Impact of calibration on SNe-Ia luminosity distance precision

Journées LSST montpellier

Marc Betoule

The distance-redshift relation: probe for dark energy

HE

The distance-redshift relation: probe for dark energy

HE

Measuring supernovae fluxes ... and colors

$$\mu \approx m_B^* - [M + 3(m_B^* - m_V^*)]$$

Photometric calibration

Consider the following model for broadband measurements:

$$\phi = \int T(\lambda) S(\lambda; heta) d\lambda + n$$

- $S(\lambda; \theta)$ Parametric model of object SED
- $T(\lambda)$ Intrument band transmission
- *n* Centered random variable
- ϕ Measured broadband flux

Errors on $T(\lambda)$ translates to errors on θ

Typical requirement is that noise remains the first source of uncertainty

Error modes in transmission

Normalisation $\int T(\lambda) d\lambda$

Change at different time scales

- At short time scales (Between two exposures):
 - Atmospheric extinction/PSF variation
- At longer time scales:
 - Changes in instrument transmission (mirror, coatings ...)

Mean wavelength $\int \lambda T(\lambda) d\lambda$

- At short time scale (night): atmospheric transmission (Water / ozone)
- At longer time scale: filter aging, Spectrometer calibration

SN spectra are smooth \rightarrow following orders negligible

1) Individual measurements not impaired by the transmission determination

$$\sigma(Z_p) \leq \sigma(n)$$

Not a problem for a rolling search

2) Average distance measurement not impaired by the average transmission determination

- Already requires an accurate knowledge of the mean passband
- LSST: 1000 SNe ightarrow 10000 SNe

Error modes in JLA (lowz + SDSS + SNLS): \sim 700 SNe

Effect of a 1% ZP error in each of the MegaCam bands:

We are mostly sensitive to color evolution

• Changing r changes (g - r) - (r - i): 1% \rightarrow 2% on w

Effect of a 1~nm MW error in each band:

 Sensitive to color differences between the calibration standard and the SN

What about SNe in LSST ?

Depends on the survey design

What wavelength range ?

Astier et al. (2014)

Conservative hypothesis

• 3 bands in the rest-frame 380 $<\lambda<$ 700

Consequently:

- *z* < 0.95
- 8800 high-z / 8000 low-z
- Minimize sensitivity to calibration uncertainties

Predicted FOM:

Target accuracy

Conclusion

Critical:

- Accurate average passband
- Accurate relative normalization

Not as critical:

• Survey uniformity (time/area)

Not important

Overall flux-scale

Target accuracy is $\sim 1 \textit{mmag}$, requires progress on:

- Calibration standards
- Transfer accuracy
- Instrument knowledge (passbands at a few Angstrom and monitoring)
- Atmospheric transmission knowledge

The Regnault's law of MegaCam calibration accuracy

