

11/02/2015

Status report of the FATALIC project

Tile week upgrade session @ Cern

In2p3

Status report of the FATALIC project

- □ Status report of the test of FATALIC_4 chip
- Status report of the development and test of the main board prototype

The FATALIC chip

• FATALIC chip embedded in the "All-in-One" FE board

- Main characteristics of FATALIC:
 - A 3-gain PM-signal **analog processing** (current conveyor + 3 shapers)
 - 3 embedded 12-bit ADCs (one per gain)
 - An auto gain-selection

 \rightarrow either the high-gain data or the low-gain data are outputted (medium-gain data are always outputted)

- A 12-bit data output bus with the data of the 2-selected channels multiplexed

Extra items: independent analog core and ADC blocks implemented for test purpose

Test Bench of FATALIC

Device Under Test: « All-in-One » with FATALIC

Measurement of the Noise

• Histograms of output code fluctuation (no input signal):

- Medium Gain : Std Deviation = 1.23 LSB \rightarrow 42 fC rms
- High Gain : Std Deviation = 2.74 LSB → 9.4fC rms

"Noise Requirement: the smallest signal of interest from the detector, expressed in terms of **equivalent input charge** delivered to the front end electronics, is **24 fC**. The intrinsic noise of the electronics, as measured through the digitization path, expressed in terms of equivalent input charge, shall not be greater than **12 fC rms** at pedestal."

11/02/2015

FATALIC: Linearity of the High-Gain channel

FATALIC: Linearity of the Medium-Gain channel

FATALIC: Linearity of the Low-Gain channel

FATALIC: measured performance

	High gain	Medium gain	Low gain		
Power cons. (All-in-One)	208 mW @ 1.6V				
Dynamic range (pC)	To be measured	To be measured	To be measured		
Noise (rms)	9.4 fC	42 fC	-		
Non-Linearity	± 0.25 %	± 0.25 %	± 0.5 %		

- Global functioning @ 40MHz with the All-in-One board (AinO)
- Power consumption
- 🖌 Auto gain-selection
- 🖌 🔹 Noise
 - Dynamic range \rightarrow to be checked
- \checkmark Linearity \rightarrow quality of measurement must be improved

Status of the 1/4 Main Board prototype (1/2)

- Data transfer: "All-in-One" → Main board →
 USB → Computer (Labview)
 - Digital readout of the two relevant channels (auto switching from LG to HG)

Status of the 1/4 Main Board prototype (2/2)

- Calibration: control of the Injector from Computer (Labview) \rightarrow USB \rightarrow MB \rightarrow to AinO
 - Set of the DAC value
 - Triggering of the switch
 - Synchronous triggering and data readout

- The measurement of the linearity of FATALIC must be improved. The design of a new test board with a high-precision reference ADC is in progress. This reference ADC will help to calibrate the input signal.
- Measurements on All-in-One with the injector system will be carry out.
- In order to evaluate the behavior with pile-up, a test setup with a PMT block lighted with 3 LEDs will be ready at the end of February.
- The link between the Main Board and the Daughter Board @ ≥ 280Mbit/s will be tested thanks to a LPC's DAQ board in place of the DB.

Backup slides

FATALIC implemented on "All-in-One"

Analog Outputs

11/02/2015

Analog Outputs

Powe of Fa (n	r cons. talic_4 nA)	Peaking time (ns)		FWHM (ns)		
180	200 *	23*	≈ 25	43*	≈ 49	
\rightarrow simulation						

→ measurement

* Power consumption of the complete « all-in-one » board * with a 4ns-rise-time and 36ns-falling-time current pulse

Similar shapes between test and simulation

11/02/2015

Auto-Gain switching

11/02/2015

PM-like input signal

FATALIC project

A single link from Front End to the Back End electronics, with the maximum of functionalities implemented inside a custom-made ASIC (FATALIC) holding:

- A current conveyor to read the signal of the PMT
- 3 amplification channels to cover the large dynamic range up to 1200pC
- An optimized shaping (filtering)
- A 40-MSps 12-bit digitization for each channel

11/02/2015

Performance of the analog core (simulation)

Noise Requirement: the smallest signal of interest from the detector, expressed in terms of **equivalent input charge** delivered to the front end electronics, is **24 fC**. The intrinsic noise of the electronics, as measured through the digitization path, expressed in terms of equivalent input charge, shall not be greater than **12 fC rms** at pedestal.

	Dynamic range	LSB	Noise (rms)	Linearity error	Peaking time fluctuaction	
High Gain	up to 14 pC	3.4 fC	0.05% →7 fC	< + 0.1%	< 1ns	
Medium Gain	up to 140 pC	34 fC	0.05%	Q <u>1</u> 0.170		
Low Gain	up to 1200 pC	300 fC	0.05%	< ± 1%	< 0.5115	

Oynamic range extended from 800 pC to 1200 pC

FATALIC_4: digitization

