Impact of LSST filters on photometric redshifts performances

Adeline choyer, J.S. Ricol

Photometric redshift reconstruction

- Simulated catalog:
 - Absolute Magnitude, color excess E(B-V), z_{true} ,
 - 51 galaxies spectral types interpolated between 6 main SEDs: El, Sbc, Scd, Irr, SB3, SB2.
- Photo-z reconstruction: template fitting method,
 - z_p reconstructed redshift,
 - z_s true redshift,
 - quality estimator:

$$\Delta z = \frac{z_p - z_s}{1 + z_s}$$

10⁴ 10² 10³ 10⁴ 10³ 10⁴ 10⁴ 10⁵ 10⁴ 10

Quality cut.

Impact of filters transmission shape

• The photo-z reconstruction rely on flux measurement, which depends of filters.

- Filters design is not fixed yet.
- LSST filters are quite big (78 cm diameter)
 - \Rightarrow spatial in-homogeneities (coating)
- \Rightarrow Impact of filters on photo-z quality ?
 - impact of slope design,
 - impact of filter band-pass callibration,
 - impact of spatial in-homogeneities.

• • • • • • • • • • • • •

Filter Modeling

- Filters are taken as trapezoidal functions,
- y filter = y4 (latest version),
- Atmosphere is not considered,
- Out of band transmission is neglected.

4 / 13

Filter taper:

Filter known shift:

Filters unknown shift

Impact of spatial in-homogeneities

Filters impact studies

Filter taper: $\delta_{slope} \in [-90\%; +300\%]$ (integral conserved)

- small impact on photo-z,
- steep shape (-90%) seems to be favored,
- good photometric quality if $\delta_{slope} < 100\%$.

Filter known shift:

Filters unknown shift

Impact of spatial in-homogeneities

Filter taper: $\delta_{slope} \in [-90\%; +300\%]$ (integral conserved)

- small impact on photo-z,
- steep shape (-90%) seems to be favored,
- good photometric quality if $\delta_{slope} < 100\%$.

Filter known shift: shift = $\pm 1\%$; $\pm 2.5\%$

- impact at particular redshift (SB3 galaxies) but globally faint,
- good photo-z quality if filter shift is < 1%.

Filters unknown shift

Impact of spatial in-homogeneities

• Filters could be shifted up to $\pm 2.5\%$ (LSST spec.)

Impact of spatial in-homogeneities (1)

• LSST spec : $\pm 2.5\%$ shift

- simulation of **effective filters** (ten years of observation) for each galaxy,
 - \rightarrow apparent magnitude computation
- computation of **average** (effective) **filters**,
 - \rightarrow photo-z reconstruction

	u	g	r	i	\mathbf{Z}	У
average filter	-5.25 nm	7.2 nm	-8.1 nm	10.25 nm	-11.85 nm	13.7 nm
$\pm 2.5\%$ filter	$\pm 9 \text{ nm}$	$\pm 12~\mathrm{nm}$	$\pm 16~\mathrm{nm}$	$\pm 19~\mathrm{nm}$	$\pm 22 \text{ nm}$	$\pm 25 \text{ nm}$
				< □ >	(白) (ヨ) (≣ ▶ ≣ り

Impact of LSST filters

April 6, 2015 8 / 13

Impact of spatial in-homogeneities (2)

 \Rightarrow Good quality of the photo-z reconstruction even if:

- positions on filters are not recorded,
- effective filter per galaxy not computed.

Filter shifts

- Two scenarii tested: filters are shifted in opposition
 - scenario 1: increase gap UG, RI, ZY.
 - scenario 2: increase gap GR, IZ.

 ■ ▶ < ■ ▶ </td>
 ■
 >

 >

Impact of an error on the filter pass-band

- Apparent magnitudes: computed using shifted filters,
- Reconstructed redshift: from reference filters.

A D > A D > A

 \Rightarrow Filters pass-band should be known with a precision better than 0.2 nm, for studied scenarii.

Filters unknown shift:

- two worse possible scenarii have been studied,
- significant damages on photo-z quality from a few nanometers shift,
- overall: photo-z quality in agreement with LSST specifications if filters bandwidth is measured with an accuracy better than 0.5 nm,
- $\bullet\,$ some particular galaxy types need the accuracy to be better than 0.2 nm.
- ⇒ the constraint on filters accuracy is very strict and higher than LSST requirement !
 - because of incident angle dependence $(0.1^{\circ}/\text{Å})$, measurement at 0.2 nm will be difficult, measurement at 0.5 nm should be OK, (see talk from Benoit Sassolas)
 - a precise measurement is needed only on filter edge,
 - we only test two scenarii \rightarrow other test are needed (see J.S Ricol'stalk).

Effect of filter calibration error per band

Filters for observed flux simulation :

- LSST baseline
- bandwidth shifted by -1nm / +1nm
- transmission reduced by -1% (Tx0.99)

Filters for photo-z reconstruction :

• LSST baseline

Effect of filter calibration error per band

Filters for observed flux simulation :

- LSST baseline
- bandwidth shifted by -1nm / +1nm
- transmission reduced by -1% (Tx0.99)

U

Filters for photo-z reconstruction :

• LSST baseline

R

Effect of filter calibration error per band

Matrice des dérivés du biais par rapport aux 12 paramètres (shift_x, transmission_x) Matrice de covariance des 12 paramètres de calibration MegaCam Matrice de covariance des photo-z

