on large PMT’s

¢ ADIT/ETL (Sweetwater, TX and Uxbridge, London)

v Developing large PMT’s (for the Watchman
Experiment, a new 11” PMTs (w/ 12 stages)

* Pressure resistant to 8 bars
* Water resistant
* Low radioactivity (“Borexino” glass)
v Developing 5” with similar features
v Their 3” competes well with Hamamatsu
* Has a short stem
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Future off axis CHIPS at LBNF (20 mrad) — reuse most hardware

- - ; Abergieen Saint Cloud o Coon
| P, v, with Beam v, Flux (Arbitrary Unit) Rapids
0 . 2 Watertown Plymouth e o Minneap
- - = NH S = n/2 & ® Bloomington
2nd oscillation — H§ = -1/2 \ L
ity Rochest
0.15 = On-axis Flux ’ : _O;S-
= = =: Off-axis Flux =

1st oscillation

There is (at least) one (40m>dépth) reservoir in

the beam line @ 20mr ?ﬁgétola Resevoir, SD lowa

Waterl
Q

CHIPS in LBNE, 20mrad 1250km
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o 2" oscillation maximum at ~ 0.8 GeV ¢ . —INC

o 2" oscillation maximum will be
a valuable augmentation to LAr
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‘T|V [ ] beamv,

15

o Large QE cross-section suitable for
water Cherenkov detectors
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S

v High efficiency for QE events
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Summary and outlook

NuMI era (soon at 700 kW) offers unique capabilities until
DUNE is built ca.2024

Adding massive detectors (CHIPS) extends its physics reach
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New construction would fill the time gap and advance

: \

v Physics

y 20:/4/ \\ /é/_\X\
v Technology = — ~—

10F :

v Training of younger generation - CHIPS in NuMI
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(It’s a win-win-win situation) o ()

R&D on-going --> are the goals achievable?
Great t.lme tO J0|n and Shape the future Cylinder Parameters versus Total Cost (M$)
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Post Scriptum: P5 endorses this R&D program although not 5
the experiment (yet).

LOI: °
arXiv:1307.5918v3 [physics.ins-det] 23 Sep 2013

Radius(m)
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Disclaimer

It's tough to make predictions,
especially about the future.

Lawrence Peter “Yogi” Berra
(baseball player)
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