Calibrer une caméra grand champ : l'expérience de SNLS

N. Regnault et al

(LPNHE, Paris)

SNLS / CFHTLS-DEEP MegaCam : 1 deg2 1500 hours on CFHT 1500 hours on 8-m telescopes ~ 500 SNela with spec-id

OUTLINE

- Imager Uniformity
 - Response maps / "grids" / star flats
- Flux metrology chain
 - Fundamental flux standards
 - Building robust metrology chains
- Instrumental calibration

INSTRUMENT RESPONSE

- Flat fields
 - Affected by plate scale variations
 (well measured ↔ astrometry)
 - contaminated by ghosts
 (reflections in the WFC)
- Filter uniformity
 - MegaCam filters vary by
 - ~ 5-nm center-to-corner.

(Magnier et al, '04) (Regnault et al, '09) (Betoule et al, '13)

NGC3489 (MATLAS) http://irfu.cea.fr/Projets/matlas/atlas3D/NGC3489.html

flat field [L4 ghost]

flat field [L3 ghost]

MAPPING THE INSTRUMENT RESPONSE

- Dithered observations of dense stellar fields
 - Logarithmically Increasing steps $(1.5' \rightarrow 0.5 \text{ deg})$
 - Observed every ~ 6 months
- Model

 $m(x) = m(x_0) + \delta z p(x) + \delta k(x) \times col$

Maps

(~ 100 pars)

Star mags @ center (~ 100,000 pars)

(Magnier & Cuillandre, 2004; Regnault et al, 2009)

PLATE SCALE + GHOSTS

Filter variations (in λ)

(a) $\delta k_{g,g-r}(\mathbf{x})$

(b) $\delta k_{r,r-i}(\mathbf{x})$

Preferable to measure the filters on a bench...)

VARIABILITY OF THE IMAGER RESPONSE

UNIFORMITY

- Mapping techniques rely on sets of dithered observations which are
 - Costly in terms of observing time

 \rightarrow taken every ~ 6 months / 1 year

- BUT
 - ~ 1% variations observed, over ~ 6 months timescales
- Best solution would be a mix of
 - dithered observations
 - instrumental monitoring of the uniformity (every week)
- Why not instrumental monitoring only ?
 - because uniformity maps depend on flux estimator used...

OUTLINE

- Imager Uniformity
 - Response maps / "grids" / star flats
- Flux metrology chain
 - Fundamental flux standards
 - Building robust metrology chains
- Instrumental calibration

FLUX METROLOGY CHAIN

- Instrument response
 - Measure flux ratios in a single image

FLUX METROLOGY CHAIN

- Instrument response
 - Measure flux ratios in a single image

- Calibration transfer
 - HST standards as primary flux calibrators

SNLS/SDSS (JLA) CALIBRATION PATHS

- Direct observations of SDSS & HST stars
- Several calibration paths
- 0.3% accuracy in gri

(Betoule et al, 2013)

OUTLINE

- Imager Uniformity
 - Response maps / "grids" / star flats
- Flux metrology chain
 - Fundamental flux standards
 - Building robust metrology chains
- Instrumental calibration

INSTRUMENTAL CALIBRATION

- Stellar flux standards
 vs
 Laboratory standards
- Precision monitoring of large focal planes
- 0.1% calibration accuracy

Switching to a Lab Standard

A NEW METROLOGY CHAIN

A NEW METROLOGY CHAIN

CALIBRATION PROJECTS

- Harvard (Stubbs et al)
 - ESSENCE
 - PanSTARRS
- Texas A&M (DePoy et al)
 - DES (Dark Energy Survey)
- NIST (Cramer et al)
 - Artificial star \rightarrow recalibration of Vega
- ACCESS (Kaiser et al)
 - Small rocket-borne telescope (IR spectrophotometry)
- LPNHE
 - SnDICE (MegaCam)
 - SkyDICE (SkyMapper)

Monochromatic Source Full-system Throughput Determination

DICE : A STABLE LED SOURCE

TYPICAL LED COVERAGE

The "Cooler-brighter effect"

(Regnault et al, submitted to A&A)

About 0.5% / °C for all LEDs

LONG TERM STABILITY STUDIES

A Spectrophotometric model for the LED source

Predicts the LED spectral intensity (watts / sr / nm) in a range of temperature (0°C < T < 25°C)

SnDICE LEDs $\rightarrow \sim$ microWatts / sr / nm $\rightarrow \sim O(1000 \text{ e-} / \text{ s / pixel})$

(Regnault et al, submitted to A&A)

GHOSTS

CONCLUSION

- Steady progress over the last decade
 - ~ 10 years to increase accuracy by a factor ~ 10
- Each step requires
 - New techniques
 - more data
- We are ~ on-par with the precision of the fundamental (HST) flux calibrators

 \rightarrow Artificial sources under development