

HEAVY HADRON SPECTROSCOPY AT LHCb

Marco Pappagallo

LPNHE, Paris, 9 March 2015

Education

Degree in Physics @ University of Bari
 Thesis: Electroweak baryogenesis mediated by domain walls

LPNHE Seminar

Education

Degree in Physics @ University of Bari PhD @ University of Bari

Thesis: "Dalitz plot analyses of $D_s \rightarrow KK\pi$ and $D_s \rightarrow \pi\pi\pi$ at BaBar"

LPNHE Seminar

M. Pappagallo

D_s→ппп

 $D_s \rightarrow KK\pi$

Education

Degree in Physics @ University of Bari
PhD @ University of Bari

Jobs

➢ Post-doc @ Durham University [Nov 2005 → Apr 2007]

IPPP (Institute for Particle Physics Phenomenology)

Search for rescattering effects by studying the $K^{-}\pi^{+}$ and $K^{+}K^{-}S$ waves in the $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}\pi^{+}$ and $D_{s}^{+} \rightarrow K^{+}K^{-}\pi^{+}$ decays

Education

Degree in Physics @ University of Bari
PhD @ University of Bari

Jobs

➢ Post-doc @ Durham University [Nov 2005 → Apr 2007]
 ➢ Post-doc @ University of Bari [May 2007 → Jul 2011]

Charm and Beauty Spectroscopy

Scanning the geometry of the LHCb detector in simulation and looking for overlaps between volumes (> 3000)

LPNHE Seminar

Education

Degree in Physics @ University of Bari
PhD @ University of Bari

Jobs

➢ Post-doc @ Durham University [Nov 2005 → Apr 2007]
 ➢ Post-doc @ University of Bari [May 2007 → Jul 2011]

➢ Post-doc @ University of Glasgow[Nov 2011 → Present]

Charm and Beauty Spectroscopy

Education

Degree in Physics @ University of Bari
PhD @ University of Bari

Jobs

- ➢ Post-doc @ Durham University [Nov 2005 → Apr 2007]
- ➢ Post-doc @ University of Bari [May 2007 → Jul 2011]
- ➢ Post-doc @ University of Glasgow[Nov 2011 → Present]

Responsibilities

- $\succ Convener of the Exotic subgroup [Sep 2012 \rightarrow Mar 2014]$
- ✓ Running weekly meetings
- \checkmark Work coordination between several groups of analysts
- \checkmark Reviewing the analyses at their first stages
- \checkmark Taking care that the main analyses are covered
- \checkmark Checking that analyses proceed smoothly to publication

Education

Degree in Physics @ University of Bari
PhD @ University of Bari

Jobs

- ➢ Post-doc @ Durham University [Nov 2005 → Apr 2007]
- ➢ Post-doc @ University of Bari [May 2007 → Jul 2011]
- ▶ Post-doc @ University of Glasgow[Nov 2011 → Present]

Responsibilities

- Convener of the Exotic subgroup [Sep 2012 → Mar 2014]
- ➤ Convener of the B-hadron&Quarkonia [Apr 2014 → Present]

>20% Papers Production & Polarization

, b-hadron & B_c Exotic Onia

LPNHE Seminar

≻ The LHCb detector

➢ Introduction

Excited Charmed Mesons

Excited Beauty Mesons

LPNHE Seminar

LPNHE Seminar

INTRODUCTION

➤ The heavy quark effective theories (HQET) predict the masses of the heavy mesons D_(s) and B_(s) by a perturbative expansion of ∧_{QCD}/m_Q ~ 0
 ➤ Precise measurements of the excited heavy meson properties are a sensitive test of the validity of HQET

 $ec{L} ec{j_q} = ec{L} + ec{s_{q=u,d,s}} ec{J} = ec{j_q} + ec{s_{Q=b,c}} ec{s_{Q=b,c}}$

Orbital angular momentum

Angular momentum of the light quark

Total angular momentum of the heavy meson

LPNHE Seminar

m. rappagano

INTRODUCTION

LPNHE Seminar

For L>0, there are four different possible (J, j_q) combinations

E.g. Orbitally L=1 excited $B^{**} \rightarrow B^{(*)}\pi$

LPNHE Seminar

For L>0, there are four different possible (J, j_q) combinations

E.g. Orbitally L=1 excited $B^{**} \rightarrow B^{(*)}\pi$

LPNHE Seminar

For L>0, there are four different possible (J, j_q) combinations

E.g. Orbitally L=1 excited $B^{**} \rightarrow B^{(*)}\pi$

LPNHE Seminar

For L>0, there are four different possible (J, j_q) combinations

E.g. Orbitally L=1 excited $B^{**} \rightarrow B^{(*)}\pi$

LPNHE Seminar

For L>0, there are four different possible (J, j_q) combinations

E.g. Orbitally L=1 excited $B^{**} \rightarrow B^{(*)}\pi$

LPNHE Seminar

DECAYS OF EXCITED HEAVY MESONS

For L>0, there are four different possible (J, j_q) combinations

E.g. Orbitally L=1 excited $B^{**} \rightarrow B^{(*)}\pi$

	$j_q J^P$		Allowed decay mode	
			$B\pi$	$B^{*}\pi$
$\mathbf{B_0^*}$	1/2	0^+	yes	no
$\mathbf{B_1'}$	1/2	1^{+}	no	yes
$\mathbf{B_1}$	3/2	1^{+}	no	yes
\mathbf{B}_{2}^{*}	3/2	2^{+}	yes	yes

The four states come in doublets and within each doublet :

- $^{\prime}$ 1 natural state (B₂*) decaying to Bπ and B*π
- 1 unnatural state (B_1) decaying to $B^*\pi$

(Only exception is the $(0^+, 1^+)$ doublet above)

Similar scenario for the excited $B_s^{**} \rightarrow B^{(*)}K$, $D^{**} \rightarrow D^{(*)}\pi$, $D_s^{**} \rightarrow D^{(*)}K$

LPNHE Seminar

DECAYS OF EXCITED HEAVY MESONS

For L>0, there are four different possible (J, j_q) combinations

E.g. Orbitally L=1 excited $B^{**} \rightarrow B^{(*)}\pi$

LPNHE Seminar

HOW TO DO SPECTROSCOPY?

"Inclusive Analysis"

(e.g. $e^+e^- \rightarrow D^{**}(\rightarrow D\pi) + X \text{ or } pp \rightarrow B_s^{**}(\rightarrow BK) + X)$

Large cross sections

- Large combinatorial background 😒
- Resonances appear as bumps
- Hard to disentangle broad structures
- Difficult to assess spin due to the unknown initial polarization

LPNHE Seminar

DOUBLETS IN EXCLUSIVE ANALYSES

Exclusive analysis $B^- \rightarrow D^{(*)+} \pi^- \pi^-$ [Belle: Phys.Rev.D69 (2004) 112002]

(e.g) L=1, j_q=3/2 doublet
 > 1 peak in Dπ
 > 2 peaks in D*π

	j_q	J^P	Allowed decay mode	
			$D\pi$	$D^*\pi$
D_0^*	1/2	0^+	yes	no
D'_1	1/2	1^{+}	no	yes
D_1	3/2	1+	no	yes
D_2^*	3/2	2^+	yes	yes

DOUBLETS IN EXCLUSIVE ANALYSES

Broad states of the j=1/2 doublets also revolved by an amplitude analysis

LPNHE Seminar

DOUBLETS IN INCLUSIVE ANALYSES

Inclusive analysis $pp \rightarrow D^{(*)+} \pi^- + X$ [LHCb: JHEP 09 (2013) 145]

(e.g) L=1, j_q=3/2 doublet
 > 1 peak in Dπ

 \triangleright 2 peaks in D^{*}π

	j_q	J^P	Allowed decay mode	
			$D\pi$	$D^*\pi$
D_0^*	1/2	0^{+}	yes	no
D'_1	1/2	1^{+}	no	yes
D_1	3/2	1+	no	yes
D_2^*	3/2	2^+	yes	yes

DOUBLETS IN INCLUSIVE ANALYSES

Inclusive analysis $pp \rightarrow D^{(*)+} \pi^- + X$ [LHCb: JHEP 09 (2013) 145]

(e.g) L=1, j_q=3/2 doublet
 > 1 peak in Dπ 3 peaks in Dπ?
 > 2 peaks in D*π

	j_q	J^P	Allowed decay mode	
			$D\pi$	$D^*\pi$
D_0^*	1/2	0^+	yes	no
D'_1	1/2	1^{+}	no	yes
D_1	3/2	1+	no	yes
D_2^*	3/2	2^{+}	yes	yes

LPNHE Seminar

FEED-DOWNS OF $D_1/D_2^* \rightarrow D^*\pi$ Decays into $D\pi$ Mass Spectrum

EXCITED D_(s) STATES

- The charmed excited states studied in inclusive analyses and into B decays \geq
- The orbitally L=1 excited $D_{(s)}^{**}$ states observed first
- Masses and properties well predicted by theory (before the states were observed)

PUZZLE: EXCITED D_s MESONS: L=1, $j_q = 1/2(?)$

LPNHE Seminar

PUZZLE: EXCITED D_s MESONS: L=1, $j_q = 1/2(?)$

M(D M(D M(D	, s1) s2*)	}>1	n(D* ⁰) +	m(K ⁺)
	j_q	J^P	$\frac{\text{Allowed}}{D^0 K^+}$	$\frac{\text{decay mode}}{D^{*0}K^+}$
D_{s0}^{*}	1/2	0^{+}	no	no
D_{s1}'	1/2	1^{+}	no	no
D_{s1}	3/2	1^{+}	no	yes
D^*	3/2	2^{+}	ves	ves

> D_{s0}*/D_{s1}'→D^(*)K kinematically forbidden
 > Isospin violation decays: D_{s0}* →D_s π⁰ and D'_{s1} →D_s* π⁰

LPNHE Seminar

PUZZLE: EXCITED D_s MESONS: L=1, $j_q = 1/2(?)$

- > Spin-Parity J^P = (0⁺, 1⁺) as expected for the L=1, j_q=1/2 states
 > B→DD_{s0}* branching ratios below expectations (i.e. ~1) for a qq
- → DD_{s0}^{*} branching ratios below expectations (i.e. ~1) for a question state [PLB572, 164 (2003)][PRD69, 054002 (2004)]

$$\frac{\mathcal{B}(B^+ \to \bar{D}^0 D_{s0}^{*+})}{\mathcal{B}(B^+ \to \bar{D}^0 D_{s0}^{*+})} = 0.081^{+0.032}_{-0.025}$$
$$\frac{\mathcal{B}(B^0 \to D^- D_{s0}^{*+})}{\mathcal{B}(B^0 \to D^- D_{s0}^{*+})} = 0.13 \pm 0.04$$

> Many alternative interpretations: DK or $D_s \pi$ molecule, $q\overline{q}$ + tetraquark/DK mixing

No $D_s^+\pi^\pm$ partners have been observed in inclusive studies [BaBar: PRD74 (2006) 032007] or in B decays [Belle: R.Chistov@ EPS-HEP, Stockholm, Sweden (18 July 2013)]

SEARCH FOR "D_{s0}" IN B_s DECAYS

If the $\rm D_{s0}*(2317)$ is not the L=1, j_q =1/2 excited $\rm D_s$ state, then a broad $\rm D_{s0}*$ state above the DK threshold should appear in $\rm B_s$ decays

LPNHE Seminar

PUZZLE II: IS $D_{s_1}(2536)^+$ THE EXCITED L=1, $j_q=3/2$ STATE?

[Belle: PRD77 (2008) 032001]

Contrary of HQET expectations, the S-wave contribution dominates!

LPNHE Seminar

Excited D** \rightarrow D(*) π @ LHCb

LPNHE Seminar

EXCITED D_J STATES

[LHCb, JHEP 09 (2013) 145]

EXCITED D_J STATES [LHCb, JHEP 09 (2013) 145] L>0

- The quark model predicts many excited states in limited mass regions
- Ground and 1P states well established
- BaBar collaboration found 4 new states decaying to Dп and/or D*п. Need to be confirmed. [PRD82 (2010)111101]

D^(*)π MASS SPECTRA

LPNHE Seminar

D^{*+}π⁻ MASS FIT

[LHCb, JHEP 09 (2013) 145]

LPNHE Seminar

D^{*+}π⁻ MASS FIT

Step 2

D_J^{*}(2650), **D**_J^{*}(2760)

LPNHE Seminar

2 more natural states:

 $D_{\rm J}^{*}(3000)^{0}, D_{\rm J}^{*}(3000)^{+}$

LPNHE Seminar

RESULTS

[LHCb, JHEP 09 (2013) 145]

	Resonance	Final state	Mass (MeV)	Width (MeV)	Yields $\times 10^3$	Signif (σ)
	$D_1(2420)^0$	$D^{*+}\pi^-$	$2419.6\ {\pm}0.1{\pm}\ 0.7$	$35.2 \pm 0.4 \pm 0.9$	$210.2 \pm 1.9 \pm 0.7$	
	$D_2^*(2460)^0$	$D^{*+}\pi^-$	$2460.4\ {\pm}0.4{\pm}\ 1.2$	$43.2 \pm 1.2 \pm 3.0$	$81.9 \pm 1.2 \pm 0.9$	
	$D_J^*(2650)^0$	$D^{*+}\pi^-$	$2649.2 \pm 3.5 \pm 3.5$	$140.2 \pm 17.1 \pm 18.6$	$50.7 \pm 2.2 \pm 2.3$	24.5
	$D^{*}(2760)^{0}$	$D^{*+}\pi^-$	$2761.1\ {\pm}5.1{\pm}\ 6.5$	$74.4 \pm 3.4 \pm 37.0$	$14.4 \pm 1.7 \pm 1.7$	10.2
	$D_J(2580)^0$	$D^{*+}\pi^-$	$2579.5 \pm 3.4 \pm 5.5$	$177.5 \pm 17.8 \pm 46.0$	$60.3 \pm 3.1 \pm 3.4$	18.8
	$D_J(2740)^0$	$D^{*+}\pi^-$	$2737.0 \pm 3.5 \pm 11.2$	$73.2 \pm 13.4 \pm 25.0$	$7.7 \pm 1.1 \pm 1.2$	7.2
	$D_J(3000)^0$	$D^{*+}\pi^-$	2971.8 ± 8.7	188.1 ± 44.8	9.5 ± 1.1	9.0
-	$D_2^*(2460)^0$	$D^+\pi^-$	$2460.4 \pm 0.1 \pm 0.1$	$45.6 \pm 0.4 \pm 1.1$	$675.0 \pm 9.0 \pm 1.3$	
	$D_J^*(2760)^0$	$D^+\pi^-$	$2760.1 \pm 1.1 \pm 3.7$	$74.4 \pm 3.4 \pm 19.1$	$55.8 \pm 1.3 \pm 10.0$	17.3
	$D_J^*(3000)^0$	$D^+\pi^-$	3008.1 ± 4.0	110.5 ± 11.5	17.6 ± 1.1	21.2
	$D_2^*(2460)^+$	$D^0\pi^+$	$2463.1 \pm 0.2 \pm 0.6$	$48.6 \pm 1.3 \pm 1.9$	$341.6 \pm 22.0 \pm 2.0$	
	$D_J^*(2760)^+$	$D^0\pi^+$	$2771.7 \pm 1.7 \pm 3.8$	$66.7 \pm 6.6 \pm 10.5$	$20.1 \pm 2.2 \pm 1.0$	18.8
	$D_J^*(3000)^+$	$D^0\pi^+$	3008.1(fixed)	110.5 (fixed)	7.6 ± 1.2	6.6
				•	•	

INTERPRETATION

[LHCb, JHEP 09 (2013) 145]

 $D_{J}(2580)$ could be identified with the D(2S) (e.g. $D_0(2558)$) $D_J^*(2650)$ could be identified as the J^P=1⁻ D*(2S) (i.e. $D_1^*(2618)$)

 $D_J(2740)$ could be identified as the $J^P=2^- D_2(1D)$ (i.e. $D_2(2801)$) $D_J^*(2760)$ could be identified as the $J^P=1^- D_1^*(1D)$ (i.e. $D_1^*(2796)$)

> Study of D^(*)π spectrum from B decays needed to establish spin-parity

LPNHE Seminar

Excited $D_s ** \rightarrow DK @ LHCb$

LPNHE Seminar

EXCITED D_{sJ} States

[LHCb, JHEP 10 (2012) 151]

LHCb collaboration has recently confirmed 2 broad states decaying to DK: $D_{s1}^*(2700)^+ \& D_{sJ}^*(2860)^+$

LPNHE Seminar

EXCITED D_{sJ} **STATES**

[LHCb: PRL 113, 162001 (2014)] [LHCb: PRD 90, 072003 (2014)]

LPNHE Seminar

Excited B** \rightarrow **B** π @ **LHCb**

THE EXCITED B STATES

LEP experiments observed a single broad structure (Γ > 100 MeV) in B⁺π⁻: B_J*(5732)

THE EXCITED B STATES

LEP experiments observed a single broad structure (Γ > 100 MeV) in B⁺π⁻: B_J*(5732)

→ Tevatron experiments resolved it into 2 structures and interpreted the former as the overlap of $B_1^{0/}B_2^{*0} \rightarrow B^{*+}\pi^{-}$

In previous analyses, fit models made use of several external inputs: m(B*)-m(B) (exp.), Br(B₂* \rightarrow B* π)/Br(B₂* \rightarrow B π) (theor.), Γ (B₁)/ Γ (B₂*) (theor.)

INCLUSIVE STUDY OF THE B⁺π⁻ AND B⁰π⁺ MASS SPECTRA

[LHCB-PAPER-2014-067; arXiv:1502.02638]

Analysis strategy

- \succ 2011+2012 data sample corresponding to $\mathcal{L} = 3.0 \text{ fb}^{-1}$
- \succ Selection of a high purity B⁺ and B⁰ samples
- → The B⁺ (B⁰) candidates combined with $\pi^{-}(\pi^{+})$ originating from the interaction point
- > Analysis carried out by fitting the Q distributions:

 $Q \equiv m(B\pi)-m(B)-m(\pi)$

LPNHE Seminar

B^{0,+} CANDIDATES

- Purity of B samples > 80%
- ~2.5M of B⁺ candidates and 1.2M of B⁰ candidates in 3.0 fb⁻¹

J/ψ/D⁰/D⁻ masses constrained to their known values to improve signal resolutions

LPNHE Seminar

SPECTRUM OF $m(B\pi)-m(B)-m(\pi)$ MASS DIFFERENCES

[LHCB-PAPER-2014-067; arXiv:1502.02638]

- ➤ Two narrow peaks are seen in both $B^+\pi^-$ and $B^0\pi^+$ spectra interpreted as the decays of $B_1(5721) \rightarrow B^*\pi$ and $B_2^*(5747) \rightarrow B^{(*)}\pi$
- > An excess of RS over WS combinations around Q ~ 500 MeV. Particularly prominent when p_T of companion pion > 2 GeV
- Furthermore a comparison with the WS shows a very broad excess of RS lying under the resonances (Associated Production)

Spectrum of $m(B\pi)-m(B)-m(\pi)$ Mass Differences

[LHCB-PAPER-2014-067; arXiv:1502.02638]

M. Pappagallo

LPNHE Seminar

Alternative fit models (\equiv Quark Model) consider the two broad states belonging to the same doublet. Then an extra fit function is added for the $B_J \rightarrow B^*\pi$ feed-down

LPNHE Seminar

[LHCB-PAPER-2014-067; arXiv:1502.02638]

	Fit function	Constraints
Signals	Relativistic Breit-Wigner (RBW) [Negligible resolutions ~ 2 MeV]	m(B*)-m(B) for B**→B*π feed-downs
Combinatorial Background	Linear combination of spline polynomials	From WS (event mixing as cross check)
Associated Production	Polynomial + Broad RBW shape	From simulation

- Binned χ^2 fit for B⁺ π ⁻ and B⁰ π ⁺ (Bin size = 1 MeV)
- > Data samples split in 3 companion p_T bins [0.5< p_T <1 GeV; 1< p_T <2 GeV, p_T >2 GeV]
- Fitting steps:
 - \checkmark Fit the WS shapes
 - Simultaneous fit by fixing the combinatorial background from WS and the AP from simulation + broad RBW shape (varied appropriately for systematics)
- \blacktriangleright Signals parameters (masses and widths) shared between companion p_T bins
- > No theoretical constraints

[LHCB-PAPER-2014-067; arXiv:1502.02638]

LPNHE Seminar

M. Pappagallo

LPNHE Seminar

FINAL RESULTS: $B_1(5721)^{0,+}$ AND $B_2^*(5747)^{0,+}$

[LHCB-PAPER-2014-067; arXiv:1502.02638]

 ${\rm Q}$ values converted into absolute masses by adding the known B, π and B*-B masses

				stat.		syst.		B mass	s B	8*-B n	nass
$m_{B_1(5721)^0}$	=	5727.7	±	0.7	±	1.4	±	0.17	±	0.4	MeV,
$m_{B_2^*(5747)^0}$	=	5739.44	\pm	0.37	\pm	0.33	±	0.17			${ m MeV},$
$m_{B_1(5721)}$ +	=	5725.1	\pm	1.8	\pm	3.1	\pm	0.17	\pm	0.4	${ m MeV},$
$m_{B_2^*(5747)}$ +	=	5737.20	\pm	0.72	\pm	0.40	\pm	0.17			${ m MeV},$
$\Gamma_{B_1(5721)^0}$	=	30.1	\pm	1.5	\pm	3.5					$\mathrm{MeV},$
$\Gamma_{B_2^*(5747)^0}$	=	24.5	\pm	1.0	\pm	1.5					${ m MeV},$
$\Gamma_{B_1(5721)^+}$	=	29.1	±	3.6	\pm	4.3					${ m MeV},$
$\Gamma_{B_2^*(5747)^+}$	=	23.6	±	2.0	±	2.1					MeV.

Most precise measurements of the $B_1(5721)$ and $B_2^*(5747)$ masses and widths

$\frac{\mathcal{B}\left(B_{2}^{*}(5747)^{0}\to B^{*+}\pi^{-}\right)}{\mathcal{B}\left(B_{2}^{*}(5747)^{0}\to B^{+}\pi^{-}\right)}$	$\frac{)}{0} =$	0.71	±	0.14	±	0.30,	First evidence of the
$\frac{\mathcal{B}\left(B_{2}^{\bar{*}}(5747)^{+}\to B^{*0}\pi^{+}\right)}{\mathcal{B}\left(B_{2}^{*}(5747)^{+}\to B^{0}\pi^{+}\right)}$	$\frac{)}{)} =$	1.0	±	0.5	±	0.8 ,	$B_2^*(5747)^0 → B^{*+}\pi^-(3.7\sigma)$

LPNHE Seminar

FINAL RESULTS: B_J(5840)^{0,+} AND B_J(5960)^{0,+}

[LHCB-PAPER-2014-067; arXiv:1502.02638]

The properties of the $B_J(5960)^{0,+}$ states are consistent with and more precise than those obtained by the CDF collaboration when assuming decay only to $B\pi$

If the $B_J(5840)^{0,+}$ and $B_J(5960)^{0,+}$ states are considered under the quark model hypothesis, their properties are consistent with those expected for the B(2S) and B*(2S) radially excited states

LPNHE Seminar

SIGNIFICANCE DETERMINATION: $B_J(5840)^{0,+}$ AND $B_J(5960)^{0,+}$

[LHCB-PAPER-2014-067; arXiv:1502.02638]

Lack of knowledge of the AP shape \Rightarrow Large systematic uncertainty on the yields

Are $B_J(5840)$ and $B_J(5960)$ an artefact of the non-resonant AP?

- Generation of pseudoexperiments without any high mass states included
- Fitting with and without an additional high mass state
- \blacktriangleright Comparing the χ^2 difference to that obtained from the corresponding fits to data
- Generation of pseudoexperiments with a single mass state to investigate the significance of a 2nd state

B⁺π-: 9.6**σ** for at least one resonance, 7.5**σ** for two B⁰π⁺: 4.8**σ** for at least one resonance, 4.6**σ** for two

Consistent with the interpretation of 4 states given the expected isospin symmetry

LPNHE Seminar

Excited B_s**→BK @ LHCb

LPNHE Seminar

EXPERIMENTAL STATUS: $B_{s1}(5830)^0$ AND $B_{s2}^*(5840)^0$

Two narrow peaks observed in the B⁺K⁻ by CDF
 B_{s2}^{*} is the only narrow state expected. What is the nature of the second signal?

- ➤ It is interpreted as a feed-down of the B_{s1}→B^{*+}K⁻ decay followed by B^{*+}→B⁺ γ, where the photon is not observed
- > Swapping the identification would lead to a large mass splitting of the j=3/2 doublet
- > The B_{s1} state is not confirmed by D0

Analysis strategy

> 2011 data sample corresponding to L = 1.0 fb⁻¹
 > Selection of a high purity B⁺ sample
 > The B⁺ candidates are combined with a track of opposite charge that is identified as a kaon
 > Optimization of the B_{s1} and B_{s2}* in the B⁺K⁻ mass spectrum

SPECTRUM OF M(BK)-M(B)-M(K) MASS DIFFERENCE

SPECTRUM OF M(BK)-M(B)-M(K) MASS DIFFERENCE

	j_q	J^P	Allowed decay mode		
	-		B^+K^-	$B^{*+}K^-$	
B_{s0}^{*}	1/2	0^{+}	yes	no	
B_{s1}'	1/2	1^{+}	no	yes	
B_{s1}	3/2	1^{+}	no	yes	
B_{s2}^{*}	3/2	2^{+}	yes	yes	

The $B_{s2}^* \rightarrow B^{*+}K^{\cdot}$ decay could manifest itself in the B⁺K⁻ mass spectrum in a similar fashion to the corresponding B_{s1} meson decay

✓ Distance between the two peaks returns m(B*+)-m(B+) (without detecting the photon → smaller systematic uncertainty)

- ✓ B_{s2}^* → BK and B_{s2}^* → B*K → B_{s2}^* is a natural state. J^P = 2⁺ favored
- ✓ Likely (B_{s1}, B_{s2}^*) belong to the L=1 j_q=3/2 doublet

FIT RESULTS

Parameter	Fit result	Best previous measurement
$\overline{m(B_{s1}) - m(B^{*+}) - m(K^{-})}$	$10.46 \pm 0.04_{stat} \pm 0.04_{syst} \text{ MeV}/c^2$	$10.73 \pm 0.21 \pm 0.14 \text{ MeV}/c^2$
$m(B_{s2}^*) - m(B^+) - m(K^-)$	$67.06 \pm 0.05_{stat} \pm 0.11_{syst} \text{ MeV}/c^2$	$66.96 \pm 0.39 \pm 0.14 \text{ MeV}/c^2$
$m(B^{*+}) - m(B^+)$	$45.01 \pm 0.30_{stat} \pm 0.23_{syst} \text{ MeV}/c^2$	45.6 ± 0.8 MeV/ c^2
$\Gamma(B_{s2}^*)$	$1.56 \pm 0.13_{stat} \pm 0.47_{syst} \text{ MeV}/c^2$	
$\frac{\mathcal{B}(B_{s2}^* \to B^{*+}K^-)}{\mathcal{B}(B_{s2}^* \to B^+K^+)}$	$(9.3 \pm 1.3 _{stat} \pm 1.2_{syst})\%$	
$\frac{\sigma(pp \to B_{s1}X)\mathcal{B}(B_{s1} \to B^{*+}K^{-})}{\sigma(pp \to B^{*}_{s2}X)\mathcal{B}(B^{*}_{s2} \to B^{+}K^{-})}$	$(23.2 \pm 1.4 _{stat} \pm 1.3_{syst})\%$	

- \succ Confirmation of the B_{s1} state
- > Most precise measurement of the B_{s1} , B_{s2} * and B* masses
- ≻ First observation of the $B_{s2}^* \rightarrow B^{*+}K^-$ decay (Significance = 8. σ)
- \succ First measurement of the B_{s2}^* natural width

COMPARISON WITH THEORETICAL PREDICTIONS

$$\begin{split} &\Gamma_{B_{s2}^{*}} = 1.56 \pm 0.13_{\text{stat}} \pm 0.47_{\text{syst}} \text{ MeV} \\ &\frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = (9.3 \pm 1.3_{\text{stat}} \pm 1.2_{\text{syst}})\% \end{split}$$

Table 1: The strong decay widths of B_{s1} and B_{s2}^* in units of MeV.										
Mode	PLB706(2012)389	PRD43(1991)1679	PRD79(2009)074020	PRD86(2012)054024	PRD78(2008)014029					
$B_{s1} \to B^* \bar{K}$	0.041 ± 0.011		0.098	0.016 ± 0.002	$0.4 \sim 1$					
$\overline{B^*_{s2} \to B\bar{K}}$	1.55 ± 0.43	2.6(1.9)	4.6		2					
$B_{s2}^* \to B^* \bar{K}$	0.148 ± 0.084	0.07 (0.05)	0.4	—	0.12					
B^*_{s2}				0.9 ± 0.1						
$\frac{\mathcal{B}(B_{s2}^* \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^* \to B^{+}K^{-})} = 0.070 \pm 0.005$										

THE B^{*+} MASS MEASUREMENT AND THE Z_{B}^{+} 'S

➢ Observation of charged bottomonium-like Z_b(10610)⁺ and Z_b(10650)⁺ (Belle collaboration, PRL 108 (2012) 122001)
 ➢ B̄B̄* and B*̄B̄* molecules? (A. Bondar et al., PRD84 (2011) 054010)

Using the B^{*+} mass measured in this analysis, we compute that the $Z_b(10610)^+$ and $Z_b(10650)^+$ masses are $3.69 \pm 2.05 \text{ MeV/c}^2$ and $3.68 \pm 1.71 \text{ MeV/c}^2$ above the $B\bar{B}^*$ and $B^*\bar{B}^*$ thresholds respectively

LPNHE Seminar
PROSPECTS: EXCITED D(s) **MESONS**

Proliferation of excited charmed states observed in inclusive analyses. Determination of spin parity by amplitude analyses of B decays

✓ В →Dпп ✓ В_s→DКп

LPNHE Seminar

PROSPECTS: NATURE OF D_{s_0} *(2317) AND D_{s_1} (2460)

- Search for new decay modes (likely some D_{s1}(2460) decay modes are missing)
- Measurements of branching ratios in B_s decays (same suppression observed in B decays?)

Measurements of the ${\rm D_{s0}}*/{\rm D_{s1}}$ ' production relative to ${\rm D_s}*$ (2112)

If the D_{s0}^*/D_{s1} are tetraquarks, the production should be highly suppressed

LPNHE Seminar

PROSPECT: SEARCH FOR B_{s_0} * AND B_{s_1} '

The $D_{s0}^*(2317)$ and $D_{s1}(2460)$ should have "flavour partners": B_{s0}^* and B_{s1} '. Same surprising low masses as D_{s0}^* and D_{s1} ?

Broad structures are observed n Bn. BK? $B^0K^0_s$?

LPNHE Seminar

PROSPECT: EXCITED \mathbf{B}_{c}

PROSPECT: $\Omega_{\rm c}$ **SPECTROSCOPY**

LPNHE Seminar

SUMMARY

LHCb is very active into studying excited heavy mesons

- Inclusively: New states, new decay modes
- Exclusively: New states, determination of quantum numbers
- ▶ Properties of B_{s1} and B_{s2} * states well predicted (as it was for D_{s1} and D_{s2} *)
- ➢ Further studies of $B_{(s)}^{**}$ states from decays are unlikely until we collect a large sample of B_c 's
- ▷ Search for the missing B_{s0}^* and $B_{s1}^{'}$ states. Same surprising low masses as D_{s0}^* and $D_{s1}^{'?}$?
- > Investigation of the nature of D_{s0}^* and $D_{s1}^{'}$ states: production studies, search for new decays modes, measurements of BR's from B_s decays...
- Decays with neutral as decay products could be investigated
- ✓ Spectroscopy will play a more important role in the near future
- ✓ RUN I data not fully exploited so far. Many systems still unexplored...
- ✓ ...and RUN II is ahead (expected 5-10 fb⁻¹)

Back-up slides

Selection of the $B\pi$ Candidates

[LHCB-PAPER-2014-067; arXiv:1502.02638]

- > B⁺(B⁰) candidates, within a ±25(50) MeV mass region, combined with $\pi^{-}(\pi^{+})$
- The wrong sign (WS) combinations B⁺π⁺ and B⁰π⁻ are also selected for background studies
- \succ B⁺π[−] candidates refitted with
 - ✓ Primary vertex constraint (i.e. B and π are forced to originate from the primary vertex)
 - ✓ B^+ and $J/\psi/D^0/D^-$ mass constraints
 - Selection tuning of companion pions:
 - ✓ $p_T > 0.5$ GeV (suppression of combinatorial background)
 - ✓ PID requirements (suppression of misidentified decays: e.g. B_s^{**} → BK where K $\neq \pi$)
 - \checkmark Small IP relative to the PV associated to the B candidates
 - Selection tuning of the B candidates:
 - ✓ B⁰ decay time < 0.2 ps (suppression of peaking signals in the WS due to the oscillations of the B⁰'s)

Systematics Uncertainties

[LHCB-PAPER-2014-067; arXiv:1502.02638]

Source (µ and Γ in MeV)	$B_1(5721)^0$ $B_2^*(5747)^0$		$B_J(5840)^0$		$B_J(5960)^0$				
	μ	Γ	BF ratio	μ	Γ	μ	Γ	μ	Γ
Total statistical	0.72	1.52	0.14	0.37	1.01	4.95	16.70	2.88	7.71
Fit range (high)	0.33	1.30	0.06	0.08	0.37	2.20	2.90	0.52	0.26
Fit range (low)	0.04	0.11	0.01	0.02	0.39	0.04	8.22	0.69	2.83
2 MeV bins	0.02	0.14	0.00	0.04	0.07	1.09	0.50	0.08	1.00
Spline knots	0.11	0.01	0.02	0.02	0.26	1.75	0.04	0.45	1.44
Float AP	0.03	0.00	0.00	0.03	0.30	1.58	10.16	0.73	4.23
$B_2^*(5747)^0$ rel. eff., low p_T	0.56	0.91	0.15	0.08	0.16	0.07	0.23	0.00	0.18
$B_2^*(5747)^0$ rel. eff., mid p_T	0.64	1.01	0.05	0.09	0.18	0.08	0.26	0.00	0.16
$B_2^*(5747)^0$ rel. eff., high p_T	0.20	0.37	0.03	0.02	0.07	0.02	0.00	0.01	0.09
Eff. variation with Q value	0.13	0.33	0.02	0.04	0.07	0.45	2.46	0.19	0.70
Data-simulation reweighting	0.07	0.38	0.02	0.00	0.16	1.81	2.03	0.49	0.12
$B p_T ext{ cut}$	0.02	0.20	0.01	0.24	0.72	3.98	3.67	1.30	4.29
p_T binning	0.90	2.45	0.24	0.06	0.39	1.49	27.77	4.20	1.47
Fit bias	0.06	0.17	0.01	0.00	0.16	0.45	5.34	0.40	2.24
Spin	0.02	0.06	0.01	0.06	0.46	1.95	3.32	0.62	3.74
Effective radius	0.33	1.44	0.02	0.12	0.76	2.17	9.68	1.24	3.81
$B^* - B$ mass	0.10	0.11	0.03	0.02	0.11	0.04	0.17	0.00	0.09
$B_J(5840)^0 J^P$	0.01	0.04	0.00	0.01	0.01			1.67	0.76
$B_J(5960)^0 \ J^P$	0.01	0.20	0.00	0.00	0.16	0.18	8.00		—
Extra state	0.00	0.26	0.00	0.04	0.34	1.67	0.99	0.12	2.08
Total systematic	1.36	3.49	0.30	0.33	1.48	6.68	34.24	5.10	9.41

LPNHE Seminar

Systematics

Source	$Q(B_{s1})$	$Q(B_{s2}^{*})$	$m(B^{*+}) - m(B^+)$	$\Gamma(B_{s2}^*)$	$R^{B_{s2}^{*}}$	$\sigma^{B_{s1}/B_{s2}^*}R^{B_{s1}/B_{s2}^*}$
	$({ m MeV}/c^2)$	$({ m MeV}/c^2)$	$({ m MeV}/c^2)$	$({ m MeV}/c^2)$	(%)	(%)
Fit model	0.00	0.02	0.03	0.01	0.2	0.5
B^+ decay mode	0.01	0.01	0.02	0.01	0.1	0.1
Selection	0.03	0.02	0.19	0.05	1.1	0.6
B^+ signal region	0.01	0.03	0.11	0.07	0.2	0.4
Mass resolution	0.00	0.01	0.02	0.46	0.2	0.9
Momentum scale	0.02	0.10	0.03	-	-	-
Efficiency ratios	-	-	-	-	0.2	0.2
Missing photon	0.01	-	0.01	-	-	-
Total	0.04	0.11	0.23	0.47	1.2	1.3

- \diamond Variation of selection criteria
- \diamond Narrower B⁺ signal region (±1 σ)
- \Rightarrow Detector resolution varied by $\pm 20\%$
- \diamond Momentum scale calibration: ±0.15%
- \diamond Relative selection efficiency
- \diamond Mass shifts due to the missing photon