COMET and g-2/EDM experiments at J-PARC : an overview

W. da Silva and F. Kapusta LPNHE Paris

FJPPL Computing Workshop 10-11 march 2015

In memory of Jacques Ganouna

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Physics Motivation : Beyond the Standard Model with muons

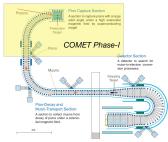
- Direct search (Energy Frontier) LHC, ILC : higher energy for heavier new particle(s).
- ► Indirect search (Intensity Frontier): "slight" difference from SM prediction.

Charged LFV

- $\mu \rightarrow e\gamma$ search from MEG@PSI Br($\mu \rightarrow e\gamma$) < 5.4 10⁻¹³(90%CL)
- ▶ μe conversion search SINDRUMII@PSI 7.10⁻¹³ COMET@J-PARC 3 10⁻¹⁵(PHASE I) & 2.6 10⁻¹⁷(PHASE II) Mu2e@FNAL 2.4 10⁻¹⁷

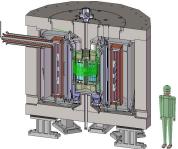
Muon g-2/EDM

- ▶ g-2 measurement E821@BNL $a_{\mu}[exp] - a_{\mu}[SM] = 3.3 \sigma$ and $d_{\mu} < 2.7 \ 10^{-19}$ e cm (90% CL)
- New measurements
 - J-PARC 0.1 ppm for g-2 / O(10⁻²¹) for EDM


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

FNAL

COMET and g-2/EDM


- $\mu \rightarrow e \ {\rm conversion}$
 - Staging approach
 - Phase I to achieve 10⁻¹⁴ sensitivity and then Phase II

- Funding approved in JFY 2012 supplementary budget
- Annex of the current existing hall
- 8 GeV, pulsed proton beam to produce high-intensity muon beam
- J-PARC Hadron Experimental Hall completed by end of JFY2015

Muon g-2/EDM measurements

- High-intensity muon beam produced by 3 GeV proton beam from RCS
- Muon acceleration through muonium
- Systematics different from BNL or Fermilab

• R = 33cm, B = 3T and $\overrightarrow{E} = \overrightarrow{0}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

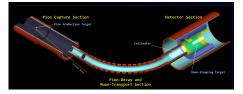
From Yoshitaka Kuno @CM15

COMET Collaboration

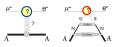
164 collaborators 37 institutes, 12 countries

The COMET Collaboration

R. Akhmetshin^{6,28}, V. Anishchik⁴, M. Aoki²⁹, R. B. Applebv^{8,22}, Y. Arimoto¹⁵ Y. Bagaturia³³, Y. Ban³, W. Bertsche²², A. Bondar^{6,28}, S. Canfer³⁰, S. Chen²⁵ Y. E. Cheung²⁵, B. Chiladze³², D. Clarke³⁰, M. Danilov^{13,23}, P. D. Dauncev¹¹, J. David²⁰ W. Da Silva²⁰, C. Densham³⁰, G. Devidze³², P. Dornan¹¹, A. Drutskov^{13,23}, V. Duginov¹⁴ A. Edmonds³⁵, L. Epshtevn^{6,27}, P. Evtoukhovich¹⁴, G. Fedotovich^{6,28}, M. Finger⁷ M. Finger Jr⁷, Y. Fujii², Y. Fukao¹⁵, J-F. Genat²⁰, M. Gersabeck²², E. Gillies¹¹ D. Grigoriev^{6, 27, 28}, K. Gritsav¹⁴, R. Han¹, K. Hasegawa¹⁵, I. H. Hasim²⁹, O. Havashi²⁹ M. I. Hossain¹⁶, Z. A. Ibrahim²¹, Y. Igarashi¹⁵, F. Ignatov^{6,28}, M. Iio¹⁵, M. Ikeno¹⁵ K. Ishibashi¹⁹, S. Ishimoto¹⁵, T. Itahashi²⁹, S. Ito²⁹, T. Iwami²⁹, Y. Iwashita¹⁷, X. S. Jiang² P. Jonsson¹¹, V. Kalinnikov¹⁴, F. Kapusta²⁰, H. Katayama²⁹, K. Kawagoe¹⁹, V. Kazanin⁶. B. Khazin^{§6, 28}, A. Khvedelidze¹⁴, M. Koike³⁶, G. A. Kozlov¹⁴, B. Krikler¹¹, A. Kulikov¹⁴ E. Kulish¹⁴, Y. Kuno²⁹, Y. Kuriyama¹⁸, Y. Kurochkin⁵, A. Kurun¹¹, B. Lagrange^{11,18} M. Lancaster³⁵, H. B. Li², W. G. Li², A. Liparteliani³², R. P. Litchfield³⁵, P. Loveridge³⁰ G. Macharashvili¹⁴, Y. Makida¹⁵, Y. Mao³, O. Markin¹³, Y. Matsumoto²⁹, T. Mibe¹⁷ S Mihara¹⁵ F Mohamad Idris²¹ K A Mohamed Kamal Azmi²¹ A Moiseenko¹⁴ Y. Mori¹⁸, N. Mosulishvili³², E. Motuk³⁵, Y. Nakai¹⁹, T. Nakamoto¹⁵, Y. Nakazawa²⁶ J. Nash¹¹, M. Nioradze³², H. Nishiguchi¹⁵, T. Numao³⁴, J. O'Dell³⁰, T. Ogitsu¹⁵, K. Oishi¹⁵ K. Okamoto²⁹, C. Omori¹⁵, T. Ota³¹, H. Owen²², C. Parkes²², J. Pasternak¹¹, C. Plostinar³⁰ V. Ponariadov⁴, A. Popov^{6,28}, V. Rusinov^{13,23}, A. Ryzhenenkov^{6,28}, B. Sabirov¹⁴ N. Saito¹⁵, H. Sakamoto²⁹, P. Sarin¹⁰, K. Sasaki¹⁵, A. Sato²⁹, J. Sato³¹, D. Shemvakin^{6,26} N. Shigvo¹⁹, D. Shoukavv⁵, M. Shunecka⁷, M. Sugano¹⁵, Y. Takubo¹⁵, M. Tanaka¹⁷ C. V. Tao²⁶, E. Tarkovsky^{13, 23}, Y. Tevzadze³², N. D. Thong²⁹, V. Thuan¹², J. Tojo¹⁹ M. Tomasek⁹, M. Tomizawa¹⁵, N. H. Tran²⁹, I. Trek³², N. M. Truong²⁹, Z. Tsamalaidze¹⁴ N. Tsverava¹⁴, S. Tygier²², T. Uchida¹⁵, Y. Uchida¹¹, K. Ueno¹⁵, S. Umasankar¹⁰ E. Velicheva¹⁴, A. Volkov¹⁴, V. Vrba⁹, W. A. T. Wan Abdullah²¹, M. Warren³⁵, M. Wing³⁵ T. S. Wong²⁹, C. Wu^{2, 25}, G. Xia²², H. Yamaguchi¹⁹, A. Yamamoto¹⁵, M. Yamanaka²⁴ Y. Yang¹⁹, H. Yoshida²⁹, M. Yoshida¹⁵, Y. Yoshii¹⁵, T. Yoshioka¹⁹, Y. Yuan², Y. Yudin^{6,28}, J. Zhang², Y. Zhang²


¹North China Electric Power University, Beijing, Pople's Republic of China ²Institute of High Energy Physics (IHEP). Beijing, Poople's Republic of China ³Peking University, Beijing, Pople's Republic of China ⁴Belarusian State University (BSU), Minsk, Belarus ⁵B.I. Stepanor Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

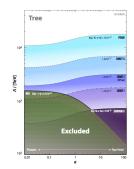
COMET (E21)


COMET Phase I (2016)

▶ Beam background study and achieve S.E.S. ≃ 3.10⁻¹⁵ with 8 GeV - 3.2 kW proton beam, ~ 3 months DAQ

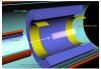
COMET Phase II (2020)

 \blacktriangleright 8 GeV - 56 kW proton beam , \sim 1 year DAQ to achieve the COMET final goal of S.E.S $\simeq 3.10^{-17}$

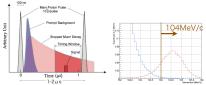


For searches at colliders

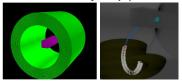
 $\blacktriangleright |A_{SM} + \varepsilon_{NP}|^2 \simeq |A_{SM}|^2 + 2Re(A_{SM}\varepsilon_{NP})$


CLFV sensitive to NP at high energy scale Λ

 $\blacktriangleright |A_{SM} + \varepsilon_{NP}|^2 \simeq |\varepsilon_{NP}|^2 \Rightarrow \mathsf{Rate} \simeq \tfrac{1}{\Lambda^4}$



France-Japan collaboration in COMET

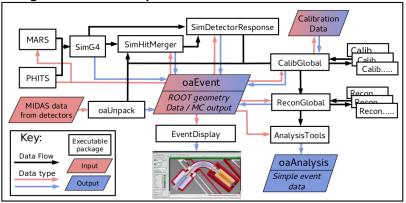

- COMET Phase I Construction of the muon transport solenoid down to the 1st 90⁰ bend
- CDC and Triggering counter surrounding a muon stopping target

 $\mu \to e$ conversion signal identified with an energetic electron of 105MeV emitted from a muonic atom with delayed timing.

 LPNHE R&D for an active muon stopping target in order to get an additional point for the electron trajectory (CM11 - 2013)

- Simulation and reconstruction with GENFIT within ICEDUST(Integrated Comet Experiment Data User Software Toolkit), the new COMET Software Framework rooted in T2K ND280.
- Discussion on the possibility of a beam test of ATLAS pixels at J-PARC with Kyushu University.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @


 MARS and ICEDUST installed at CCIN2P3 (thanks to Yonny Cardenas).

ICEDUST

ICEDUST

Overview

Integrated Comet Experiment Data User Software Toolkit

December 2014

Ben Krikler

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

From Naohito Saito @CM8

Collaboration Muon g-2/EDM at J-PARC

- > 98 members (...still evolving)
- > 21 Institutions
- Academy of Science, BNL, BINP, CRNS-APC, UC Riverside, Charles U., KEK, Korea U, NIRS, UNM, Osaka U., PMCU, RCNP, STFC RAL, RIKEN, Rikkyo U., SUNYSB, CRC Tohoku, U. Tokyo, TITech, TRIUMF, U. Victoria

9 countries

Canada, China, Czech, France, Japan, Korea, Russia, UK, USA (alphabetic order)

Maaharu Aoki⁸, Pavel Bakule²⁰, Bernd Bassalleck²⁴, George Beer²⁶, Gerry Bunce²⁷, Abhay Deshpande¹⁹, Simon Eidelman⁴, Douglas E. Fields²⁴, Miloslay Finger⁶, Michael Finger Jr.⁶ Yuya Fujiwara^{17,14}, Yoshinori Fukao¹⁰, Noriyosu Hayashizaki¹⁶, Seiko Hirota^{10,14}, Hiromi Iinuma¹⁰ Masanori Ikegami¹⁰, Masahiro Ikeno¹⁰, Katsuhiko Ishida¹⁷, Masa Iwasaki¹⁷, Ryosuke Kadono¹⁰ Takuya Kakurai¹², Takuya Kamitani¹⁰, Yukihide Kamiya¹⁰, Sohtaro Kanda¹², Frédéric Kamusta¹ Naritoshi Kawamura¹², Takashi Kohriki¹⁰, Sachio Komamiya¹⁴, Kunio Koseki¹⁰, Yoshitaka Kuno⁸ Alfredo Luccio¹², Oleg Luchev², Muneyoshi Maki¹², Glen Marshall²², Mika Masuzawa¹⁰, Yasuyuki Matsuda⁹, Teijiro Matsuzaki¹⁷, Tsutomu Mibe¹⁰, Katsumi Midorikawa², Satoshi Mihara¹⁰, Yasuhiro Miyake¹⁰, William M. Morse³, Jiro Murata^{17,13}, Ryotaro Muto¹⁰ Kanetada Nagamine^{23,10,18}, Takashi Naito¹⁰, Hisavoshi Nakavama¹⁰, Megumi Naruki¹⁰ Makiko Nio²¹, Hajime Nishiguchi¹⁰, Daisuke Nomura¹⁰, Hiroyuki Noumi¹⁵, Tomoko Ogawa², Toru Oritsu¹⁰, Kazuki, Ohishi¹⁷, Katsunobu Oide¹⁰, Masahiro Okamura³, Art Olin^{22,26} Norihito F. Saito², Naohito Saito^{10,14}, Yasuhiro Sakemi⁷, Ken-ichi Sasaki¹⁰, Osamu Sasaki Akira Sato¹², Aurore Savoy-Navaro⁵, Yannis K. Semertzidis³, Yuri Shatunov¹², Koichiro Shimomura¹⁰, Boris Shwartz⁴, Wilfrid da Silva²⁵, Patrick Strasser¹⁰, Ryuhei Sugahara Michinaka Sugano¹⁰, Ken-ichi Tanaka¹⁰, Manobu Tanaka¹⁰, Nobuhiro Terunuma¹⁰ Nobukazu Toge¹⁰, Dai Tomono¹⁷, Eiko Torikai¹², Toshiyuki Toshito¹¹, Akihisa Toyoda¹⁰, Kyo Tsukada¹², Tomohisa Uchida¹⁰, Kazuki Ueno¹⁷, Vlasov Vrba¹, Satoshi Wada², Akira Yamamoto¹⁰, Kaoru Yokoya¹⁰, Koji Yokoyama¹⁷, Makoto Yoshida¹⁰, Mitsuhiro Yoshida¹⁰ Koji Yoshimura¹⁰

e a.B-

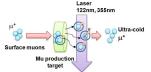
(20 mm)

(333 uA)

Muonium (~106 µ*/s

g-2/EDM (E34)

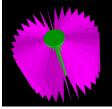
On the use of low energy e^+e^- data : M. Benayoun vs M. Davier at Photon 2013. Observed Difference with BNL using eter "Null" electric field, no "magic momentum" $a_{-}[exp] - a_{-}[SM] = (27.5 \pm 8.4) \times 10^{-10}$ 3.3 "standard deviations" $\frac{\vec{\beta} \times \vec{E}}{\vec{\beta}} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \right)$ More precise computations using real data. 3 GeV proton beam $\pi^{2}, \pi^{2}, \pi^{2},$ Graphite target Silicon Tracker cm diame Improved precision to constrain SUSY Muonium production 25 00 K + 25 meV → 2.3 keV/c) LHC plus Super Precision Magnet/ Field -(3T. ~1ppm local precision amu LHC 20 alone Resonant Laser Ionization of 15 ENAL χ^2 & J-PARC **a**-2 10 E821 New Muon g-2/EDM Experiment at J-PARC with Ultra-Cold Muon Beam 5


0

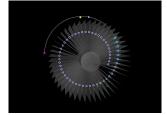
2 6 4

8 10 12 14 16 18 20

tan B


France-Japan collaboration in g-2/EDM

Recent breakthrough in μ production yield.


Beam intensity large enough to test the BNL g-2 anomaly better than 0.5ppm precision.

- Muon acceleration test
- Beam transport design
- Error on B-field and correction scheme
- Detector design

- Detector characterization.
- Software framework

▶ e⁺ reconstruction using GENFIT

- Simulation software and computing resources at CCIN2P3, thanks to Yonny Cardenas.
- Intensive use for silicon vanes alignment. (Master thesis of Soishiro Nishimura)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Software Activity

Software group structure, january 2014

Software group involves 13+ people Sub-group coordinator: Ajit Kurup Sam Tygier: Andy Edmonds MARS, SimG4 Fluka Ben Krikler: Chen Wu SimG4, overall framework Build system, repository, CyDet Per Johnsson: Phill Litchfield Unit tests, ND280 support Offline databases, ND280 support Kazuki Ueno: Fedor Ignatov Straw tracker Reconstruction Wilfrid da Silva, Frederic Vladimir Kalinnikov, Elena Kapusta: Velicheva GENFIT. Active Target ECAL Ben Krikler, Imperial College London

GitLAB members, march 2015

•0	a fibre d'Orange	×∕⊗	Members - comet (OLui + Kedu Parlor Members - comet (OLui + K)			
*				v C Sv Doogle	A 公白 4 合 M	ag =
۵				9 Search in this prosp	••• • • • • •	e activity
0	Activity		correct group members (18)			
0	Milestones		Apt Korep Isotop		Owner (2	
0	tosues Merze Reports	2	Benjamin Krilder Derfolker		Owner (2	
	Benkers		KAPUSTA Prederio Instancia ante		Owner	
00	Gottings ~		- Keel Clebh Kos		Master (7	
			YAND PAGE (CIV)		Master (7	
			Neen Tree norn		Developer (2	
			Williad de Elive dastiva		Developer (2	
			Mpeanglas Les mpeonglasses		Developer (2	
			Jordan Mash nash		Developer (2	
			Ches Ma vuches		Developer (2	
			Condry Shockary shockary		Developer (2	
			🖉 Hitoshi Yanagushi Iyomopo		Developer (2	
			Wong Ting Sam carrying		Developer (2	
			Phill Literatived Report		Developer (2	
			Yoshi Uchida yoshiz		Developer @	
			Per Jonsson jonssonp		Developer @	
			Kazuld Geno Kazaseno		Developer @	
			Even L Gillies right?		Developer @	

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

FJPPL Members and Activities

French Group

(LPNHE-Paris CNRS/IN2P3/UPMC) Frédéric KAPUSTA Wilfrid da SILVA Maurice BENAYOUN Luigi DELBUONO Giovanni CALDERINI Jacques DAVID Jean-François GENAT

Japanese Group (KEK/JPARC & Osaka U.) Tsutomu MIBE Naohito SAITO Satoshi MIHARA Kazuki UENO Hajime NISHIGUCHI Yoshitaka KUNO Akira SATO Yoshinori FUKAO Masashi OTANI

► COMET

- CDC tracker design and prototype R&D (JP)
- Development of tracking algorithm design optimization using simulation (FR)
- Active muon stopping target and beam monitor planning (FR)

- g-2/EDM
 - Silicon tracker R&D (JP)
 - Simulation and tracking software framework (FR)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

TDR planned for release in 2015.

Recent history

- COMET Software Framework: from ND280 to ICEDUST. Imperial College London lead : Ajit Kurup, Ben Krikler COMET soft jpg.
- ► Common COMET g-2/EDM FJPPL Workshop (Paris, 20-21 february 2014)

 3rd Workshop on Muon g-2, EDM and Flavour Violation in the LHC Era in december 2014

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

It was the right time for a decision from CCIN2P3 director and IN2P3 Particle Scientific Deputy Director to create a comet group to allow "foreign collaborators" to register and use CCIN2P3 machines.

Recent events

- At COMET CM15 in january at KEK, final agreement to use the COMET Software Framework as a starting point for g-2/EDM.
- Accepted proposal from the french group to use the CCIN2P3 computing power and support in order to prepare a Grid computing at the COMET Collaboration level.
- Accepted proposal to have gitlab.in2p3.fr hosting the COMET software in order to ease the collaborative work.
- ICEDUST is running with MARS using a common 1 TB of semi-permanent space on /sps/hep/comet.
- SimMARS still under test and optimization at CCIN2P3.
- A MySQL database is available for parameters storage.
- muon.in2p3.fr is a french website under construction to unify μ^+ and μ^- experiments for BSM physics, the official COMET website being comet.kek.jp

*ロ * * @ * * 目 * ヨ * ・ ヨ * の < や

Summary : comments, requests and questions

- VO-Asia is part of a FJPPL agreement which could be extended to FCPPL and FKPPL with the help of our chinese and korean colleagues
- Preparation of a Grid computing at the COMET Collaboration level.
- ▶ The CCIN2P3 ressources will be described in the g-2/EDM 2015 TDR.
- Back up of the developpers space : contributions have to be tested safely before being pushed to gitlab.
- CPU and storage : accurate estimates only after the first release of ICEDUST in april.
- ▶ Rough estimates : with 10^{10} proton events 150000 CPU hours $\simeq 1.5 \ 10^{6}$ HS06 and 20 TB of storage to generate data with SimMARS. And at least the same CPU time to process with SimG4.
- GitLab Enterprise integrates git-annex, ideal to store the magnetic field maps in the same repository as ICEDUST. But git-annex written in Haskell introduces another dependency to the software and therefore makes it a bit less attractive. Nice only if other alternatives using CVMFS are not possible.
- Database file sizes might be of a similar order of magnitude as ND280, which means 7 GB for calibration and 100 GB for slow control with someone to provide support.
- ► Thanks in advance to FJPPL computing experts and CCIN2P3 support.