Search for the neutrinoless double-beta decay with *SuperNEMO* and its radiopurity control with the *BiPo* detector.

Héctor Gomez

hgomez@apc.univ-paris7.fr

- 2009: PhD at Universidad de Zaragoza (Spain)
 - Title of the Thesis: Sensitivity study of an double-beta decay experiment using new generation Ge detectors.
- 2009 2011: *Postdoc* at National Centre of Particle Physics (*CPAN Spain*)
 - NEXT experiment
 - Coordination of the construction, commissioning and operation of the NEXT-µM prototype
 - Coordination of the NEXT Vessel Working Group
- 2011 2014: Postdoc (CDD Chercheur) at LAL Orsay
 - SuperNEMO experiment
 - Coordination of the construction, commissioning and operation of the BiPo detector
 - BiPo data analysis responsible → SuperNEMO source foils Working Group
- From September 2014: *Postdoc* at *APC Paris* (Neutrino group)
 - Double Chooz and WA-105 experiments
 - Muon and muon-induced events characterization for the Double Chooz near detector
 - Performance of a new self calibration method for the Double Chooz detectors

- Summarizing:
 - 10 years of research activities related with *neutrino physics*, mainly double-beta decay.
 - Expertise on different *detection techniques*
 - Ge diodes
 - High Pressure gaseous Time Projection Chamber (HP TPC) readout with microMegas detectors
 - Light detection produced in plastic and liquid scintillators
 - Development of analysis tools focused on the Rare Event searches
 - Background discrimination techniques
 - Radiopurity screening and control

OUTLINE

- Neutrinos and their properties
 - Where are we?
- Neutrino nature and mass: The neutrinoless double-beta decay
 - Experimental Issues
- The SuperNEMO experiment
 - Its predecessor: NEMO-3
 - Description
 - The BiPo detector and the source foils radiopurity control
 - Present status
 - Prospects
- Perspectives
 - Where are we going?
- Summary and conclusions

NEUTRINOS AND THEIR PROPERTIES

- The Standard Model of Particles defines neutrinos as:
 - Massless
 - With no electrical charge
 - · Only sensitive to weak interactions
 - With 3 different flavours: $\nu_{_{e}},\,\nu_{_{u}}$ and $\nu_{_{\tau}}$ (+ antineutrinos)

- But:
- **1970** Chlorine (Homestake) measured the neutrinos coming from the Sun
 - Only 1/3 of the expected neutrinos were detected ...
- 1988 Super Kamiokande (Kamioka) studied the atmospheric neutrinos (interaction cosmic rays atmosphere)
 - v_{μ} ,s crossing the Earth seemed to disappear ...

• Neutrinos those propagate (v_1, v_2, v_3) are a *mixture* of the different neutrino flavours (v_e, v_μ, v_τ) , which interact

$$\begin{vmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{vmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{vmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{vmatrix}$$

- What does it means?
 - Neutrinos are massive particles → Physics beyond the Standard Model
 - → Possibility of new sources of matter antimatter asymmetry
 - → CP violation
 - This physics has been studied over the last decades with a continuous improvement...

NEUTRINOS AND THEIR PROPERTIES: WHERE ARE WE?

 Neutrino oscillation experiments have answered several questions based on the study of the appearance / disappearance probabilities:

$$P_{v_{\alpha} \neq v_{\alpha}}(L,E) = 1 - \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2} L}{4E}\right)$$

$$v_{e} \\ v_{\mu} \\ v_{\tau} \\ = \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{4} \\ v_{2} \\ v_{3} \\ v_{3} \\ v_{3} \\ v_{3} \\ v_{4} \\ v_{4$$

NEUTRINOS AND THEIR PROPERTIES: WHERE ARE WE?

• But there are still some fundamental open questions:

- What are the absolute values of the neutrino masses?
- How the neutrino mass states are ordered?
- Why the oscillation parameters take the values that have been measured?
- Why neutrino masses are so much smaller than any other fundamental matter particles in the SM?
- Could neutrinos be their own anti-particle? Could this be related to the fact that neutrino masses are so small?
- Do the extremely small neutrino masses tell us something about physics at the very high energy scales of Grand Unified Theories as suggested in so-called "see-saw" mechanisms?
- Could lepton number violation in neutrino interactions help to explain the present asymmetry between matter and antimatter at the Universe?

- How can we measure the *neutrino mass*? (and by extension get information about neutrino nature and mass hierarchy)
 - Cosmological measurements (Planck)
 - Beta decay measurements (Katrin, further Mare Holmes, Project 8)
 - Neutrinoless double-beta decay measurements (mass mechanism)
 - Majorana nature of the neutrino
 - Neutrino mass absolute value
 - Neutrino mass hierarchy

 $0\nu\beta\beta$ process detection

•

 $2\nu\beta^{-}\beta^{-}:(A,Z) \rightarrow (A,Z+2)+2e^{-}+2\overline{\nu}_{e}; \qquad (\Delta L=0)$

$$0 \nu \beta^{-} \beta^{-}: (A,Z) \rightarrow (A,Z+2) + 2 e^{-}; \qquad (\Delta L=2)$$

May have more particles emitted (Majoron, ...)

 $(T_{1/2}^{0v})^{-1} = G_{0v} |M_{GT}^{0v} - \frac{g_V^2}{g_A^2} M_F^{0v}|^2 \chi^2$ F_N where Mass Mechanism m_{e} **Right handed currents** $\rightarrow \langle \lambda \rangle, \langle \eta \rangle$ $\rightarrow \langle g_{M} \rangle$ Majoron emission

Supposing the *mass mechanism*:

No other particles emitted but **2** electrons sharing all the available transition energy

• The sensitivity of a $0\nu\beta\beta$ experiment (if no significant signal is found) can be expressed as the achievable limit to $T_{1/2}$ as:

- In order to improve the sensitivity, experiments must pay attention to different issues:
 - Optimize the exposure
 - Adequate isotope choice (naturally abundant, with "slow" $2v\beta\beta$ mode...)
 - Good detector performance (in terms of efficiency and energy resolution)
 - Background control
 - Radiopure materials and environment (Underground location)
 - Active and passive background rejection techniques application

• But in addition, the accuracy of the result is nowadays limited by the uncertainties in the Nuclear Matrix Elements (NME, included in the previously defined F_N)

- The estimation of the NME is a challenge itself because:
 - Relevant $\beta\beta$ nuclei are heavy (mostly A > 75) and complicated to model
 - The NME have been never measured → Nothing to calibrate with
 - Structures of the initial and final nucleus ground state are quite different → NME are small and sensitive to variations
- Measurement of the $0\nu\beta\beta$ process for *various isotopes* would reduce the uncertainty induced by the NME's
 - The detection of the $0\nu\beta\beta$ process in different isotopes reveals mandatory to claim a significant result
- The measurement of the $2\nu\beta\beta$ mode could provide *useful information* for the NME estimation

• *ββ* experiments have been running from more than 20 years. This is a (personal) summary.

	Isotope		Laboratory	Results		
Experiment		Technique		T _{1/2} ^{2v} (y)	Т _{1/2} ^о (у)	<m_> (eV)</m_>
CUORICINO	¹³⁰ Te	Bolometers	Gran Sasso	-	> 3.0 10 ²⁴	< 0.19 - 0.68
Heidelberg – Moscow*	⁷⁶ Ge	Ge diodes	Gran Sasso	$1.6 \pm 0.2 \ 10^{21}$	> 1.6 10 ²⁵	< 0.35
IGEX	⁷⁶ Ge	Ge diodes	Canfranc	-	> 1.6 10 ²⁵	< 0.33 – 1.35
NEMO - 3	¹⁰⁰ Mo	Tracking + Calorimetry	Modane	$7.2 \pm 0.6 \ 10^{18}$	> 1.1 10 ²⁴	< 0.33 – 0.87

- Experiments already finished. Some of them, as NEMO-3, still have the best limits for several isotopes...
- Part of H-M collaboration claimed for a positive signal Mod. Phys. Lett. A 16 (2001) 2409 – 2420
 - $T_{1/2}^{0v} = 1.2 \ 10^{25} \ y \rightarrow \langle m_v \rangle = 0.44 \ eV$
 - Further experiments were needed to corroborate / refuse this claim

• *ββ* experiments have been running from more than 20 years. This is a (personal) summary.

	lsotope	Technique	Laboratory	Results		
Experiment				Т _{1/2} ² ν (у)	Т _{1/2} ^{оv} (у)	<m_> (eV)</m_>
CUORICINO	¹³⁰ Te	Bolometers	Gran Sasso	-	> 3.0 10 ²⁴	< 0.19 - 0.68
Heidelberg – Moscow*	⁷⁶ Ge	Ge diodes	Gran Sasso	$1.6 \pm 0.2 \ 10^{21}$	> 1.6 10 ²⁵	< 0.35
IGEX	⁷⁶ Ge	Ge diodes	Canfranc	-	> 1.6 10 ²⁵	< 0.33 - 1.35
NEMO - 3	¹⁰⁰ Mo	Tracking + Calorimetry	Modane	$7.2 \pm 0.6 \ 10^{18}$	> 1.1 10 ²⁴	< 0.33 – 0.87
EXO	¹³⁶ Xe	LXe TPC	WIPP	$2.2 \pm 0.1 \ 10^{21}$	> 1.1 10 ²⁵	< 0.14 - 0.38
GERDA	⁷⁶ Ge	Ge diodes	Gran Sasso	$1.8 \pm 0.1 \ 10^{21}$	> 2.1 10 ²⁵	< 0.2 - 0.4
KamLAND	¹³⁶ Xe	Scintillation	Kamioka	$2.3 \pm 0.1 \ 10^{21}$	> 1.9 10 ²⁵	< 0.13 - 0.34

- First phases of some new generation experiments, specially based on ⁷⁶Ge and ¹³⁶Xe, provides encouraging results
 - GERDA results have *refused the H-M claim*
 - Combination of ⁷⁶Ge and ¹³⁶Xe results, improve the limits and reduce the uncertainties

 $\beta\beta$ experiments have been running from more than 20 years. This is a (personal) summary.

- First phases of some new generation experiments, specially based on ⁷⁶Ge and ¹³⁶Xe, provides encouraging results
 - GERDA results have *refused the H-M claim*
 - Combination of ⁷⁶Ge and ¹³⁶Xe results, improve the limits and reduce the uncertainties

٠

• *ββ* experiments have been running from more than 20 years. This is a (personal) summary.

				Results		
Experiment	Isotope	Technique	Laboratory	Т _{1/2} ² ν (у)	Т _{1/2} ^о у (у)	<m_> (eV)</m_>
CUORICINO	¹³⁰ Te	Bolometers	Gran Sasso	-	> 3.0 10 ²⁴	< 0.19 - 0.68
Heidelberg – Moscow*	⁷⁶ Ge	Ge diodes	Gran Sasso	$1.6 \pm 0.2 \ 10^{21}$	> 1.6 10 ²⁵	< 0.35
IGEX	⁷⁶ Ge	Ge diodes	Canfranc	-	> 1.6 10 ²⁵	< 0.33 – 1.35
NEMO - 3	¹⁰⁰ Mo	Tracking + Calorimetry	Modane	$7.2 \pm 0.6 \ 10^{18}$	> 1.1 10 ²⁴	< 0.33 – 0.87
EXO	¹³⁶ Xe	LXe TPC	WIPP	$2.2 \pm 0.1 \ 10^{21}$	> 1.1 10 ²⁵	< 0.14 - 0.38
GERDA	⁷⁶ Ge	GE diodes	Gran Sasso	$1.8 \pm 0.1 \ 10^{21}$	> 2.1 10 ²⁵	< 0.2 - 0.4
KamLAND	¹³⁶ Xe	Scintillation	Kamioka	$2.3 \pm 0.1 \ 10^{21}$	> 1.9 10 ²⁵	< 0.13 - 0.34
CUORE	¹³⁰ Te	Bolometers	Gran Sasso	Energy resolution, Efficiency		
MAJORANA	⁷⁶ Ge	Ge diodes	SURF	Energy resolution, Efficiency		ciency
NEXT	¹³⁶ Xe	HP - TPC	Canfranc	Background rejection, Efficiency		
SNO+	¹³⁰ Te	Scintillation	SNO Lab	Isotope mass, Efficiency		
SuperNEMO	⁸² Se	Tracking + Calorimetry	Modane	Background rejection, Isotope selection		

ββ experiments have been running from more than 20 years. This is a (personal) summary.

٠

ββ experiments have been running from more than 20 years. This is a (personal) summary.

٠

ββ experiments have been running from more than 20 years. This is a (personal) summary.

- SuperNEMO is conceived based on the **NEMO-3** experimental technique
- Combining the measurement of the particles energy with the reconstruction of their tracks
- $\beta\beta$ study fo different isotopes (mainly ¹⁰⁰Mo and ⁸²Se)
- Located at the Modane Underground Laboratory (~4800 m.w.e.)
- Data taking (2 phases) from February 2003 to January 2011 \rightarrow Currently decommissioned

- SuperNEMO is conceived based on the NEMO-3 experimental technique
- $\beta\beta$ study fo different isotopes (mainly ¹⁰⁰Mo and ⁸²Se)
- Combining the measurement of the particles energy with the reconstruction of their tracks
- Located at the Modane Underground Laboratory (~4800 m.w.e.)
- Data taking (2 phases) from February 2003 to January 2011 \rightarrow Currently decommissioned

NEMO-3 capability to register simultaneously energy and tracks of the particles of an event, gave him unique advantages inside the $\beta\beta$ experiments:

Full reconstruction of the 2 electrons present in a $\beta\beta$ decay event:

Electrons energies ($\boldsymbol{E}_1, \boldsymbol{E}_2$)

Electrons arrival time (t_1, t_2)

Emission vertex and angle ($cos \theta$)

Particle curvature inside the magnetic field \rightarrow particle charge **±**

NEMO-3 capability to register simultaneously energy and tracks of the particles of an event, gave him unique advantages inside the $\beta\beta$ experiments:

Full reconstruction of the 2 electrons present in a $\beta\beta$ decay event:

Electrons energies (*E*₁, *E*₂)

Electrons arrival time (t_1, t_2)

Emission vertex and angle ($cos \theta$)

Particle curvature inside the magnetic field \rightarrow particle charge **±**

Natural radioactivity from detector components (PMTs mainly)

+ Compton

+ Möller

creation

NEMO-3 capability to register simultaneously energy and tracks of the particles of an event, gave him unique advantages inside the $\beta\beta$ experiments:

Full reconstruction of the 2 electrons present in a $\beta\beta$ decay event:

Electrons energies (*E*₁, *E*₂)

Electrons arrival time (t_1, t_2)

Emission vertex and angle ($cos \theta$)

Particle curvature inside the magnetic field \rightarrow particle charge **±**

External Backgrounds:

Natural radioactivity from detector components (PMTs mainly)

Internal Backgrounds:

Radioactive contamination of the source foils (²⁰⁸Tl, ²¹⁴Bi, ⁴⁰K)

Rn daughter deposition (source foils or tracker wires)

• = radioisotope ; β = electron from beta decay ; IC = internal conversion

Analysis of the different background channels: $(\gamma e^{-})_{ext}$, $e^{-}_{crossing}$, $(e^{-}\alpha)$, $(e^{-}\alpha\gamma)$, $(2e^{-}N\gamma)$, $(2e^{-}N\gamma)$, $(2e^{-}\alpha)$...

NIM A 606 (2009) 449 - 465

• 2vββ main results

Isotope	Mass	T ^{2v} _{1/2} (years)	Ref.
¹⁰⁰ Mo	6.9 kg	7.16 ± 0.01 (stat) ± 0.54 (sys) 10 ¹⁸	PRL 95 (2005) 182302
⁸² Se	0.93 kg	$9.6 \pm 1.0 \ 10^{19}$	PRL 95 (2005) 182302
¹⁵⁰ Nd	36.5 g	9.1 ± 0.7 10 ¹⁸	Phys. Rev. C 80 (2009) 032501
⁹⁶ Zr	9.43 g	$2.35 \pm 0.21 \ 10^{19}$	Nucl. Phys. A 847 (2010) 168
¹³⁰ Te	0.45 kg	$7.0 \pm 1.4 \ 10^{20}$	PRL 107 (2011) 062504

Analysis in other isotopes (48Ca, 116Cd ...) in progress

$0\nu\beta\beta$ main results and High Energy Background

No events above 3.2 MeV

Phys. Rev. D 89 (2014) 111101

Background free technique for high $Q_{\beta\beta}$ isotopes:

⁴⁸Ca (4.272 MeV), ¹⁵⁰Nd (3.368 MeV), ⁹⁶Zr (3.350 MeV)

THE **SuperNEMO** EXPERIMENT

¹⁰⁰ Mo, ⁸² Se and others	Isotope	82Se (150Nd or 48Ca?)
7 kg	Mass	~100 kg
60 mg/cm ²	Foil Density	40 mg/cm ²
15 % FWHM @ 1 MeV	Energy Resolution	7 % FWHM @ 1 MeV
8 % FWHM @ 3 MeV		4 % FWHM @ 3 MeV
~ 100 µBq/kg	²⁰⁸ Tl source radiopurity	< 2 µBq/kg
< 300 µBq/kg	²¹⁴ Bi source radiopurity	< 10 µBq/kg
~ 5 mBq/m³	Rn level in Tracker	~ 0.1 mBq/m³
6180	Tracking cells	20 x 2034
1940	Calorimeter Blocks	20 x 712
1.3 10-3	Total Background (c/keV/kg/y)	5 10-5
T ^{0v} _{1/2} > 1.1 10 ²⁴ y	Sensitivity	T ⁰ v _{1/2} > 1 10 ²⁶ y
<m<sub>ββ> < 0.3 – 0.9 eV</m<sub>		$< m_{_{BB}} > < 0.04 - 0.1 \text{ eV}$

• Demonstrator

- First phase of SuperNEMO: One module with the final features
 - 6.2 x 2.1 x 4.1 m³ (32 tons)
 - 7 kg of ⁸²Se (distributed in 53 mg/cm² foils)
- Physics case
 - NEMO-3 sensitivity after 5 months of measurement
 - $T_{1/2}^{0v} > 1.1 \ 10^{24} \ y \rightarrow < m_v > < 0.3 0.9 \ eV$
 - If no background after 2.5 years of data taking
 - $T_{1/2}^{0v} > 6.5 \ 10^{24} \ y \rightarrow < m_v > < 0.2 0.4 \ eV$

Construction and Commissioning expected from September 2015

THE SuperNEMO EXPERIMENT

Calorimeter:

Hamamatsu R9512 8" and high quantum efficiency Improved HV divider (less noise) Direct coupling PMT – Polystyrene Scintillator Block Optimized geometry for the scintillator Tested with DAQ equivalent to the SuperNEMO one ~2 GS/s for pulse sampling Energy resolution tests 7.8 % FWHM @ 1 MeV

Tracker:

2034 Geiger cells distributed in 18-cells cartridges Installed inside a Rn tight tracker chamber Done in 4 quarters (C0-C1-C2-C3) Surrounded by Optical Modules (veto) Tracking resolution (tested in prototypes)

- $\sigma_{_{xy}} \sim 0.7 \text{ mm}$
- σ_z ~ 10 mm

Radon studies:

It is necessary to reduce internal Radon background to 0.15 mBq/m³

Control the Radon emanation of the materials

Assure the Radon tightness of the sensitive volume

Reliable measurements of such a low level of Radon concentration

Rn emanation setup

Radiopurity measurements:

Routine materials screening with HPGe detectors \rightarrow Radiopurity budget Source foils: < 2 (< 10) μ Bq/kg in ²⁰⁸Tl (²¹⁴Bi) required Dedicated setup to reach this sensitivity level \rightarrow *BiPo detector*

Detection limits:

- ~ μ Bq/s for emanation
- ~ $\mu Bq/m^3$ for Rn concentration
- ~ 10⁻¹⁵ $m^{-2}s^{-1}$ for permeability

February 2015

- Each SuperNEMO module (as the demonstrator) will hold ~7 kg of ⁸²Se
 - 36 strips ~ 135 x 2700 mm² and ~ 150 μ m thick
 - Contamination of these strips must not exceed
 - A(²⁰⁸Tl) < 2 μBq/kg
 - A(²¹⁴Bi) < 10 μBq/kg
 - Most sensitive HPGe detectors reach the 100 μ Bq/kg sensitivity for ²⁰⁸Tl

² Source Foils 125mm x 2700mm (1&36) 34 Source Foils 135.5mm x 2700mm (2-35) **TOTAL SOURCE SURFACE = 131139cm²**

- SuperNEMO requires a way to measure the source foils
 - In a non destructive way
 - Allowing to measure the foils in their final geometry
 - With the required sensitivity

• BiPo is based on the detection of the e⁻ - α delayed coincidence produced in the ²¹²Bi \rightarrow ²¹²Po and ²¹⁴Bi \rightarrow ²¹⁴Po cascades

- **BiPo final setup (@ Canfranc Underground Laboratory):**
 - 2 Modules detector (3.0 x 0.6 m² each)
 - 3.6 m² sensitive surface → Possibility to measure up to 8 source foils at the same time (1 SuperNEMO Module = 36 foils)
 - 20 optical sub-modules per module independently registered → Possibility of "hot-spots" detection
 - 30 x 30 cm², 2 mm thick aluminized polystyrene plates
 - 5" Hamamatsu lox radioactivity PMTs
 - Coupled by PMMA light guides (optimized geometry for light collection)
 - Shielding: 10 cm Lead, Stainless Steel Rn-tight tank + 20 cm iron
 - Inner volumes separation to optimize the nitrogen flushing for Rn suppression

- **BiPo final setup (@ Canfranc Underground Laboratory):**
 - 2 Modules detector (3.0 x 0.6 m² each)
 - 3.6 m² sensitive surface → Possibility to measure up to 8 source foils at the same time (1 SuperNEMO Module = 36 foils)
 - 20 optical sub-modules per module independently registered → Possibility of "hot-spots" detection
 - $30 \times 30 \text{ cm}^2$, 2 mm thick aluminized polystyrene plates
 - 5" Hamamatsu lox radioactivity PMTs
 - Coupled by PMMA light guides (optimized geometry for light collection)
 - Shielding: 10 cm Lead, Stainless Steel Rn-tight tank + 20 cm iron
 - Inner volumes separation to optimize the nitrogen flushing for Rn suppression

- BiPo working timeline:
- Design & Construction
- Characterization of the optical lines
 - ²⁰⁷Bi absolute calibration (gain and energy resolution)
 - ²⁴¹Am calibrations (aluminization quality and light collection efficiency)
- Assembly tests
 - Alignment and planarity of the detector (at 0.1 mm accuracy)
- Detector installation and commissioning
 - ²²Na and ⁵⁴Mn calibrations to check the good performances
 - Over 10 weeks, fully operative since February 2013
- Detection validation with a calibrated sample
- Background measurement → Sensitivity estimation
- SuperNEMO samples measurement

@ LAL

@ LSC

- BiPo systematic calibrations:
- For the identification of the BiPo events the energy calibration of each scintillator and the time calibration of all the optical lines is needed:
- ²²Na and ⁵⁴Mn sources provide 3 gamma lines (511, 1274 and 835 keV respectively) to make the calibration
- The calibration is done by studying the Compton edge \rightarrow Kolmogorov Test (Gain & FWHM)

- Al foil calibration, validation of the detection principle and efficiency:
- To check the detector performance, and validate the detection efficiency estimation
 - Two aluminium foils \rightarrow Equivalent geometry than the further source foils
 - Two different thickness: 85 and 170 μm
 - Sample thickness is the main concern regarding efficiency (probability α escapes from the sample)
 - Efficiency simulation is done with the same framework used for SuperNEMO simulations
 - First cross-check simulation real data

- Al foil calibration, validation of the detection principle and efficiency: •
- ²¹²BiPo channel (²⁰⁸Tl activity) •
 - 2968 ²¹²BiPo events registered in 24.1 days
 - Monte-Carlo gives an efficiency ε (²¹²BiPo) = 5.3 % •
 - Reconstructed activity: $A(^{208}TI) = 130 \pm 26 \text{ mBq/kg}$

85 μm thick AI foil (224 g)

- Match data simulation by Likelihood method
- Validation of polystyrene a quenching
- Light collection efficiency

Measured at LAL test bench

- Al foil calibration, validation of the detection principle and efficiency: •
- ²¹⁴BiPo channel (²¹⁴Bi activity) •
 - 354 ²¹⁴BiPo events registered in 11.9 days
 - Monte-Carlo gives an efficiency ε (²¹⁴BiPo) = 3.3 % •
 - Reconstructed activity: $A(^{214}Bi) = 12.7 \pm 2.1 \text{ mBq/kg}$

85 μm thick AI foil (224 g)

- Match data simulation by Likelihood method (*Radon + Random Coinc*)
 - Expected time delay distribution
- Validation of polystyrene a quenching
- Light collection efficiency

Measured at LAL test bench

• Al foil calibration, validation of the detection principle and efficiency:

	A(²⁰⁸ TI) [mBq/kg]	A(²¹⁴ Bi) [mBq/kg]
HP-Ge	109 ± 10	13.2 ± 3.6
BiPo	130 ± 26	10.4 ± 3.3

- The compatibility of the results leads to validate the detection principle and the simulation framework
- By simulation + likelihood analysis is possible not only to determine the activity but also to have an idea of their origin (an advantage for the samples measurement...)

- Background measurements and detector sensitivity:
- Three background measurements performed
- ²¹²BiPo
 - 717 days x m² scintillator exposure (200 days of measurement)
 - Estimated detection efficiency ε (²¹²BiPo) = 30 %
 - 35 ²¹²BiPo candidates observed (homogeneously distributed in the different measurements)

 $A (^{208}Tl) = 1.09 \pm 0.20 \ \mu Bq/m^2 \ scintillator (90 \% C.L.)$

An additional cut at E_{delay} > 700 keV \rightarrow No Random Coincidences

- Background measurements and detector sensitivity:
- Three background measurements performed
- ²¹⁴BiPo
 - 576 days x m² scintillator exposure (184 days of measurement)
 - Estimated detection efficiency ε (²¹⁴BiPo) = 27 %
 - 74 ²¹⁴BiPo candidates observed (homogeneously distributed in the different measurements)

 $A(^{214}Bi) = 1.54 \pm 0.32 \ \mu Bq/m^2 \ scintillator (90 \% C.L.)$

Surface Contamination / Random Coincidences (30 / 70)

An additional cut in $E_{delav} \rightarrow Removal of the external Rn - induced Background or Random coincidences$

Héctor Gomez – Double Beta decay

• Background measurements and detector sensitivity:

- BiPo is at the level of the SuperNEMO required sensitivity
 - It improves any other non-destructive technique sensitivity
- It is an important test-bench with real data for the SuperNEMO collaboration
 - Data Transfer (LSC \rightarrow CC-Lyon) and automated processing and analysis
 - Simulation cross-check
 - DAQ testing (same pulse-digitization technique than for the SuperNEMO calorimeter)
 - SuperNEMO analysis tools development based on the Pulse Analysys
- Construction of a radiopure detector (it is the most sensitive detector in the world for radiopurity screening)
 - CUORE Bolometers: $A(^{208}TI) = 7 \mu Bq/m^2$, $A(^{214}Bi) = 17 \mu Bq/m^2$

- Samples measurement, ⁸²Se source foils:
- Since the radiopurity is a must, BiPo is a crucial tool to determine the suitability of a potential component of the source foil
- Based on the analysis method, it is possible to determine the origin of an eventual contamination
 - Useful during the R&D process
- All the source components has been measured independently concluding with the measurement of the source foils
- Due to the BiPo potential, measurements of materials of other experiments have been measured
 - CUORE reflector film, CAST Micromegas detectors...

- Samples measurement, ⁸²Se source foils:
- Since the radiopurity is a must, BiPo is a crucial tool to determine the suitability of a potential component of the source foil
- Based on the analysis method, it is possible to determine the origin of an eventual contamination
 - Useful during the R&D process
- All the source components has been measured independently concluding with the measurement of the source foils
- Due to the BiPo potential, measurements of materials of other experiments have been measured
 - CUORE reflector film, CAST Micromegas detectors...

First 2 ⁸²Se source foils installed (August 2014)

No contamination evidences A(²⁰⁸Tl) < 18 μBq/kg A(²¹⁴Bi) < 1 mBq/kg Best HP-Ge limit (82Se) A(²⁰⁸Tl) < 300 μBq/kg NEMO-3 (¹⁰⁰Mo) A(²⁰⁸Tl) 128 μBq/kg

- **Demonstrator** construction started in 2012:
 - It will be installed at the Modane Underground Laboratory, where NEMO-3 operated

- **Demonstrator** construction started in 2012:
 - It will be installed at the Modane Underground Laboratory, where NEMO-3 operated
- Calorimeter
 - Optical modules: 5" under assembly (almost finished) and 8" under construction
 - FE digitizer boards built, control and trigger boards under development
 - DAQ components already done or under development
 - Construction of the calorimeter blocks magnetic shields and mechanical structure started

- **Demonstrator** construction started in 2012:
 - It will be installed at the Modane Underground Laboratory, where NEMO-3 operated
- Tracker
 - Wiring robot developed or automated drift cells production
 - First quarter of the C0 (tracker chamber) constructed and checked for Radon emanation (OK!)
 - Population of the Geiger drift cells finished
 - Commissioning of the full C0: shortly at sea-level

- **Demonstrator** construction started in 2012:
 - It will be installed at the Modane Underground Laboratory, where NEMO-3 operated
- Sources
 - 5.5 kg of ⁸²Se available with 0.5 kg already purified
 - Screening of potential source components (mesh, glue) with BiPo and HPGe
 - First 4 source foils "NEMO-3 type" (~10 %) already assembled and being screened in BiPo
 - R&D for alternative source foils manufacturing processes

• **Prospects**

- Installation and operation of the Demonstrator in Modane
 - Experimental site conditioning (ongoing)
 - Arrival of detector components (mid 2015)
 - Starting of the commissioning phase (calorimeter commissioning at the beginning 2016)
 - Fully commissioning and starting of data taking (summer 2016)
 - ²²²Rn background measurement
 - Internal ²⁰⁸TI and ²¹⁴Bi measurement
 - $\beta\beta$ run measurement
- Experience taken from the demonstrator physics run could help to improve the features of the full SuperNEMO modules

• Summary

- **NEMO-3**
 - Unique experiment to reconstruct energy and tracks of the 2 electrons expected as signal
 - Signature of the $\beta\beta$ events with high background rejection capabilities
 - ¹⁰⁰Mo data have not excess after 34.7 kg y exposure
 - $T_{1/2}^{0v} > 1.1 \ 10^{24} \text{ y} \rightarrow < m_v > < 0.3 0.9 \text{ eV}$
 - Other results in $2\nu\beta\beta$ processes for several isotopes and other LNV measurements with ¹⁰⁰Mo
 - Phys. Rev. D 89 (2014) 111101
 - It showed the potential of developing a new generation experiment using this detection technique

- Summary
- NEMO-3
 - $T_{1/2}^{0v} > 1.1 \ 10^{24} \text{ y} \rightarrow < m_v^{>} < 0.3 0.9 \text{ eV}$
- SuperNEMO Demonstrator
 - ~ 7 kg ⁸²Se
 - Start of data taking in mid 2016
 - No background in the $0\nu\beta\beta$ region after 2.5 years of data taking
 - $T_{1/2}^{0v} > 6.5 \ 10^{24} \text{ y} \rightarrow < m_v > < 0.2 0.4 \text{ eV}$
 - Demonstrate the background free possibility for the SuperNEMO construction
 - Easiest (almost the only one) way to measure the $\beta\beta$ process in eventual favourable isotopes
 - High Q_{BB} as ⁴⁸Ca or ¹⁵⁰Nd

THE SuperNEMO EXPERIMENT

• Summary

- NEMO-3
 - $T_{1/2}^{0v} > 1.1 \ 10^{24} \text{ y} \rightarrow < m_v > < 0.3 0.9 \text{ eV}$
- SuperNEMO Demonstrator
 - $T_{1/2}^{0v} > 6.5 \ 10^{24} \text{ y} \rightarrow < m_v^{>} < 0.2 0.4 \text{ eV}$
- Full SuperNEMO
 - 100 kg of ⁸²Se (or other isotope if better)
 - $T_{1/2}^{0v} > 1.0 \ 10^{26} \ y \rightarrow < m_v > < 0.04 0.1 \ eV$

20 "Demonstrator" modules

To be installed at the Modane extension

- Summary
- NEMO-3

•
$$T_{1/2}^{0_v} > 1.1 \ 10^{24} \ y \rightarrow \langle m_v \rangle < 0.3 - 0.9 \ eV$$

SuperNEMO Demonstrator

•
$$T_{1/2}^{0v} > 6.5 \ 10^{24} \ y \rightarrow \langle m_v \rangle < 0.2 - 0.4 \ eV$$

• Full SuperNEMO

•
$$T_{1/2}^{0v} > 1.0 \ 10^{26} \ y \rightarrow < m_v^{>} < 0.04 - 0.1 \ eV$$

Results with a third isotope different from ⁷⁶Ge and ¹³⁶Xe

PROSPECTS IN NEUTRINO PHYSICS: WHERE ARE WE GOING?

• Double-beta decay:

- Projects based on ⁷⁶Ge and ¹³⁶Xe ongoing and producing first results
 - GERDA, EXO, KamLAND-Zen already → MAJORANA, NEXT
- The study of other isotopes is assured with some reliable projects
 - ¹³⁰Te: CUORE, SNO+
 - ⁸²Se: SuperNEMO

Experiment	Isotope	Mass [kg]	T _{1/2} ^{ov} sensitivity [y]	<m<sub>v> sensitivity [eV]</m<sub>
CUORE	¹³⁰ Te	200	1 10 ²⁶	0.04 - 0.1
EXO	¹³⁶ Xe	200	5 10 ²⁵	0.08 - 0.3
GERDA	⁷⁶ Ge	40	2 10 ²⁶	< 0.1
KamLAND-Zen	¹³⁶ Xe	400	4 10 ²⁶	< 0.06
MAJORANA	⁷⁶ Ge	40	2 10 ²⁶	< 0.1
NEXT	¹³⁶ Xe	100	5 10 ²⁵	< 0.1
SNO+	¹³⁰ Te	200	1 10 ²⁶	0.04 - 0.1
SuperNEMO	⁸² Se	7	6.5 10 ²⁴	0.2 - 0.4
		100	1 10 ²⁶	0.04 - 0.1

If *no positive signal* is found, it is necessary to go to 1 ton projects (some collaborations have already propose that)

• Double-beta decay:

- Projects based on ⁷⁶Ge and ¹³⁶Xe ongoing and producing first results
 - GERDA, EXO, KamLAND-Zen already → MAJORANA, NEXT
- The study of other isotopes is assured with some reliable projects
 - ¹³⁰Te: CUORE, SNO+
 - ⁸²Se: SuperNEMO
- Other interesting isotopes should be always under consideration
 - High Q_{BB} (easier to have zero background) as ⁴⁸Ca, ⁹⁶Zr or ¹⁵⁰Nd
 - SuperNEMO could be the best (almost the only one) option to test them
- Continuous R&D looking for new detection techniques
 - France has a really interesting line \rightarrow LUMINEU

PROSPECTS IN NEUTRINO PHYSICS: WHERE ARE WE GOING?

- Double-beta decay:
- LUMINEU: study of the ¹⁰⁰Mo $\beta\beta$ decay using ZnMoO₄ scintillating bolometers
- High capabilities of background rejection techniques based on the combined light/heat detection
 - Zero background

From LUMINEU Collaboration, Talk @ ICHEP 2014

• Neutrino oscillations, mass hierarchy, CP - violation:

• Different projects to measure with better accuracy the neutrino oscillation parameters

Parameter	Best Fit	Precision(%)
$\sin^2 \theta_{12}$	0.304 ± 0.012	4
$\sin^2 \theta_{_{23}}$	$0.451 \pm 0.001 \mid\mid 0.577 {}^{+0.027}_{-0.035}$	7.5
$\sin^2 \theta_{_{13}}$	0.0219 +0.0010 -0.0011	5
$\Delta m_{_{21}}^2$	7.50 ^{+0.19} _{-0.17} 10 ⁻⁵ eV ²	2.3
$\Delta m_{_{31}}^2$	2.458 ± 0.002 10 ⁻³ eV ²	2
$\Delta m_{_{32}}^2$	-2.448 ± 0.047 10 ⁻³ eV ²	2
$\delta_{_{\rm CP}} ^{_0}$	251 ⁺⁶⁷ -59	-

Status at Mid-2014 (ICHEP 2014)

• Other questions as mass hierarchy, CP – violation, θ_{23} octant has to be still explored

PROSPECTS IN NEUTRINO PHYSICS: WHERE ARE WE GOING?

• Neutrino oscillations, mass hierarchy, CP - violation:

- Neutrino Physics is one of the most interesting topics in particle physics since many of its fundamental properties are still unknown
 - Absolute mass, mass hierarchy, Dirac Majorana nature
- Study of the neutrinoless double beta decay can solve some of these questions
- Nowadays worldwide efforts are devoted to the detection of this process, combining the study of several isotopes and detection techniques
 - A significant result will come by the combination of the results from some of these projects
- SuperNEMO plays a key role in this challenge
 - Unique tracking + calorimetry technique
 - Study of $\beta\beta$ emitters not studied by any other collaboration
- SuperNEMO R&D program has allowed the construction of outstanding detectors
 - BiPo has become the most sensitive detector in the world for non-destructive radiopurity measurements
 - The measurement of samples not only for SuperNEMO indicates the importance of this detector
- SuperNEMO is at present in a crucial phase with the upcoming construction and operation of the demonstrator

Search for the neutrinoless double-beta decay with *SuperNEMO* and its radiopurity control with the *BiPo* detector.

Héctor Gomez

hgomez@apc.univ-paris7.fr