

Planck: a selection of the 2015 results

Céline Combet (LPSC)

CPPM, 20/04/2015

1. A quick introduction to the CMB: intensity and polarisation

- 2. From satellite to channel maps
- 3. A selection of Planck's 2015 cosmological results
 - Component separation: finding the CMB among other things
 - Spectra and parameter estimation
 - Lensing
 - The search for primordial B-modes
- 4. Conclusions

Cosmological model

• Cosmological principle: the universe is homogeneous and isotrope (on large scales)

Expansion from hot and dense primordial universe \rightarrow Big Bang model Big Bang model alone has issues \rightarrow Big Bang + Inflation model

The history of the universe

Observations→∧CDM concordance model

Several independent methods, probing different epochs

Cosmic Microwave Background

Dipole anisotropy due to solar system movement in CMB reference frame \rightarrow T/T ~ 10⁻³

Anisotropies due to primordial density fluctuations

 \rightarrow T/T ~ 10⁻⁵

Cosmic Microwave Background

Dipole anisotropy due to solar system movement in CMB reference frame \rightarrow T/T ~ 10⁻³

Anisotropies due to primordial density fluctuations

 \rightarrow T/T ~ 10⁻⁵

Cosmic Microwave Background

Dipole anisotropy due to solar system movement in CMB reference frame \rightarrow T/T ~ 10⁻³

Anisotropies due to primordial density fluctuations

 \rightarrow T/T ~ 10⁻⁵

CMB polarisation

- CMB polarisation is produced by Thomson scattering in the presence of quadrupolar anisotropies
- Imprints the CMB at 2 epochs

 → recombination (last scattering)
 - \rightarrow reionisation (new free e-)
- Polarisation described by the Stokes parameters:
 - $I \rightarrow intensity$
 - $\mathsf{Q},\,\mathsf{U}\to\mathsf{linear}\;\mathsf{polarisation}$
 - $[V \rightarrow circular polarisation = 0 for CMB]$

Sources of quadrupolar anisotropies

scalar perturbations (over/under-densities)

tensor perturbations (gravitational waves)

t

CMB polarisation

$$(Q \pm iU)(\mathbf{n}) = \sum_{l,m} a_{\pm 2,lm} \cdot {}_{\pm 2}Y_{lm}(\mathbf{n})$$
$$a_{lm}^E = -\frac{a_{2,lm} + a_{-2,lm}}{2} \text{ and } a_{lm}^B = i\frac{a_{2,lm} + a_{-2,lm}}{2}$$
$$E(\mathbf{n}) = \sum_{l,m} a_{lm}^E Y_{lm}(\mathbf{n}) \text{ and } B(\mathbf{n}) = \sum_{l,m} a_{lm}^B Y_{lm}(\mathbf{n})$$

Power spectra: auto and cross spectra

$$C_l^{XY} = \frac{1}{2l+1} \sum_{m=-l}^{m=l} a_{lm}^X a_{lm}^{Y\star} \text{ for } X, Y \in [T, E, B]$$

- Polarisation (at low-l) \rightarrow "reionisation bump" lifts $A_s-\tau$ degeneracy
- BB around *l* = 50 100 → smoking gun for gravitational waves

- Q and U depend on frame of reference
- E and B are frame-independent quantities

Production of E and B modes depends on the type of perturbation:

- Scalar perturbations \rightarrow E only
- Tensor perturbations \rightarrow E and B

1. A quick introduction to the CMB: intensity and polarisation

- 2. From satellite to channel maps [Planck 2015 II, VI, VII, VII]
- 3. A selection of Planck's 2015 cosmological results
 - Component separation: finding the CMB among other things
 - Spectra and parameter estimation
 - Lensing
 - The search for primordial B-modes
- 4. Conclusions

The Planck mission

- 14 May 2009: Ariane 5 launch
 - \rightarrow Joint launch with Herschel
 - \rightarrow all the way to L2 point
- August 2009: beginning of operations
- 14 August 2013: de-orbiting

Goals

- Ultimate measurement of CMB anisotropies in temperature
- Unprecedented measurement of CMB polarisation
- Galactic/extragalactic science

The Planck satellite

LFI: Low Frequency Instrument (33 \rightarrow 70 GHz) – 11 radiometers @ 20 K (H sorption cooler) HFI: High Frequency Instrument (100 \rightarrow 857 GHz) – 52 bolometers @ 0.1 K (³He/⁴He dilution)

Scanning strategy

ΤΟΙ

Time-Ordered Information

 \rightarrow short timescale redundancy

•

 \rightarrow useful to characterise noise of each detector

Planck covers the full sky in ~ 6 months •

- \rightarrow long timescale redundancy
- \rightarrow systematic effects identification

Raw TOI

Deglitching & flagging, Gain nonlinearity correction, Thermal drift decorrelation, 4K cooler line removal, Transfer functions deconvolution, Jump correction, Sample flagging

Cleaned TOI

Cleaned TOI are used as input by the map-making team

9 Planck intensity maps

[Planck 2015 results. VI, VIII]

4 Planck Q maps [Feb. 2015]

[Planck 2015 results. VI, VIII]

100.0 µК_{смв}

4 Planck U maps [Feb. 2015]

[Planck 2015 results. VI, VIII]

100.0 µK_{cm}

- 1. A quick introduction to the CMB: intensity and polarisation
- 2. From satellite to channel maps

3. A selection of Planck's 2015 cosmological results

- Component separation: finding the CMB among other things
- Spectra and parameter estimation
- Lensing
- The search for primordial B-modes
- 4. Conclusions

- I. Overview of products and results (this paper)
- II. Low Frequency Instrument data processing
 - III. LFI systematic uncertainties
 - IV. LFI beams and window functions
 - V. LFI calibration
 - VI. LFI maps
- VII. High Frequency Instrument data processing: Time-ordered information and beam processing
- VIII. High Frequency Instrument data processing: Calibration and maps
- IX. Diffuse component separation: CMB maps
- X. Diffuse component separation: Foreground maps
- XI. CMB power spectra, likelihood, and consistency of cosmological parameters
- XII. Simulations
- XIII. Cosmological parameters
- XIV. Dark energy and modified gravity
- XV. Gravitational lensing
- XVI. Isotropy and statistics of the CMB
- XVII. Primordial non-Gaussianity
- XVIII. Background geometry and topology of the Universe
- XIX. Constraints on primordial magnetic fields
- XX. Constraints on inflation
- XXI. The integrated Sachs-Wolfe effect
- XXII. A map of the thermal Sunyaev-Zeldovich effect
- XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

XXIV. Cosmology from Sunyaev-Zeldovich cluster counts

- XXV. Diffuse, low-frequency Galactic foregrounds
- XXVI. The Second Planck Catalogue of Compact Sources
- XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
- XXVIII. The Planck Catalogue of Galactic Cold Clumps

Planck's 2015 papers (as of April)

BICEP2/Planck joint analysis

What's in the maps?

Point sources

- Galactic cold cores (star forming regions)
- Radio galaxies (quasars)
- Infrared galaxies (dusty, star forming galaxies)
 - \rightarrow 25000 SOURCES [Planck 2013 results. XXVIII]

Extragalactic diffuse emission → Cosmic Infrared Background

Galactic diffuse emissions [Planck 2015 results. X]

- Synchrotron (e- in Galactic B field)
- Free-free (Bremmstrahlung, e- + p \rightarrow e- + p + hv)
- Galactic dust (thermal emission + spinning dust)
- Carbon monoxyde (CO, galactic molecular clouds)

CMB

- primary anisotropies [Planck 2015 results. IX]
- secondary anisotropies
 - Sunyaev Zel'dovich galaxy clusters [Planck 2015 results. XXII, XXIV, XXVII]
 - Lensing [Planck 2015 results. XV]

What's in the maps?

Point sources

- Galactic cold cores (star forming regions)
- Radio galaxies (quasars)
- Infrared galaxies (dusty, star forming galaxies)
 - \rightarrow 25000 sources [Planck 2013 results. XXVIII]

Dedicated point-source finding algorithm

Extragalactic diffuse emission → Cosmic Infrared Background

Galactic diffuse emissions [Planck 2015 results. X]

- Synchrotron (e- in Galactic B field)
- Free-free (Bremmstrahlung, e- + p \rightarrow e- + p + hv)
- Galactic dust (thermal emission + spinning dust)
- Carbon monoxyde (CO, galactic molecular clouds)

CMB

- primary anisotropies [Planck 2015 results. IX]
- secondary anisotropies
 - Sunyaev Zel'dovich galaxy clusters [Planck 2015 results. XXII, XXIV, XXVII]
 - Lensing [Planck 2015 results. XV]

Component separation

- Many components in temperature:
 - \rightarrow main approach: solve all at once using Planck + external datasets
 - \rightarrow for some components, e.g. CO, also use tailored approach
- In polarisation, only 2 main foregrounds but they dominate CMB emission in all channels

Foregrounds in temperature

Foregrounds in polarisation

CMB component separation

Several component separation methods are used to extract CMB maps

Minimal foreground assumptions, just look for CMB

Dispersion between results gives estimate of uncertainty in CMB recovery

CMB component separation

1. A quick introduction to the CMB: intensity and polarisation

2. From satellite to channel maps

3. A selection of Planck's 2015 cosmological results

- Component separation: finding the CMB among other things
- Spectra and parameter estimation
- Lensing
- The search for primordial B-modes
- 4. Conclusions

MCMC parameter estimation

Planck temperature only

Planck T likelihood [HFI TT spectra] Planck T likelihood + lensing likelihood [TT and ΦΦ spectra]

Planck temperature + polar.

- l > 30 HFI TE and EE spectra
- Use LFI 70 GHz polarisation data for low-*l* polar likelihood (lowP) [breaks the (A_s –) degeneracy]

Other observables

Baryon acoustic oscillations Supernovae la Direct H_o measurements

Base 6-parameter CDM model

Primordial perturb. spectrum $P(k) = A_s \left(\frac{k}{k_0}\right)^{\frac{n_s}{-1}}$

Matter densities $\underline{\Omega_b h^2}, \underline{\Omega_c h^2}$

Angular size of sound horizon $\, \theta_{\star} \,$

Optical depth to reionisation

- Derived parameters: $H_0, \ \Omega_\Lambda, \ \Omega_m, \ \sigma_8, \dots$

To be varied in model extensions

No running $dn_s/d\ln k=0$

No tensor perturbations r = 0

Flat universe
$$\Omega_{\kappa} = 0$$

Neutrinos $\begin{cases} N_{\mathrm{eff}} = 3.046 \\ \sum m_{\nu} = 0.06 \text{ eV} \\ + \text{ more....} \end{cases}$

TT spectrum

Base ACDM provides an excellent fit to the data

TE, EE spectra

Before Planck

- Improved sensitivity to polarisation compared to previous experiments.
- Polarisation power spectra in excellent agreement with temperature
- Polarisation spectra used in parameter estimation
- Large angular scales (ell < 30) systematics still need to be dealt with...

Base ACDM parameters

1.040 1.042 0.0200 0.0225 0.0250 0.0275 0.10 0.11 0.12 0.13 2.96 3.04 3.12 3.20 0.93 0.96 0.99 1.02 0.04 0.08 0.12 0.16 $\Omega_b h^2$ $\Omega_c h^2$ $\ln(10^{10}A_{s})$ 1000mc n_{s}

1-parameter extensions

Scalar perturb.

Tensor perturb.

$P_s(k) = A_s \left(rac{k}{k_0} ight)^{n_s}$	$-1 + \frac{1}{2} \frac{\partial n_s}{\partial \ln k} \ln(k/k_0)$ "running"
$P_t(k) = A_t \left(\frac{k}{k_0}\right)^{n_t}$	\rightarrow $r = \frac{A_t}{A_s}$

do not impose:

• $N_{\rm eff} = 3.046$

•
$$\sum m_{\nu} = 0.06 \text{ eV}$$

- Helium abundance
- Ω_k=0

Parameter	TT	TT+lensing	TT+lensing+ext	TT, TE, EE	TT, TE, EE+lensing	TT, TE, EE+lensing+ext
$ \frac{\Omega_{K}}{\Sigma m_{\nu} [eV]} \dots \dots$	$\begin{array}{r} -0.052^{+0.049}_{-0.055} \\ < 0.715 \\ 3.13^{+0.64}_{-0.63} \\ 0.252^{+0.041}_{-0.042} \\ -0.008^{+0.016}_{-0.016} \\ < 0.103 \\ -1.54^{+0.62} \end{array}$	$\begin{array}{r} -0.005^{+0.016}_{-0.017} \\ < 0.675 \\ 3.13^{+0.62}_{-0.61} \\ 0.251^{+0.040}_{-0.039} \\ -0.003^{+0.015}_{-0.015} \\ < 0.114 \\ -1.41^{+0.64} \end{array}$	$\begin{array}{r} -0.0001\substack{+0.0054\\-0.0052} < 0.234 \\ 3.15\substack{+0.41\\-0.40} \\ 0.251\substack{+0.035\\-0.036} \\ -0.003\substack{+0.015\\-0.014} \\ < 0.114 \\ -1.006\substack{+0.085\\-0.085} \end{array}$	$\begin{array}{r} -0.040^{+0.038}_{-0.041} \\ < 0.492 \\ 2.99^{+0.41}_{-0.39} \\ 0.250^{+0.026}_{-0.027} \\ -0.006^{+0.014}_{-0.014} \\ < 0.0987 \\ -1.55^{+0.58} \end{array}$	$\begin{array}{r} -0.004^{+0.015}_{-0.015} \\ < 0.589 \\ 2.94^{+0.38}_{-0.38} \\ 0.247^{+0.026}_{-0.027} \\ -0.002^{+0.013}_{-0.013} \\ < 0.112 \\ -1.42^{+0.62} \end{array}$	$\begin{array}{r} 0.0008^{+0.0040}_{-0.0039} \\ < 0.194 \\ 3.04^{+0.33}_{-0.33} \\ 0.249^{+0.025}_{-0.026} \\ -0.002^{+0.013}_{-0.013} \\ < 0.113 \\ -1.019^{+0.075} \end{array}$

[Planck 2015 results. XIII]

- Neutrinos \rightarrow No departure from base \land CDM
- Curvature \rightarrow No departure from zero
- No running of perturbation spectral index
- Dark energy equation of state consistent with cosmological constant
- Helium abundances consistent with BB nucleosynthesis

1. A quick introduction to the CMB: intensity and polarisation

2. From satellite to channel maps

3. A selection of Planck's 2015 cosmological results

- Component separation: finding the CMB among other things
- Spectra and parameter estimation
- Lensing
- The search for primordial B-modes
- 4. Conclusions

Lensing

Gravitational lensing of CMB by large scale structures = Secondary anisotropy of the CMB

- Lensing generates non-gaussianity
- Allows to reconstruct the integrated gravitational potential between z = 1100 and z = 0
- Impacts the temperature power spectrum (smooth peaks at high-l)

Unlensed T

Lensing

Gravitational lensing of CMB by large scale structures = Secondary anisotropy of the CMB

- Lensing generates non-gaussianity
- Allows to reconstruct the integrated gravitational potential between z = 1100 and z = 0
- Impacts the temperature power spectrum (smooth peaks at high-l)

Lensed T

Lensing

- Lensing generates non-gaussianity
- Allows to reconstruct the integrated gravitational potential between z = 1100 and z = 0
- Impacts the temperature power spectrum (smooth peaks at high-l)
- Is insensitive to optical depth → breaks the (A_s) degeneracy (but less so than low-*l* polar)

Lensing power spectrum C₁ independent and in agreement with expectation from CMB alone

 \rightarrow strong consistency check

Lensing likelihood can be added to parameter estimation

Lensing B modes

Gravitational lensing mixes E and B modes \rightarrow generates B modes from E modes

Approach:

- Given E and Φ, build estimator of B lensing
- Cross correlate the estimator with Planck B-mode sky
 - \rightarrow lensing B-mode detection and spectrum

- 10 12 sigma detection of lensing B modes
- Large ell-range compared to ground-based experiments
 - \rightarrow Polarbear (500 < ell < 2000)
 - \rightarrow SPT (500 < ell < 2500)

1. A quick introduction to the CMB: intensity and polarisation

2. From satellite to channel maps

3. A selection of Planck's 2015 cosmological results

- Component separation: finding the CMB among other things
- Spectra and parameter estimation
- Lensing
- The search for primordial B-modes
- 4. Conclusions

The search for primordial B modes

1. March 2014: BICEP 2 detection of B-modes [BICEP2 collaboration, PRL, 112, 241101]

- 512 polarised TES detectors at 150 GHz
- ~ 590 days of CMB observations at South Pole
 - \rightarrow extremely deep polarised observations on ~ 1% of the sky
- Extreme control of systematic effects
- 5-sigma B modes detection

Interpretation of the B mode excess

- Need to decorrelate from polarised dust and synchrotron
- Use WMAP K-band for synchrotron \rightarrow negligible
- No polarised dust template available at the time
 - \rightarrow use 5 models to estimate dust polarisation in this region
- **Conclusions**: primordial B modes with $r_{0.05} = 0.2 + 0.07$

The search for primordial B modes

2. September 2014: Planck polarised dust spectrum [Planck collaboration, arXiv:1409.5738v2]

- · Provides a statistical view of polarised dust properties
 - \rightarrow new insights into interstellar dust physics
 - \rightarrow determination of the level of contamination for CMB polarised experiments
- Analysis based on 353 GHz Q and U maps
 - \rightarrow Compute BB spectrum in BICEP2 field
 - \rightarrow Scale the result to BICEP2 150 GHz band using greybody $I_{\rm d}(\nu) \propto \nu^{\beta_{\rm d}} B_{\nu}(T_{\rm d})$

The search for primordial B modes

3. February 2015: BICEP2/Keck/Planck joint analysis [BICEP2/Keck/Planck collaborations, PRL, 114, 101301]

Early Universe physics

- Single-field inflationary models predict n_s < 1
- 2013 and 2015 Planck analysis exclude $n_s = 1$
- Joint Planck + BKP likelihood $\rightarrow r_{0.002} < 0.09 (95\% \text{ CL})$
- Rules out quadratic inflationary potentional $V(\phi) \propto m^2 \phi^2$
 - More in Planck 2015 results XX.: constraints on inflation

1. A quick introduction to the CMB: intensity and polarisation

- 2. From satellite to channel maps
- 3. A selection of Planck's 2015 cosmological results
 - Component separation: finding the CMB among other things
 - Spectra and parameter estimation
 - Lensing
 - The search for primordial gravitational waves

4. Conclusions

Conclusions

Planck products:

- 9 frequency maps in intensity
- 4 (soon 7) frequency maps in polarisation
- CMB temperature anisotropy maps, I, Q, and U (ell > 30)
- Compact source and SZ galaxy cluster catalogues
- Galactic foregrounds: free-free (intensity), CO (intensity), spinning dust, thermal dust and synchrotron (intensity and polarisation)
- Lensing deflection field map
- Likelihoods [coming soon]

Planck temperature + polarisation cosmological results

- No compelling evidence for extensions beyond 6-parameter ΛCDM (no extra neutrino, flat universe, cosmological constant, etc.)
- Optical depth smaller than that of WMAP \rightarrow later reionization
- Planck + BKP → best current upper limit on tensor-to-scalar ratio
- Tightest limits to date on: primoridal non-gaussianity, primordial magnetic fields