CPPM, 28/02/2015

# La mission ROSETTA

### A la rencontre d'une comète !

L. Jorda (LAM, Université Aix-Marseille)









Comètes observées par des sondes spatiales

- Originalité :
  - Observations continues (mise en orbite autour du noyau)
  - Observations très rapprochées (< 10 km de la surface)
  - Instruments variés et performants
  - Module PHILAE largué à la surface
- Complexité :
  - Temps de croisière important pour atteindre la comète (+10 ans)
  - Hibernation pendant plus de deux ans
  - Environnement cométaire (gaz et poussières)
  - Opérations continues et très complexes



- Caméra à grand champ (WAC)
  conçue et fabriquée par l'UPD
  - champ de vue de 10°
- Caméra à haute résolution (NAC)
  - conçue au LAM
  - fabriquée par ASTRIUM (SiC)
  - champ de vue de 2,2°
- Détecteur
  - E2V 2048x2048 pix
  - électronique de lecture: MPS







# APPROCHE LOINTAINE

01/05 – 01/08 10 000 – 1 000 km



#### **OSIRIS/NAC**

| Date :             | 15/07/2014 |
|--------------------|------------|
| Distance:          | 10 000 km  |
| Filtre:            | ORANGE     |
| <b>Résolution:</b> | 200 m/px   |

# CARTOGRAPHIE DU NOYAU

06/08 – 11/11 100 – 10 km



| OSIRIS/NAC         |            |
|--------------------|------------|
| Date :             | 16/08/2014 |
| Distance:          | 95 km      |
| Filtre:            | ORANGE     |
| <b>Résolution:</b> | 1,91 m/px  |



| <b>OSIRIS/NAC</b>  |            |
|--------------------|------------|
| Date :             | 22/08/2014 |
| Distance:          | 60 km      |
| Filtre:            | ORANGE     |
| <b>Résolution:</b> | 1,2 m/px   |

Jets de poussières



# ATTERRISSAGE DE PHILAE

12/11 – 14/11 20 – 25 km

#### → PHILAE'S LANDING SITE















#### → CONSERT estimation of landing area

\*

Additional candidate assuming shape model deviation

350 m

3011

Landing area based on current shape model

#### **Trajectoire de PHILAE**



- Bilan des opérations de PHILAE
  - Excellente collecte de données :
    - . forage MUPUS réussi (à confirmer pour COSAC et APX)
    - . imagerie réussie (ROLIS, CIVA)
    - . bonnes données de sondage radio (CONSERT)
    - . certains modes n'ont pas pu être utilisés
  - Zone d'atterrissage finale intéressante :
    - . petite cavité protégée montrant les matériaux sous la surface
  - Durée d'opération limitée par la batterie :
    - . fonctionnement nominal des batteries
    - . peu d'éclairement (1h30)





[Jorda et al., A&A, in prep.]



[Jorda et al., A&A, in prep.]

#### **103P/Hartley 2 (mission EPOXI)**





#### Autres noyaux doubles:

- 8P/Tuttle (Harmon et al.; Lamy et al.)
- 103P/Hartley 2 (Thomas et al.)
- 19P/Borrelly (Oberst et al.) ?

# PROPRIETES DU NOYAU Prise en compte des profils MIRO



[Jorda et al., A&A, in prep.]



# Size: 2.6 x 2.3 x 1.8 km V = 5.7 km<sup>3</sup>

Neck

**V = 2.9 km**<sup>3</sup>

### Distance: 2.6 km

Size: 4.1 x 3.3 x 1.8 km V = 12.8 km<sup>3</sup>

[Jorda et al., A&A, in prep.]



[Sierks et al., Science] [Thomas et al., Science]



[Sierks et al., Science] [Thomas et al., Science]

#### **Structure « binaire consolidée » :**

- Semble très probable dans le cas de CG
  - Autre hypothèse : érosion dûe à l'activité
- Fréquente pour les noyaux cométaires (3 sur 7) ?
  - Courbes de lumière : nombreux noyaux très allongés
- Pas de trace de la collision en surface :
  - Effacement progressif dû à l'activité ?
  - Collision à faible vitesse (qques m/s) ?
- Fracturation partielle au niveau de l'étranglement :
  - Contraintes entre les deux lobes (rotation + gravité)
  - Séparation des deux lobes dans le futur ?

# GEOMORPHOLOGIE Unités géologiques





ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA







# GEOMORPHOLOGIE

#### <u>Zones de terrasses :</u>

- Origine :
  - Couches de matériaux formant des « fronts de sublimation »
  - Effondrement progressif de la partie supérieure des falaises
  - Récession de ces fronts au fil des passages au périhélie
  - Cf. modèle 'TALPS' de Belton et al.
  - Cf. observations de la sonde Stardust-Next ?



- Rôle de la fracturation thermique dans l'érosion ?

# GEOMORPHOLOGIE

#### Zones de terrasses :

- Origine des nodules :
  - Cométésimaux qui affleurent sur les bords des falaises ?
  - Structures liées à l'activité de la comète ?

#### <u>Contraintes :</u>

- Absence de nodules ailleurs sur la surface (zones de dépôts)
- Invisibles sur les images de PHILAE ?















# GEOMORPHOLOGIE

#### Zones de bassins :

- Origine des bassins :
  - Etat quasi-final de l'érosion d'une zone de terrasses ?
  - Zone lisse = dépôts résultant de l'érosion ?
  - Escarpement dûs à des falaises sous-jacentes ?
- Origine des structures circulaires :
  - Plusieurs analogues : « pingos » martiens, volcans de boue, ...
  - Poches de gaz sous pression sous la surface
  - Echappement à travers un conduit
  - Dépôts de poussières sur les flancs
  - Source d'énergie ?



[Auger et al., A&A, in prep.]

# GEOMORPHOLOGIE Zones de dépôts



# GEOMORPHOLOGIE Zones de dépôts



### GEOMORPHOLOGIE Zones de dépôts



[Thomas et al., Science] [Thomas et al., A&A, in prep.]

# GEOMORPHOLOGIE

#### Zones de dépôts :

#### • Origine :

- Accumulation de particules :
  - . transportées par le gaz ?
  - . déposées par l'érosion des falaises environnantes ?
- Gros blocs tombés de la falaise ?
- Dunes : écoulement horizontal de gaz (« brises latérales ») ?
- Mécanisme à l'origine de l'activité ?
- Collimation des jets dûe à la forte concavité

# GEOMORPHOLOGIE Structure en couche



[Massironi et al., A&A, in prep.]

# GEOMORPHOLOGIE Structure en couche



[Massironi et al., A&A, in prep.]

# CONCLUSIONS

#### Principaux résultats préliminaires :

- Structure du noyau à grande échelle
  - structure binaire, deux lobes non-alignés
  - stratification probable
- Topographie de surface à petite échelle :
  - très grande variétés de structures
  - certaines inattendues
- Processus physiques :
  - Activité : érosion
  - Gravité et rotation : fractures, chute et transport de matière ?
  - Chocs thermiques : fractures ?

# CONCLUSIONS

#### **Quelques questions qui émergent :**

#### • La formation sous forme de binaires est-elle courante ?

- Lieu de formation des deux composantes ?
- Date et mécanisme de formation ?

#### • Comment expliquer la porosité importante ?

- A quelle échelle ?
- Micro-porosité : faible cohésion à petite échelle.
- Macro-porosité : présence de fractures, de puits, faible cohésion.

#### • Les comètes sont-elles inhomogènes ?

- Nombreux débris, certains très gros (50 m).
- Stratification (échelle?), reste à confirmer ...
- Composition inhomogène (Epoxi, ROSINA) ?

# CONCLUSIONS

#### <u>Quelques questions qui émergent :</u>

• Comment fonctionne le dégazage ?

- Presque pas de glace en surface (VIRTIS, moins que P/Tempel 1)
- Très faible conductivité thermique (MIRO, VIRTIS)
- Dégazage depuis des régions très étendues

#### • Quelle est la distribution en taille des cométésimaux ?

- Les « nodules » sont-ils le produit de l'accrétion ?

# GEOMORPHOLOGIE Structure en couche



• Origine :

- D'où vient sa forme particulière ?
- Pourquoi les comètes sont-elles si poreuses ?
- Sont-elles formées de couches successives ?
- Sont-elles homogènes ?
- Peut-on identifier les cométésimaux ?
- Evolution :
  - Comment se forment les différents terrains ?
  - Comment évoluent-ils ?
  - D'où vient l'activité ?
  - Comment affecte-t-elle la surface?

#### Pour suivre la mission ROSETTA jusqu'à fin 2015:

http://blogs.esa.int/rosetta

http://www.esa.int/fre/ESA\_in\_your\_country/France/Rosetta http://www.cnes.fr/web/CNES-fr/...



#### PHILAE/ROLIS

| Date :             | 12/11/2014 |
|--------------------|------------|
| Distance:          | 40 m       |
| <b>Résolution:</b> | 0,04 m/px  |

- Position du lander à la surface
  - Région approximative connue :
    - . distance en vol grâce à la liaison radio (CONSERT)
    - . position sur les images de l'orbiteur (OSIRIS et NAVCAM)
    - . reconstruction de trajectoire à l'ESOC
  - Recherche en cours avec la caméra OSIRIS :
    - . imagerie de la zone prévue à partir du 6 décembre

#### • Etat actuel du lander

- Batteries déchargées et difficiles à recharger :
  - . peu d'éclairement par jour cométaire
  - . basse température rendant difficile la recharge
- Possibilité de réactiver PHILAE plus tard :
  - . meilleures conditions d'éclairement et de température en 2015

[Jorda et al., A&A, in prep.] [Scholten et al., A&A, in prep.]

| Paramètres                  | Valeurs                                                               |
|-----------------------------|-----------------------------------------------------------------------|
| Rayon moyen                 | 1.84 ± 0.05 km                                                        |
| Ellipsoïde                  | 2.42 x 1.58 x 1.43 km                                                 |
| Rayons axes principaux      | (2.28 ± 0.03) x (1.36 ± 0.03) x (1.41 ± 0.22) km                      |
| Surface                     | 47.4 ± 0.8 km <sup>2</sup> (Rs = 1.94 km)                             |
| Volume                      | 21.4 ± 2.0 km³ (Rv = 1.72 km)                                         |
| Densité                     | 470 ± 45 kg / m <sup>3</sup> (avec la masse RSI)                      |
| Direction du pôle (RA, Dec) | (69.4 ± 0.1°, 64.0 ± 0.1°)                                            |
| Période de rotation         | 12.4041 hr (Ω = 696.543335 ° / jour)                                  |
| Moments d'inertie           | 1:1.04:1.87 (Rayons: 0.99 x 1.32 x 1.35 km)                           |
| Accélération à la surface   | Moy: 1.6 cm / s <sup>2</sup> Domaine: [1.3 : 2.2] cm / s <sup>2</sup> |



| OSIRIS/NAC         |            |
|--------------------|------------|
| Date :             | 30/09/2014 |
| Distance:          | 20 km      |
| Filtre:            | ORANGE     |
| <b>Résolution:</b> | 0,4 m/px   |

Choix du site d'atterrissage :

- Critères :
  - Topographie de la zone d'atterrissage
  - Réalisation de l'orbite de larguage
  - Durée de vol du module jusqu'à la surface
  - Alimentation électrique des batteries du module
  - Visibilité du module depuis l'orbiteur

