CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPM

Precision Cosmology with Cosmic Voids

Séminaire CPPM

Marseille 13/04/2015 Credit: Millennium simulation

Alice Pisani

Outline

- Introduction
- Voids as tools for Cosmology
- Finding voids and measuring the expansion
- Can we access to the real space information?
- Can we master peculiar velocities on voids?
- What can we expect from the future?

The standard cosmological model

The study of large scale structures is a powerful tool to understand the composition of the universe.

Are voids there?

Can we use voids to get cosmological information?

In voids matter is missing=> Dark Energy

If Dark Energy exists, cosmic voids are a new tool to constrain it.

If not ACDM? Do we need to modify gravity?

MASSIVE GRAVITY MODELS Graviton could become massive, which would introduce a new scalar field.

The equation of state could be DENSITY and SCALE DEPENDENT

Modified gravity, the LSS might be different

Analyze void properties to constrain cosmological models

CMB anchor + late time measure of the expansion is the way to constrain dark energy

Studying voids gives a window on dark energy

But first we need to *find voids*

Cells merged into basins, which center is the cell only surrounded by higher density cells (local minima).

Icke & Van de Weygaert (1987)

Void IDentification and Examination

Voronoi

tessellation

Based on Zobov (Neyrinck 2008)

Voids

ANY SHAPE

Credit: Sutter et al. 2012

Watershed

transform

galaxy survey or simulation

Each basin is a sub-void. Basins are merged in one void if, the border with lower density is common.

Density cuts: 1)all cells mean density <-0.8 2)density in Reff/4<-0.8 + exclude voids below mps

+ it takes into account survey boundaries and masks

We have voids, how can we measure expansion with them?

Standard objects

Known Length

Known Luminosity

$$\Delta r_{\perp} = D_A(z)\Delta\theta$$

angular diameter distance

 $c\Delta z = H(z)\Delta r_{\parallel}$

Hubble parameter

Alcock-Paczyński test (1979)

Barbara Ryden intuition: apply the Alcock-Paczyński test on voids

1995

The void shape tells us the cosmology

How to turn this into a precise constrain?

<text>

arXiv:1404.5618 (Sutter, Pisani, Wandelt, Weinberg 2014)

Redshift z

We can reduce systematics by:1) better modeling of the real space shape2) studying the effect of peculiar velocities

The method to get the spherical profile

We can obtain the SPHERICAL density profile of stacked voids in real space.

The Abel inverse transform

 $g(r) = -\frac{1}{\pi} \int_{r}^{1} \frac{I'(y)}{\sqrt{y^2 - r^2}} dy$ 2D 3D To test the reconstruction we need a class of functions for which the inverse is known: Abel Pairs

But...

Reconstruction was with an Abel pair, so it is a particular case

The full simulated stacked void

Stacking from 10 to 12 Mpc/h

arXiv:1306.3052 (A. Pisani, G.Lavaux, P. M. Sutter, B. D. Wandelt 2013)

The sanity check for the reconstruction

Check the reconstruction

A robust error estimation

Bootstrap samples

Akaike criteria

$$AICc = 2k - 2 \ln(L) + \frac{2k(k+1)}{n-k-1}$$

penalises overfitting

takes into account noise in a realistic way

But algorithm only applied to a DM sim.

Reconstruction from stacked void with HOD model

$$\left\langle N_{\rm cen}(M) \right\rangle = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{\log M - \log M_{\min}}{\sigma_{\log M}}\right) \right]$$
$$\left\langle N_{\rm sat}(M) \right\rangle = \left\langle N_{\rm cen}(M) \right\rangle \left(\frac{M - M_0}{M_1'}\right)^{\alpha}$$

Rockstar halo finder (Behroozi et al. 2013)

+ HOD model assigns central and satellite galaxies to a dark matter halo (Zheng et al.2007)

Matching the features of SDSS DR7

arXiv:1306.3052 (A. Pisani, G.Lavaux, P. M. Sutter, B. D. Wandelt 2013)

Average real space void from SDSS DR7 matches simulations

What do we know about voids?

STATICIII

DYNAMICS ????

"Really" looking at voids...

Nevertheless velocities might impact the way the void finder selects voids!

Let's give a look at voids...

HOD nopv

versus

HOD + pv

\rightarrow 54 h^{-1} Mpc (HOD HighRes)

Is the cosmological signal washed out by velocities in a certain kind of voids? Can we identify them and boost the cosmological signal?

Which voids are affected most?

Identify them by properties

Optimal cuts for real surveys!

Mastering the effects of peculiar velocities

Exclude the affected voids, but what about the others? Can we correct the properties of other voids for the effects of velocities?

Guidelines to boost the cosmological information

Applying cuts on radius and density contrast that match our physical sense

Set of tools to beat systematics even on current dataset

What about an increase in statistics?

For example let's go.... Back to the future
to bet on LSS with upcoming surveysSDSS DR7 $6.7 \cdot 10^5$ galaxies

$5.0\cdot 10^7$ EUCLID WFIRST $2.0 \cdot 10^{7}$

Real-space density profiles of increased precision + a huge statistic for AP test and abundances

Theory

Simulation

Sheth Van de Weygaert excursion set model for void abundance (2004)

╋

Tuned on Euclid to obtain the parameter of the model and marginalise on parameter

Realistic

estimation of the

number of voids

41 / 45

Survey

Take into account features such as galaxy number density, survey area, redshift covering

Abundances to constrain Cosmology

Comparing future surveys

arXiv:1503.07690 (Pisani, Sutter, Hamaus, Alizadeh, Biswas, Wandelt, Hirata 2015)

Combining future surveys

AP test in t

Voids as a **new tool** to constrain cosmology in the era of large surveys.

First ever **real space density profile** of voids from real data and guidelines for treatment of systematics (velocity) Forecast for void **abundance** with Euclid

BOSS and eBOSS (high z) apply these innovative techniques

