Prospectives IPHC — cMSSM a non-natural choice

Michel Rausch de Traubenberg

Institut Pluridisciplinaire Hubert Curien Département de Recherches Subatomiques Groupe Théorie

10th April 2015

- 1 The context
- 2 Supersymmetry
 - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- Gravity induced supersymmetry breaking
 - Universality
 - Gravity induced supersymmetry breaking
- Conclusion

- 1 The context
- 2 Supersymmetry
 - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- Gravity induced supersymmetry breaking
 - Universality
 - Gravity induced supersymmetry breaking
- Conclusion

- 1 The context
- 2 Supersymmetry
 - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- Gravity induced supersymmetry breaking
 - Universality
 - Gravity induced supersymmetry breaking
- Conclusion

- 1 The context
- 2 Supersymmetry
 - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- Gravity induced supersymmetry breaking
 - Universality
 - Gravity induced supersymmetry breaking
- 4 Conclusion

- - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- Gravity induced supersymmetry breaking
 - Universality
- Conclusion

The context Supersymmetry Gravity breaking Conclusion

The context

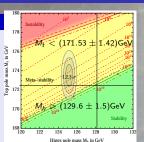
Standard Model of particles Physics

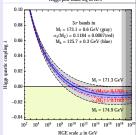
Advantages

- 1 Explains almost all microscopic phenomena
- Extremely robust theory
- 3 No deviation of the SM predictions in colliders

Disadvantages

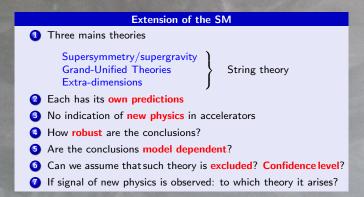
- Many important problems are unsolved
 - O Dark matter
 - 4 Higgs mass (hierarchy)
 - 3 To many free parameters (26)
 - 4 Incompatible with general relativity
 - Etc.
- Higgs + top suggests vacuum instability
 (D. Buttazzo, et al. arxiv.1307.353 [hep-ph]])





The context

It is strongly believed that the SM is not the ultimate theory



The MSSM and the cMSSM

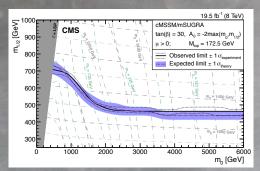
- Supersymmetry has been highly studied
- 2 Minimal extension of the SM: the MSSM
 - → To each particle one associate its supersymmetric partner

SM particles	spin	SUSY partners	spin	
leptons	s = 1/2	sleptons	s = 0	
quarks	s = 1/2	squarks	s = 0	▶ Q
gauge bosons	s=1	gauginos	s = 1/2	
two Higgses	s = 0	Higgsinos	s = 1/2	

- 3 Supersymmetry has to be broken
 - a The general MSSM has more than 100 free parameters
 - **b** cMSSM: assume **universality** at the GUT scale
 - c 4.5 new parameters at GUT scale \implies RGE's at TeV scale
 - All the scalars have the same mass me
 - All the gauginos have the same mass m
 - All the trilinear couplings of the scalars are the equal
 - Ratio of the v.e.v. of the Higgs doublets =
 - 4.5 The sign of Higgs mixing parameter μ .

Constraints on the cMSSM

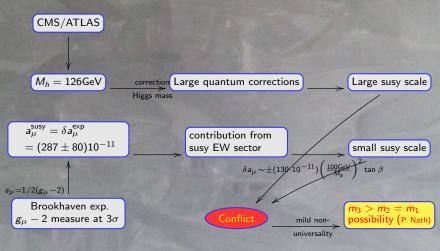
The cMSSM is very constrained and almost excluded



@CMS at 8TeV[arXiv:1502.04358v1 [hep-ex]])

... but the cMSSM is not natural

Tensions in the cMSSM: an example



- 2 Supersymmetry
 - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- Gravity induced supersymmetry breaking
 - Universality
- Conclusion

- 2 Supersymmetry
 - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- Gravity induced supersymmetry breaking
 - Universality
 - Gravity induced supersymmetry breaking
- 4 Conclusion

Supersymmetry in brief

- Supersymmetry is a symmetry fermions-bosons
- \diamond To any particle of the Standard \rightarrow supersymmetric partner

Two types of superfields

Matter and Higgs particles

- \longrightarrow Chiral superfield $\Phi = (z, \chi, F)$
 - $\mathbf{0}$ $\mathbf{z} = \text{complex scalar field} = \mathbf{spin} \ \mathbf{zero}$
 - 2 $\chi = \text{left-handed Weyl spinor} = \text{spin one-half}$
 - **3** F complex auxiliary field \rightarrow scalar potential

Gauge particles

- \longrightarrow Vector superfield $V=(A_{\mu},\lambda,D)\leadsto$ spinor superfield W_{α}

 - 2 $\lambda = \text{Majorana spinor} = \text{spin one-half}$
 - **3** D real auxiliary field \rightarrow scalar potential

Supersymmetry in brief

The Lagrangian

Field content

- \diamond Gauge group G: vector/spinor superfields V^a/W^a_α
- \diamond Matter multiplet : chiral superfields Φ^i representation of G

Interactions — one basis function: the Superpotential

Gauge invariant holomorphic functions renormalisable

$$W(\Phi^i) = \frac{1}{6} \lambda_{ijk} \Phi^i \Phi^j \Phi^k + \frac{1}{2} m_{ij} \Phi^i \Phi^j$$

- → Yukawa interaction
- ightarrow scalar potential

The Lagrangian

$$\mathcal{L} = \left[\int \mathrm{d}^2\theta \mathrm{d}^2\bar{\theta} \Phi^\dagger e^{-2gV} \Phi \right] + \left(\left[\frac{1}{16g^2} \int \mathrm{d}^2\theta \frac{1}{16g^2} W^{a\alpha} W^b_\alpha \delta_{ab} \right] \right.$$

$$\left. + \int \mathrm{d}^2\theta \frac{W(\Phi)}{\Phi} + \mathrm{h.c.} \right)$$

Supersymmetry in brief

Interactions

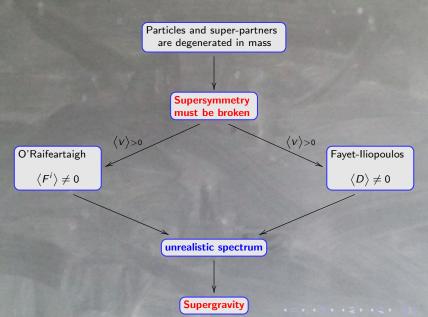
Scalar potential

$$V = F^{i}F_{i}^{\dagger} + \frac{1}{2}D^{a}D_{a}$$
$$= \frac{\partial W}{\partial \phi^{i}} \frac{\partial \bar{W}}{\partial \phi^{\dagger}} + \frac{1}{2}g^{2}(\phi^{\dagger}T^{a}\phi)(\phi^{\dagger}T^{b}\phi)\delta_{ab}$$

The potential is positive $V \ge 0$

Yukawa interactions

$$\begin{split} \mathcal{L}_{\text{int.}} & = & -\frac{1}{2}\frac{\partial^2 W}{\partial \phi^i \partial \phi^j} \chi^i \cdot \chi^j - \frac{1}{2}\frac{\partial^2 \bar{W}}{\partial \phi^\dagger_i \partial \phi^\dagger_j} \bar{\chi}_j \cdot \bar{\chi}_j \\ & -\frac{1}{2} \big(\lambda_{ijk} \mathbf{z}^k \chi^i \cdot \chi^j + m_{ij} \chi^i \cdot \chi^j \big) + \text{h.c.} \end{split}$$



- Supersymmetry
 - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- - Universality
 - Gravity induced supersymmetry breaking

Supergravity in very brief

Supergravity is gauged supersymmetry ⇒ Theory of gravity
 There is several theories of supergravity ⇒ Minimal supergravity

Minimal supergravity: Field content

- Matter/gauge superfields extend in supergravity
- \diamond Gauge group G : vector/spinor superfields V^a/W^a_{lpha}

 - O a real auxiliary field
- Matter multiplet : chiral superfields Φⁱ
 - $\mathbf{0} \quad \mathbf{z}^i = \text{complex scalar field} = \mathbf{spin} \quad \mathbf{zero}$
 - 2 $\chi^i = \text{left-handed Weyl spinor} = \text{spin one-half}$
 - 3 Fⁱ complex auxiliary field
- Gravity multiplet
 - $\mathbf{0} \ e_{\tilde{\mu}}^{\ \nu} = \text{graviton} = \text{spin two}$
 - 2 $\psi_{\tilde{\mu}}=$ Majorana spin.-vect. (gravitino) = spin three-half
 - 6 M complex scalar auxiliary field
 - **4** $b_{\tilde{\mu}}$ real vector auxiliary field

Minimal supergravity: The Lagrangian

Interactions — three basis functions

- \diamond Superpotential: Gauge invariant holomorphic functions $W(\Phi^i)$
 - Yukawa interactions
- \diamond Kähler potential: real function $K(\Phi^i, \Phi_{i^*}^{\dagger})$
 - Minetic interactions for matter fields
 - 2 Minimal case $K(\Phi, \Phi^{\dagger}) = \Phi^{\dagger}\Phi$

$$G = K + m_p^2 \ln \left| \frac{W}{m_p^3} \right|^2$$

- \diamond Gauge kinetic functions: holomorphic functions $h_{ab}(\Phi)$
 - Kinetic interactions for gauge fields
 - **2** Minimal case $f_{ab}(\Phi) = \delta_{ab}$

The Lagrangian

$$\begin{split} \mathcal{L}_{\text{susy}} &= \int \mathsf{d}^2\theta \mathsf{d}^2\bar{\theta} \Phi^\dagger e^{-2gV} \Phi \\ &+ \int \mathsf{d}^2\theta \frac{\mathsf{W}}{\mathsf{W}}(\Phi) + \frac{1}{16g^2} \int \mathsf{d}^2\theta \; \delta_{ab} W^{a\alpha} W^b_\alpha + \text{h.c.} \; . \end{split}$$

Minimal supergravity: The Lagrangian

Interactions — three basis functions

- \diamond Superpotential: Gauge invariant holomorphic functions $W(\Phi^i)$
 - Yukawa interactions
- \diamond **Kähler potential**: real function $K(\Phi^i, \Phi_{i^*}^{\dagger})$
 - Minetic interactions for matter fields
 - 2 Minimal case $K(\Phi, \Phi^{\dagger}) = \Phi^{\dagger}\Phi$

$$\left[G = K + m_p^2 \ln \left| rac{W}{m_p^3} \right|^2
ight]$$

- \diamond Gauge kinetic functions: holomorphic functions $h_{ab}(\Phi)$
 - Kinetic interactions for gauge fields
 - **2** Minimal case $f_{ab}(\Phi) = \delta_{ab}$

Non-Renormalisable Lagrangian

The Lagrangian
$$\mathcal{L}_{\text{susy}} = -\frac{1}{8} \int d^2\theta \, \bar{D} \cdot \bar{D} \frac{\mathcal{K}(\Phi^\dagger e^{-2gV}, \Phi)}{\mathcal{K}(\Phi^\dagger e^{-2gV}, \Phi)} + \int d^2\theta \, \mathcal{W}(\Phi) + \frac{1}{16g^2} \int d^2\theta \, f(\Phi)_{ab} \mathcal{W}^{a\alpha} \, \mathcal{W}^b_\alpha + \text{h.c.} \; .$$

Minimal supergravity: The Lagrangian

Interactions — three basis functions

- \diamond Superpotential: Gauge invariant holomorphic functions $W(\Phi^i)$
 - Yukawa interactions
- ♦ **Kähler potential**: real function $K(\Phi^i, \Phi_{i*}^{\dagger})$
 - Minetic interactions for matter fields
 - 2 Minimal case $K(\Phi, \Phi^{\dagger}) = \Phi^{\dagger}\Phi$

$$G = K + m_p^2 \ln \left| \frac{W}{m_p^3} \right|^2$$

- \diamond Gauge kinetic functions: holomorphic functions $h_{ab}(\Phi)$
 - Kinetic interactions for gauge fields
 - **2** Minimal case $f_{ab}(\Phi) = \delta_{ab}$

The Lagrangian

Coupling to gravity

$$\begin{split} \mathcal{L}_{\text{sugra}} &= \frac{3}{8} \int \text{d}^2\Theta \; \boldsymbol{\mathcal{E}} (\bar{\mathcal{D}} \cdot \bar{\mathcal{D}} - 8 \mathcal{R}) e^{-\frac{1}{3} \mathcal{K} (\boldsymbol{\Phi}^\dagger e^{-2gV}, \boldsymbol{\Phi})} \\ &+ \int \text{d}^2\Theta \; \boldsymbol{\mathcal{E}} \boldsymbol{W} (\boldsymbol{\Phi}) + \frac{1}{16g^2} \int \text{d}^2\Theta \; \boldsymbol{\mathcal{E}} \boldsymbol{h} (\boldsymbol{\Phi})_{ab} \mathcal{W}^{a\alpha} \mathcal{W}^b_\alpha + \text{h.c.} \; . \end{split}$$

- After expansion complicated Lagrangian with many terms
- Gives supersymmetric Lagrangian in the limit where gravity is neglected
- The scalar potential is given by

$$V_{\mathsf{susy}} = rac{\partial W}{\partial \Phi^i} rac{\partial ar{W}}{\partial \Phi^{\dagger}_i} + \mathsf{gauge} \; \mathsf{part}^{\dagger}$$

$$V = e^{\frac{1}{m_p^2} \mathcal{K}(\Phi, \Phi^i)} \left(\mathcal{D}_i W (\mathcal{K}^{-1})^i_{j^*} \bar{\mathcal{D}}^{j^*} \bar{W} - \frac{3}{m_p^2} \left| W \right|^2 \right) + \text{gauge part}$$

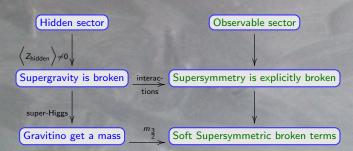
- 1 The potential can be positive, null or negative
- 2 different that in supersymmetry
- $\langle V \rangle \neq 0$ does not implies that supergravity is broken
- Supergravity is broken if the gravitino gets massive
 - super-Higgs mechanism
 - 2) the gravitino mass is an order parameter.
- \diamond No cosmological constant: $\langle V \rangle = 0$

Conclusion

- Supersymmetry
 - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- - Universality
 - Gravity induced supersymmetry breaking

Supergravity breaking — Generalities

- It is more natural to break supersymmetry in the supergravity context
- Several ways to break supergravity
- All share a common feature
 - Two sectors: hidden and observable sectors
 - Supergravity is broken in the hidden sector
 - Interactions hidden/observable sector
 - ⇒ break supersymmetry in the observable sector



The context Supersymmetry Gravity breaking Conclusion

Supergravity breaking - Generalities II

Supergravity breaking: major mechanisms

- Gravity mediated supersymmetry breaking
 - \rightarrow communicated to observable sector *via* gravitational int.
 - → Kähler potential essential
- Question of the control of the co
 - → communicated to observable sector *via* gauge int.
 - → Introduction of messengers and a singlet (spurion)
 - → Superpotential essential (coupling messengers-spurion)
- 3 Anomaly mediated supersymmetry breaking
 - → Introduction of compensating fields with Weyl anomaly
 - → purely quantum effects

Supergravity breaking — Soft supersymmetric breaking terms

Soft supersymmetric breaking terms

- Are generated by the mechanisms above
- 2 Break explicitly supersymmetry in the observable sector
- **3** → **Soft-supersymmetric** broken terms
 - → good renormalisability properties
- Several types
 - a Mass for each scalar fields
 - c Trilinear and bilinear coupling terms for scalar fields
 - b Mass for each gauge fermions
- 6 Controled by the hidden sector and the gravitino mass
- Of Are obtain at the scale where Supergravity
- $oldsymbol{O}$ Are computed at $\sim TeV$ using RGE's

$$\mathcal{L}_{\mathsf{sugra}} = \mathcal{L}_{\mathsf{hidden}} + \mathcal{L}_{\mathsf{obs}} + \mathcal{L}_{\mathsf{hidden-obs}}$$

scanned parameters ⇔ class of hidden sectors

gravity neglected supergravity

$$\mathcal{L} = \mathcal{L}_{\mathsf{SUSV}} + \mathcal{L}_{\mathsf{soft}}$$
 assumptions

Phenomenological analysis

- - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- Gravity induced supersymmetry breaking
 - Universality
 - Gravity induced supersymmetry breaking

- - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- Gravity induced supersymmetry breaking
 - Universality
 - Gravity induced supersymmetry breaking

- Two alternatives to do phenomenology of the MSSM
 - Choose a hidden sector \rightarrow compute the soft-susy term
 - Put the soft susy-term by hand (assumptions)

The cMSSM

- \bigcirc The hidden sector Z is the simplest as possible
- 2 No direct interactions with the observable sector Φ
- 3 The Kähler potential is diagonal

Renormalisability not necessary

$$K(Z, Z^{\dagger}, \Phi, \Phi^{\dagger}) = K_{hidden}(Z, Z^{\dagger}) + K_{obs}(\Phi, \Phi^{\dagger})$$
$$= Z^{\dagger}Z + \Phi^{\dagger}\Phi$$

4 The gauge kinetic functions are trivial

Universality

$$f_{ab}(Z, \Phi) = \delta_{ab} f(Z)$$

5 No-coupling via the superpotential

$$W(Z, \Phi) = W_{\text{hidden}}(Z) + W_{\text{MSSM}}(\Phi)$$

6 Fine tune of the parameters: vanishing cosmological constant

The cMSSM

Field content/cMSSM Lagrangian

Gauge bosons/Matter-Higgs

- 1 Gluons/gluinos $SU(3)_c$: G = (8, 1, 0)
- 2 W/Winos $SU(2)_L : W = (1, 3, 0)$
- **3** B/Bino $U(1)_Y: B = (1, 1, 0)$

At GUT scale 4.5 parameters

- **4** sQuarks: $Q_L^i = (\mathbf{3}, \mathbf{2}, \frac{1}{6}), U^i = (\mathbf{\bar{3}}, \mathbf{1}, -\frac{2}{3}), D^i = (\mathbf{\bar{3}}, \mathbf{1}, \frac{1}{3})$
- **5** sLeptons: $L_L^i = (\underline{1}, \underline{2}, -\frac{1}{2}), e^i = (\overline{1}, \underline{1}, 1), N^i = (\overline{1}, \underline{1}, 0)$
- **6** Higgsino $H_U = (1, 2, \frac{1}{2}), H_D = (1, 2, -\frac{1}{2})$

Superpotential/Soft-terms

$$W = \frac{\left(-L \cdot H_D y_e E - Q \cdot H_D y_d D + Q \cdot H_U y_u U + L \cdot H_U y_n N\right) \left(+N m N + \mu H_U \cdot H_D\right)}{\left(-\sum_i m_i^2 \phi_i^{\dagger} \phi^i\right) \left(+\frac{1}{2} \left(M_1 \tilde{B} \cdot \tilde{B} + M_2 \tilde{W} \cdot \tilde{W} + M_3 \tilde{G} \cdot \tilde{G} + h.c.\right)\right)}{\left(-\ell \cdot h_D A_e y_e e - q \cdot h_D A_d y_d d + q \cdot h_U A_u y_u u + \ell \cdot h_u A_n y_n\right)}$$

$$+N m B' N + \mu B H_U \cdot H_D$$

- - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- Gravity induced supersymmetry breaking
 - Universality
 - Gravity induced supersymmetry breaking

Two important progress

No-scale supergravity

(Cremmer, Ferrara, Kounnas, Nanopoulos, Ellis, Lahanas, etc)

- 1 Supergravity is a theory of gravity
- 2 The potential at the minimum is the cosmological constant
- **3** No-scale supergravity: **geometry** ensures $\Lambda = 0$ (three level)
- Two typical examples
 - a Only with a hidden sector

$$K(Z,Z^{\dagger}) + m_p^2 \ln \left| \frac{W(Z)}{m_p^3} \right|^2 = -3m_p^2 \ln \left(\frac{Z+Z^{\dagger}}{m_p^2} \right)$$

b With a hidden and an observable sector $K(Z, Z^{\dagger}, \Phi, \Phi^{\dagger}) + m_p^2 \ln \left| \frac{W(Z, \Phi)}{m_p^2} \right|^2 =$

$$-3\ln\left(\frac{Z+Z^{\dagger}}{m_p^2}-\frac{1}{3}\frac{1}{m_p^2}\Phi^i\Phi_i^{\dagger}\right)$$

Two important progress II

Systematic in gravity induced supersymmetry breaking
(Soni-Weldon 1983)

- $oldsymbol{1}$ They assume that there is a scale where supersymmetry M_{susy}
- 2 They suppose a Taylor expansion

$$W(Z,\Phi) = \sum_{n=0}^{N} m_{p}^{n} W_{n}(Z,\Phi)$$

$$K(Z,Z^{\dagger},,\Phi,\Phi^{\dagger}) = \sum_{n=0}^{N'} m_{p}^{n} K_{n}(Z,Z^{\dagger},\Phi,\Phi^{\dagger})$$

They show that we must have

$$\begin{array}{ccc} W(Z,\Phi) & = & m_p^2 W_2(Z) + m_p W_1(Z) + W_0(Z,\Phi) \\ K(Z,Z^\dagger,\Phi,\Phi^\dagger) & = & m_p^2 K_2(Z,Z^\dagger) + m_p K_1(Z,Z^\dagger) \\ & & + K_0(Z,Z^\dagger,\Phi,\Phi^\dagger) \end{array}$$

The solutions of Soni-Weldon are incomplete:new solutions (Moultaka-MRT-Tant, in progress)

• No-scale supergravity + SW result's $+ \cdots$ (Giudice-Masiero, *etc* and Moultaka-MRT-Tant)

$$W_{\text{MSSM}} = \sum_{f} \left(G_3^f + m_f G_2^f \right) + \mu H_U \cdot H_D$$

$$\begin{split} K(Z,Z^{\dagger},\Phi,\Phi^{\dagger}) &= m_{p}^{2}k(Z,\bar{Z}^{\dagger}) + \sum_{f} \Lambda_{f}(Z,Z^{\dagger}) \Phi_{fi}^{\dagger} \Phi_{f}^{i} \\ &+ \Lambda_{h}(Z,Z^{\dagger}) \Big(H_{U}^{\dagger} H_{U} + H_{D}^{\dagger} H_{D} \Big) \\ &+ F(Z,Z^{\dagger}) \Big(H_{D} \cdot H_{U} + H_{D}^{\dagger} \cdot H_{U}^{\dagger} \Big) \\ W(Z,\Phi) &= m_{p}^{2} G_{0}(Z) + H_{f}(Z) G_{3}^{f}(\Phi) + M_{f}(Z) G_{2}^{f}(\Phi) \\ G_{3}^{f}(\Phi) &= -y_{ef} L_{L}^{f} \cdot H_{D} E_{L}^{f} - y_{df} Q_{L}^{f} \cdot H_{D} D_{L}^{f} \\ &+ y_{nf} L_{L}^{f} \cdot H_{U} N_{L}^{f} + y_{uf} Q_{L}^{f} \cdot H_{U} U_{L}^{f} \\ G_{2}^{f}(\Phi) &= N_{L}^{f} N_{L}^{f} \end{split}$$

No-scale condition for $k(Z,Z^\dagger)+3m_p^2\ln\left|\frac{G_0(Z)}{m_p^3}\right|^2$

INTERESTING SOLUTION

New solution eq Soni-Weldon Moultaka-MRT-Tant

$$K(Z, Z^{\dagger}, \Phi, \Phi^{\dagger}) = m_{p}^{2}k(Z, \bar{Z}^{\dagger}) + \sum_{f} \Lambda_{f}(Z, Z^{\dagger})\Phi_{fi}^{\dagger}\Phi_{f}^{i}$$

$$+ \Lambda_{h}(Z, Z^{\dagger})H_{i}^{\dagger}H^{i} + F(Z, Z^{\dagger})\left(H_{D} \cdot H_{U} + H_{D}^{\dagger} \cdot H_{U}^{\dagger}\right)$$

$$W(Z, \Phi) = m_{p}^{2}C_{0}(Z) + H_{f}(Z)G_{3}^{f}(\Phi) + M_{f}(Z)G_{2}^{f}(\Phi)$$

$$G_{3}^{f}(\Phi) = -y_{ef}L_{L}^{f}H_{D}E_{L}^{f} - y_{df}Q_{L}^{f} \cdot H_{D}D_{L}^{f}$$

$$+y_{uf}Q_{L}^{f} \cdot H_{U}U_{L}^{f}$$

$$G_{2}^{f}(\Phi) = N_{L}^{f}N_{L}^{f}$$

- ullet No-scale supergravity: $m_{rac{3}{2}}=\left\langle \mathit{G}_{0}\mathit{e}^{rac{1}{2}\mathit{k}}
 ight
 angle$
- Vanishing of the cosmological constant

New solution \neq Soni-Weldon

$$K(Z, Z^{\dagger}, \Phi, \Phi^{\dagger}) = m_{p}^{2}k(Z, \bar{Z}^{\dagger}) + \sum_{f} \Lambda_{f}(Z, Z^{\dagger}) \Phi_{fi}^{\dagger} \Phi_{f}^{i}$$

$$+ \Lambda_{h}(Z, Z^{\dagger}) H_{i}^{\dagger} H^{i} + F(Z, Z^{\dagger}) \left(H_{D} \cdot H_{U} + H_{D}^{\dagger} \cdot H_{U}^{\dagger} \right)$$

$$W(Z, \Phi) = m_{p}^{2}G_{0}(Z) + H_{f}(Z)G_{3}^{f}(\Phi) + M_{f}(Z)G_{2}^{f}(\Phi)$$

$$G_{3}^{f}(\Phi) = -y_{ef} L_{L}^{f} \cdot H_{D} E_{L}^{f} - y_{df} Q_{L}^{f} \cdot H_{D} D_{L}^{f}$$

$$+y_{uf} Q_{L}^{f} \cdot H_{U} U_{L}^{f}$$

$$N_{L}^{f} N_{L}^{f}$$

Hierarchy-family mass:
$$\hat{y}_i^f = \left\langle \frac{e^{\frac{1}{2}k}H_f}{\Lambda_f\sqrt{\Lambda_h}} \right\rangle y_i^f$$

Majorana mass for R-neutrinos: $m_f = \left\langle e^{\frac{1}{2}k} M_f / \Lambda_f \right\rangle o \mathsf{See}$ -saw

$$K(Z, Z^{\dagger}, \Phi, \Phi^{\dagger}) = m_{p}^{2} k(Z, \bar{Z}^{\dagger}) + \sum_{f} \Lambda_{f}(Z, Z^{\dagger}) \Phi_{f}^{\dagger} \Phi_{f}^{\dagger}$$

$$+ \Lambda_{h}(Z, Z^{\dagger}) H_{i}^{\dagger} H^{i} + F(Z, Z^{\dagger}) \left(H_{D} \cdot H_{U} + H_{D}^{\dagger} \cdot H_{U}^{\dagger} \right)$$

$$W(Z, \Phi) = m_{p}^{2} G_{0}(Z) + H_{f}(Z) G_{3}^{f}(\Phi) + M_{f}(Z) G_{2}^{f}(\Phi)$$

$$G_{3}^{f}(\Phi) = -y_{ef} L_{L}^{f} \cdot H_{D} E_{L}^{f} - y_{df} Q_{L}^{f} \cdot H_{D} D_{L}^{f}$$

$$-y_{nf} L_{L}^{f} \cdot H_{D} N_{L}^{f} + y_{uf} Q_{L}^{f} \cdot H_{U} U_{L}^{f}$$

$$G_{2}^{f}(\Phi) = N_{f}^{f} N_{f}^{f}$$

The $\mu-$ term is generated naturally à la Giudice-Masiero

$$\mu = m_{\frac{3}{2}} \left\langle \frac{F}{\Lambda_h} - \tilde{\rho}_1^{\dagger i} \frac{\partial_i F}{\Lambda_h} \right\rangle = m_{\frac{3}{2}} d$$

Non-Universality

Superpotential/Kähler potential

- 1 Three trilinear soft-terms one for each family
- 2 Four bilinear soft-terms one for each sneutrino one for the Higgses
- Four scalar mass square terms
 one for each family
 one for the Higgses
 Gauge kinetic function
- 4 Three gauginos mass terms (ene if GUT)
 one for each gauge group

Controled by the gravitino mass $m_{\frac{3}{2}}$

Different hidden sectors \Rightarrow different boundary conditions As e.g. the pMSSM or other possibilities

- - Supersymmetry in brief
 - Supergravity in very brief
 - Supergravity breaking
- - Universality
 - Gravity induced supersymmetry breaking

- The mechanism of supergravity breaking are very rich
 - Gravity mediated supersymmetry breaking
 - Gauge mediated supersymmetry breaking
 - Anomaly mediated supersymmetry breaking
 - ♦ Other mechanisms (String/orbifolds · · ·)
 - Mixture of several mechanisms
- Importance of the hidden sector
 - By hand for phenomenological purpose
 - Top-down justification: String theory?
- Experimental exclusion limits of supersymmetry model independent?
- Supersymmetry is not definitely ruled out see e.g.

```
(H. Baer, V. Barger, M. Savoy [arXiv:1502.04127 [hep-ph]])
```

- ⋄ deep analysis of naturalness in the light of recent datas → non-universality
- the essential supergravity scenarios remains intact

- Following J. Ellis ([arXiv:1501.05418 [hep-ph]]) and J. Bond 007 reasons for supersymmetry
 - 1 measured values of m_t and m_h .
 - 2 dark matter
 - 3 CP violation beyond CKM
 - 4 small size of neutrino mass
 - 5 New physics at Tev for hierarchy of masses
 - 6 to have inflation (Higgs potential becomes negative at high energy)
 - 7 to include gravity

Mechanism of gravity induced supersymmetry breaking studied for more than 30 years

$$W(Z, \Phi, S) = m_p \Big[W_1(Z) + S^p W_{1p}(Z) \Big] + W_0(Z, \Phi) + S^p W_{0p}(Z)$$

$$K(Z, \Phi, S) = m_p^2 K_2(Z) + m_p K_1(Z) + G_1(Z, \Phi) + G_2(Z, S)$$

In progress

name	particle	susy partner	repr.
(s)quarks	$q_L^l = \begin{pmatrix} u_L^l \\ d_L^l \end{pmatrix}$ u_R^{lc} d_R^{lc}	$ ilde{q}_L^I = egin{pmatrix} ilde{u}_L^I \ ilde{d}_L^I \ ilde{d}_L^I \end{pmatrix} \ ilde{u}_R^{I\dagger} \ ilde{d}_R^{J\dagger} \ ilde$	$(3, 2, \frac{1}{6})$ $(\overline{3}, 1, -\frac{2}{3})$ $(\overline{3}, 1, \frac{1}{3})$
(s)leptons (s)neutrinos	$\ell_L^l = \begin{pmatrix} \nu_L^l \\ e_L^l \end{pmatrix} \\ e_R^{lc} \\ \nu_R^{lc}$	$ \tilde{\ell}_L^I = \begin{pmatrix} \tilde{\nu}_L^I \\ \tilde{e}_L^I \end{pmatrix} $ $ \tilde{e}_R^{I\dagger} \\ \tilde{\nu}_R^{I\dagger} $	$(1,2,-\frac{1}{2})$ $(1,1,1)$ $(1,1,0)$
Higgs(inos)	$H_1 = \begin{pmatrix} H_{10} \\ H_{1-} \end{pmatrix}$ $H_2 = \begin{pmatrix} H_{2+} \\ H_{20} \end{pmatrix}$	$\begin{split} \tilde{H}_1 &= \begin{pmatrix} \tilde{H}_{10} \\ \tilde{H}_{1-} \end{pmatrix} \\ \tilde{H}_2 &= \begin{pmatrix} \tilde{H}_{2+} \\ \tilde{H}_{20} \end{pmatrix} \end{split}$	$(1, 2, -\frac{1}{2})$ $(1, 2, \frac{1}{2})$
boson-B bino	В	B	(1, 1, 0)
bosons-W winos	W	Ñ	(1, 3, 0)
gluons gluinos	g	ğ	(8, 1, 0)