
Probing gravity with galaxy 
clustering: Redshift-Space 
Distortions  

Sylvain de la Torre  
Workshop beyond six parameters  
Luminy, Marseille 
03/03/2015 



Galaxy clustering and cosmology  

(BOSS, Anderson et al. 2013) 

Anisotropic clustering in CMASS galaxies 5

r
σ
 (Mpc/h)

r π
 (
Mp
c/
h)

−100 −50 0 50 100

−100

−50

0

50

100

r
σ
 (Mpc/h)

r π
 (

Mp
c/

h)

 

 

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

Figure 3. Left panel: Two-dimensional correlation function of CMASS galaxies (color) compared with the best fit model described in Section 6.1 (black lines).
Contours of equal ξ are shown at [0.6, 0.2, 0.1, 0.05, 0.02, 0]. Right panel: Smaller-scale two-dimensional clustering. We show model contours at [0.14, 0.05,
0.01, 0]. The value of ξ0 at the minimum separation bin in our analysis is shown as the innermost contour. The µ ≈ 1 “finger-of-god” effects are small on the
scales we use in this analysis.

in Figure 4. The effective redshift of weighted pairs of galaxies in
our sample is z = 0.57, with negligible scale dependence for the
range of interest in this paper. For the purposes of constraining cos-
mological models, we will interpret our measurements as being at
z = 0.57.

3.2 Covariance Matrices

The matrix describing the expected covariance of our measure-
ments of ξℓ(s) in bins of redshift space separation depends in linear
theory only on the underlying linear matter power spectrum, the
bias of the galaxies, the shot-noise (often assumed Poisson) and the
geometry of the survey. We use 600 mock galaxy catalogs, based
on Lagrangian perturbation theory (LPT) and described in detail in
Manera et al. (2012), to estimate the covariance matrix of our mea-
surements. We compute ξℓ(si) for each mock in exactly the same
way as from the data (Sec. 3.1) and estimate the covariance matrix
as

Cℓ1ℓ2i j =
1

599

600∑

k=1

(
ξkℓ1 (si) −  ξℓ1 (si)

) (
ξkℓ2 (s j) −  ξℓ2 (s j)

)
, (7)

where ξkℓ (si) is the monopole (ℓ = 0) or quadrupole (ℓ = 2) correla-
tion function for pairs in the ith separation bin in the kth mock.  ξℓ(s)
is the mean value over all 600 mocks. The shape and amplitude of
the average two-dimensional correlation function computed from
the mocks is a good match to the measured correlation function
of the CMASS galaxies; see Manera et al. (2012) and Ross et al.
(2012) for more detailed comparisons. The square roots of the di-
agonal elements of our covariance matrix are shown as the error-
bars accompanying our measurements in Fig. 4. We will examine
the off-diagonal terms in the covariance matrix via the correlation

matrix, or “reduced covariance matrix”, defined as

Cℓ1ℓ2,red
i j = Cℓ1ℓ2i j /

√
Cℓ1ℓ1ii Cℓ2ℓ2j j , (8)

where the division sign denotes a term by term division.
In Figure 5 we compare selected slices of our mock covari-

ance matrix (points) to a simplified prediction from linear theory
(solid lines) that assumes a constant number density  n = 3 × 10−4

(h−1 Mpc)−3 and neglects the effects of survey geometry (see, e.g.,
Tegmark 1997). Xu et al. (2012) performed a detailed compari-
son of linear theory predictions with measurements from the Las
Damas SDSS-II LRG mock catalogs (McBride et al. prep), and
showed that a modified version of the linear theory covariance with
a few extra parameters provides a good description of the N-body
based covariances for ξ0(s). The same seems to be true here as
well. The mock catalogs show a deviation from the naive linear
theory prediction for ξ2(s) on small scales; a direct consequence is
that our errors on quantities dependent on the quadrupole are larger
than a simple Fisher analysis would indicate. We verify that the
same qualitative behavior is seen for the diagonal elements of the
quadrupole covariance matrix in our smaller set of N-body simu-
lations used to calibrate the model correlation function. This com-
parison suggests that the LPT-based mocks are not underestimating
the errors on ξ2, though more N-body simulations (and an account-
ing of survey geometry) would be required for a detailed check of
the LPT-based mocks.

The lower panels of Figure 5 compare the reduced covari-
ance matrix to linear theory, where we have scaled the Cred

i j pre-
diction from linear theory down by a constant, ci. This compar-
ison demonstrates that the scale dependences of the off-diagonal
terms in the covariance matrix are described well by linear the-
ory, but that the nonlinear evolution captured by the LPT mocks
can be parametrized simply as an additional diagonal term. Finally,

c⃝ 0000 RAS, MNRAS 000, 1–1

(BOSS, Reid et al. 2012) 

BAO 

Galaxy  
clustering 
(2PCF) 

RSD 

Time 



14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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Figure 3. Left panel: Two-dimensional correlation function of CMASS galaxies (color) compared with the best fit model described in Section 6.1 (black lines).
Contours of equal ξ are shown at [0.6, 0.2, 0.1, 0.05, 0.02, 0]. Right panel: Smaller-scale two-dimensional clustering. We show model contours at [0.14, 0.05,
0.01, 0]. The value of ξ0 at the minimum separation bin in our analysis is shown as the innermost contour. The µ ≈ 1 “finger-of-god” effects are small on the
scales we use in this analysis.

in Figure 4. The effective redshift of weighted pairs of galaxies in
our sample is z = 0.57, with negligible scale dependence for the
range of interest in this paper. For the purposes of constraining cos-
mological models, we will interpret our measurements as being at
z = 0.57.

3.2 Covariance Matrices

The matrix describing the expected covariance of our measure-
ments of ξℓ(s) in bins of redshift space separation depends in linear
theory only on the underlying linear matter power spectrum, the
bias of the galaxies, the shot-noise (often assumed Poisson) and the
geometry of the survey. We use 600 mock galaxy catalogs, based
on Lagrangian perturbation theory (LPT) and described in detail in
Manera et al. (2012), to estimate the covariance matrix of our mea-
surements. We compute ξℓ(si) for each mock in exactly the same
way as from the data (Sec. 3.1) and estimate the covariance matrix
as

Cℓ1ℓ2i j =
1

599

600∑

k=1

(
ξkℓ1 (si) −  ξℓ1 (si)

) (
ξkℓ2 (s j) −  ξℓ2 (s j)

)
, (7)

where ξkℓ (si) is the monopole (ℓ = 0) or quadrupole (ℓ = 2) correla-
tion function for pairs in the ith separation bin in the kth mock.  ξℓ(s)
is the mean value over all 600 mocks. The shape and amplitude of
the average two-dimensional correlation function computed from
the mocks is a good match to the measured correlation function
of the CMASS galaxies; see Manera et al. (2012) and Ross et al.
(2012) for more detailed comparisons. The square roots of the di-
agonal elements of our covariance matrix are shown as the error-
bars accompanying our measurements in Fig. 4. We will examine
the off-diagonal terms in the covariance matrix via the correlation

matrix, or “reduced covariance matrix”, defined as

Cℓ1ℓ2,red
i j = Cℓ1ℓ2i j /

√
Cℓ1ℓ1ii Cℓ2ℓ2j j , (8)

where the division sign denotes a term by term division.
In Figure 5 we compare selected slices of our mock covari-

ance matrix (points) to a simplified prediction from linear theory
(solid lines) that assumes a constant number density  n = 3 × 10−4

(h−1 Mpc)−3 and neglects the effects of survey geometry (see, e.g.,
Tegmark 1997). Xu et al. (2012) performed a detailed compari-
son of linear theory predictions with measurements from the Las
Damas SDSS-II LRG mock catalogs (McBride et al. prep), and
showed that a modified version of the linear theory covariance with
a few extra parameters provides a good description of the N-body
based covariances for ξ0(s). The same seems to be true here as
well. The mock catalogs show a deviation from the naive linear
theory prediction for ξ2(s) on small scales; a direct consequence is
that our errors on quantities dependent on the quadrupole are larger
than a simple Fisher analysis would indicate. We verify that the
same qualitative behavior is seen for the diagonal elements of the
quadrupole covariance matrix in our smaller set of N-body simu-
lations used to calibrate the model correlation function. This com-
parison suggests that the LPT-based mocks are not underestimating
the errors on ξ2, though more N-body simulations (and an account-
ing of survey geometry) would be required for a detailed check of
the LPT-based mocks.

The lower panels of Figure 5 compare the reduced covari-
ance matrix to linear theory, where we have scaled the Cred

i j pre-
diction from linear theory down by a constant, ci. This compar-
ison demonstrates that the scale dependences of the off-diagonal
terms in the covariance matrix are described well by linear the-
ory, but that the nonlinear evolution captured by the LPT mocks
can be parametrized simply as an additional diagonal term. Finally,
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Figure 2 The redshift-space correlation function for the 2dFGRS, ξ(σ, π),
plotted as a function of transverse (σ) and radial (π) pair separation. The func-
tion was estimated by counting pairs in boxes of side 0.2 h−1 Mpc (assuming an
Ω = 1 geometry), and then smoothing with a Gaussian of rms width 0.5 h−1 Mpc.
To illustrate deviations from circular symmetry, the data from the first quadrant
are repeated with reflection in both axes. This plot clearly displays redshift
distortions, with ‘fingers of God’ elongations at small scales and the coherent
Kaiser flattening at large radii. The overplotted contours show model predic-
tions with flattening parameter β ≡ Ω0.6/b = 0.4 and a pairwise dispersion of
σp = 400 km s−1. Contours are plotted at ξ = 10, 5, 2, 1, 0.5, 0.2, 0.1.

The model predictions assume that the redshift-space power spectrum
(Ps) may be expressed as a product of the linear Kaiser distortion and a radial
convolution14: Ps(k) = Pr(k) (1 + βµ2)2 (1 + k2σ2

pµ2/2H2
0 )−1, where µ = k̂ · r̂,

and σp is the rms pairwise dispersion of the random component of the galaxy ve-
locity field. This model gives a very accurate fit to exact nonlinear simulations15.
For the real-space power spectrum, Pr(k), we take the estimate obtained by de-
projecting the angular clustering in the APM survey13,16. This agrees very well
with estimates that can be made directly from the 2dFGRS, as will be discussed
elsewhere. We use this model only to estimate the scale dependence of the
quadrupole-to-monopole ratio (although Fig. 2 shows that it does match the full
ξ(σ, π) data very well).

The presence of bias is an inevitable consequence of the nonlinear nature of galaxy for-
mation, and the relation between mass and galaxy tracers is complex18,19,20. However,
there are good theoretical reasons to expect that b can indeed be treated as a constant
on large scales, where the density fluctuations are linear21,22. Redshift-space distortions
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APPENDIX A: REDSHIFT-SPACE
AN ISOTROPIC TWO-POINT CORRELATION
F U N C T I O N F O R T H E TA RU YA , N I S H I M I C H I &
S A I TO (2 0 1 0 ) M O D E L

The redshift-space anisotropic two-point correlation function is
obtainable by Fourier transforming the anisotropic redshift-space
power spectrum Ps(k, µ) as

ξ (r⊥, r∥) =
∫

d3k
(2π)3

eik·sP s(k, µ) =
∑

l

ξ s
l (s)Ll(ν), (A1)

where ν = r∥/s, r⊥ =
√

s2 − r2
∥ and Ll denote Legendre polynomi-

als. The correlation function multipole moments ξ s
l (s) are defined

as

ξ s
l (s) = il

∫
dk

2π2
k2P s

l (k)jl(ks), (A2)

where jl denotes the spherical Bessel functions and

P s
l (k) = 2l + 1

2

∫ 1

−1
dµP s(k, µ)Ll(µ). (A3)

In the case of biased tracers of mass, Taruya et al. (2010) model
for the redshift-space anisotropic power spectrum can be written as

P s(k, µ) = D(kµσv)
[
b2Pδδ(k) + 2bµ2f Pδθ (k)

+ µ4f 2Pθθ (k) + CA(k, µ; f , b) + CB (k, µ; f , b)
]
,

(A4)
where b is the spatial bias of the considered tracers, and

CA(k, µ; f , b) =
3∑

m,n=1

b3−nf nµ2mPAmn(k),

CB (k, µ; f , b) =
4∑

n=1

2∑

a,b=1

b4−a−b(−f )a+bµ2nPBnab(k),

with

PAmn(k) = k3

(2π)2

[∫ ∞

0
dr

∫ +1

−1
dx (Amn(r, x)P (k)

+ Ãmn(r, x)P (kr)
)

×
P

(
k
√

1 + r2 − 2rx
)

(1 + r2 − 2rx)2

+ P (k)
∫ ∞

0
dramn(r)P (kr)

]
, (A5)

PBnab(k) = k3

(2π)2

∫ ∞

0
dr

∫ +1

−1
dxBn

ab(r, x)

Pa2

(
k
√

1 + r2 − 2rx
)

Pb2(kr)

(1 + r2 − 2rx)a
, (A6)

where functions Amn(r, x), Ãmn(r, x), amn(r, x) and Bab(r, x) are
given in appendix A of Taruya et al. (2010), P(k) is the linear
mass power spectrum, P12(k) = Pδθ (k), and P22(k) = Pθθ (k). By
using the Kaiser term in equation (A4) [i.e. equation A4 without
the damping function D(kµσ v)] into equations (A3) and A2, one
obtains the corresponding correlation function multipole moments.
The non-null multipole moments are then given by

ξ s
0 (s) = b2ξδδ + bf

2
3
ξδθ + f 2 1

5
ξθθ

+ b2f
1
3
ξA11 + bf 2 1

3
ξA12 + bf 2 1

5
ξA22 + f 3 1

5
ξA23

+ f 3 1
7
ξA33 + b2f 2 1

3
ξB111 − bf 3 1

3
(ξB112 + ξB121)

+ f 4 1
3
ξB122 + b2f 2 1

5
ξB211 − bf 3 1

5
(ξB212 + ξB221)

+ f 4 1
5
ξB222 − bf 3 1

7
(ξB312 + ξB321) + f 4 1

7
ξB322

+ f 4 1
9
ξB422, (A7)

ξ s
2 (s) = bf

4
3
ξ

(2)
δθ + f 2 4

7
ξ

(2)
θθ

+ b2f
2
3
ξ

(2)
A11 + bf 2 2

3
ξ

(2)
A12 + bf 2 4

7
ξ

(2)
A22 + f 3 4

7
ξ

(2)
A23

+ f 3 10
21

ξ
(2)
A33 + b2f 2 2

3
ξ

(2)
B111 − bf 3 2

3

(
ξ

(2)
B112 + ξ

(2)
B121

)

+ f 4 2
3
ξ

(2)
B122 + b2f 2 4

7
ξ

(2)
B211 − bf 3 4

7

(
ξ

(2)
B212 + ξ

(2)
B221

)

+ f 4 4
7
ξ

(2)
B222 − bf 3 10

21

(
ξ

(2)
B312 + ξ

(2)
B321

)
+ f 4 10

21
ξ

(2)
B322

+ f 4 40
99

ξ
(2)
B422, (A8)

ξ s
4 (s) = f 2 8

35
ξ

(4)
θθ

+ bf 2 8
35

ξ
(4)
A22 + f 3 8

35
ξ

(4)
A23 + f 3 24

77
ξ

(4)
A33 + b2f 2 8

35
ξ

(4)
B211

− bf 3 8
35

(
ξ

(4)
B212 + ξ

(4)
B221

)
+ f 4 8

35
ξ

(4)
B222 − bf 3 24

77

(
ξ

(4)
B312

+ ξ
(4)
B321

)
+ f 4 24

77
ξ

(4)
B322 + f 4 48

143
ξ

(4)
B422, (A9)

ξ s
6 (s) = f 3 16

231
ξ

(6)
A33 − bf 3 16

231

(
ξ

(6)
B312 + ξ

(6)
B321

)
+ f 4 16

231
ξ

(6)
B322

+ f 4 64
495

ξ
(6)
B422, (A10)

ξ s
8 (s) = f 4 128

6435
ξ

(8)
B422, (A11)

where ξAmn and ξBnab are the Fourier conjugate pairs of PAmn and
PBnab in equations (A5) and (A6), and ξ

(l)
X are the correlation function

multipole moments associated with PX as defined in equation (A2).
For orders l = 2, 4, 6 and 8, the latter can be conveniently rewritten
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(de la Torre, Guzzo, Peacock et al. 2013) 

The function hNgal(m|z,MB)i is shown in Fig. 13 for the di↵erent
values of x probed with VIPERS. We checked the consistency of
this parameterization and verify that the wp(rp) predicted by the
mocks and the that measured are good agreement for all probed
redshift and luminosity thresholds. This is shown in the accom-
panying paper (Marulli et al. 2013).

7. Redshift-space distortions

The main goal of VIPERS is to provide with the final sample
accurate measurements of the growth rate of structure in two
redshift bins between z = 0.5 and z = 1.2. The growth rate of
structure f can be measured from the anisotropies observed in
redshift space in the galaxy correlation function or power spec-
trum. Although this measurement is degenerate with galaxy bias,
the combination f�8 is measurable and still allows a fundamen-
tal test of modifications of gravity since it is a mixture of the
di↵erential and integral growth. In this Section, we present an
initial measurement of f�8 from the VIPERS first data release.

7.1. Method

With the first epoch VIPERS data we can reliably probe scales
below about 35 h�1 Mpc. The use of the smallest non-linear
scales, i.e. typically below 10 h�1 Mpc, is however di�cult be-
cause of the limitations of current redshift-space distortion mod-
els, which cannot describe the non-linear e↵ects that relate the
evolution of density and velocity perturbations. However, with
the recent developments in perturbation theory and non-linear
models for RSD (e.g. Taruya et al. 2010; Reid & White 2011;
Seljak & McDonald 2011), we can push our analysis well into
mildly non-linear scales and obtain unbiased measurements of
f�8 while considering minimum scales of 5� 10 h�1 Mpc (de la
Torre & Guzzo 2012).

With the VIPERS first data release, we perform an initial
redshift-space distortion analysis, considering a single redshift
interval of 0.7 < z < 1.2. We select all galaxies above the mag-
nitude limit of the survey in that interval. The e↵ective pair-
weighted mean redshift of the subsample is z = 0.8. The mea-
sured anisotropic correlation function ⇠(rp, ⇡) is shown in the
top panel of Fig. 14. We have used here a linear binning of
�rp = �⇡ = 1 h�1 Mpc. One can see in this figure the two main
redshift-space distortion e↵ects: the elongation along the line-
of-sight, or Finger-of-God e↵ect, which is due to galaxy ran-
dom motions within virialized objects and the squashing e↵ect
on large scales, or Kaiser e↵ect, which represents the coherent
large-scale motions of galaxies towards overdensities. The lat-
ter e↵ect is the one we are interested in since its amplitude is
directly related to the growth rate of pertubations. Compared to
the previous high-redshift studiy using the VVDS survey, this
signature is detected with impressive signal-to-noise, with the
flattening being apparent to rp > 30 h�1 Mpc.

The two-dimensional anisotropic correlation has been exten-
sively used in the literature to measure the growth-rate param-
eter. However, with the increasing size and statistical power
of redshift surveys, an alternative approach has grown in im-
portance: the use of the multipole moments of the anisotropic
correlation function. This approach has the main advantage of
reducing the number of observables, compressing the cosmolog-
ical information contained in the correlation function. In turn,
this eases the estimation of the covariance matrices associated
with the data. We adopt this methodology in this analysis and fit
for the two first non-null moments ⇠0(s) and ⇠2(s), where most
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Fig. 14. Anisotropic correlation function of galaxies at 0.7 < z <
1.2. The top panel shows the results for the VIPERS first data release,
deduced by the Landy-Szalay estimator counting pairs in cells of side
1 h�1 Mpc. The lower two panels show the results of two simulations,
which span the 68% confidence range on the fitted value of the large-
scale flattening (see Section 7.4).
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Fig. 17. Monopole and quadrupole moments of the redshift-space
correlations, as a function of scale. The shallow curves show the results
for the 26 individual MultiDark simulation mocks; the points are for the
measured VIPERS data over the full redshift range, with assigned error
bars based on the scatter in the mocks. The solid and dotted lines corre-
spond to the best fitting models to the data for model B with Gaussian
or Lorentzian damping function respectively.

7.4. Results

We perform the redshift-space distortion analysis of the VIPERS
data in the context of a flat ⇤CDM cosmological model. Be-
fore considering the redshift-space distortions in the data, we
first test the methodology and expected errors on f�8 using the
mock samples. We fix the shape of the mass non-linear power
spectrum to that of the simulation (since the observed real-space
correlations are of high accuracy) and perform a likelihood anal-
ysis of each individual MD mock. In the case of model C we
also fix the normalisation of the power spectrum as discussed
above. The distribution of best-fitting f�8 gives us a direct esti-
mate of the probability distribution function of the parameter for
a given fitting method, and serves as a check on the errors from
the full likelihood function. We estimate the median and 68%
confidence region of the distribution. These are shown in figure
16 for the di↵erent models presented in the previous section and
for various minimum scales smin in the fit.

Model A is known to be the most biased model (e.g. Oku-
mura & Jing 2011; Bianchi et al. 2012; de la Torre & Guzzo
2012) and our results confirm these findings. We thus decide
not to describe in the following the detailed behaviour of this
model and focus on models B and C. We find that in general
model B tends to be less biased than model C, which is surpris-
ing at first sight as model C is the most advanced and supposed
to be the most accurate (Kwan et al. 2012; de la Torre & Guzzo
2012). This could be due to the quite restricted scales that we
consider and the limited validity of its implementation on scales
below s ' 10 h�1 Mpc as the maximum wavenumber to which
we can predict P�✓ and P✓✓ is about k = 0.3. We defer the anal-
ysis of this issue to the redshift-space distortion analysis of the
final sample and concentrate here on model B. The shape of the
damping function in the models also a↵ects the recovered f�8,
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Fig. 18. Marginalized likelihood distribution of f�8 in the data (solid
curve) and distribution (histogram) of fitted values of f�8 for the 26
individual MultiDark simulation mocks. These curves show a preferred
value and a dispersion in the data that is consistent at the 1� level with
the distribution over the mocks.

as expected given the minimum scales we consider, although in
the case of model B the change in f�8 is at most 5%. Includ-
ing smaller scales in the fit reduces the statistical error but at the
price of slightly larger systematic error. Therefore from this test
we decided to use model and a compromise value for the mini-
mum scale of smin = 6 h�1 Mpc.

With this preamble, we can finally compare with the corre-
sponding analysis of the real data. We assume a shape of the
mass power spectrum consistent with the cosmological parame-
ters obtained from WMAP9 (Hinshaw et al. 2012) and perform a
maximum likelihood analysis on the data. The best-fitting mod-
els are shown in Figure 17 when considering either a Gaussian
or a Lorentzian damping function. Although the mock samples
tend to slightly prefer models with Lorentzian damping as seen
in Fig. 16, we find that the Gaussian damping provides a much
better fit in the real data and we decided to quote the corre-
sponding f�8 as our final measurement. We measure a value of
f (0.8)�8(0.8) = 0.47±0.08 which is consistent with the General
Relativity prediction in a flat ⇤CDM Universe with cosmologi-
cal paramaters given by WMAP9, for which the expected value
is f (0.8)�8(0.8) = 0.45. The marginalised likelihood distribu-
tion of f�8 is shown superimposed on the mock results in Fig.
18. We see that the preferred values of the growth rate are con-
sistent with the mocks, in terms of the width of the likelihood
function being comparable to the scatter in mock fitted values.
To illustrate the degree of flattening of the anisotropic correla-
tion function induced by structure growth, we show in the mid-
dle and bottom panels of Fig. 14 ⇠(rp, ⇡) for two MD mocks
for which the measured f�8 roughly coincide with the 1� limits
around the best-fit f�8 value obtained in the data. We therefore
conclude that the initial VIPERS data prefer a growth rate that is
fully consistent with predictions based on standard gravity. Our
measurement of f�8 is also in good agreement with previous
measurements at lower redshifts as shown in Figure 19. In par-
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Figure 4. Redshift distortion parameter β reconstructed from (a) the monopole-to-real-space ratio of the power spectra, (b) the monopole-to-real-space ratio of
the correlation functions, (c) the quadrupole-to-monopole ratio of the power spectrum, and (d) the quadrupole-to-monopole ratio of the correlation functions. The
horizontal lines represent the prediction from linear theory for each measurement with the same color and line type, where the best-fit parameter for the biasing is used
for the prediction. Error bars are the standard error of the mean. The diamonds and the open circles have been offset in the horizontally positive direction for clarity,
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(A color version of this figure is available in the online journal.)

P (2/0)(k) ≡ P2(k)
P0(k)

=
4
3β + 4

7β2

1 + 2
3β + 1

5β2
. (6)

The last equality in the two equations holds only on large scales
where linear theory can be applied.

3.2. Configuration Space

The redshift-space correlation functions can be expressed
similarly to the power spectra under the plane-parallel approxi-
mation as

ξ (s)(rp, rπ ) = ξ0(r)L0(µ) + ξ2(r)L2(µ) + ξ4(r)L4(µ), (7)

where rp and rπ are the separations perpendicular and parallel
to the line of sight and µ is the cosine of the angle between
the separation vector and the line of sight µ = cos θ = rπ/r .
The multipoles of the redshift-space correlation function are
expressed as

ξl(r) = 2l + 1
2

∫ +1

−1
ξ (s)(rp, rπ )Ll(µ)dµ. (8)

In linear theory, the ratio of the monopole to the real-space
correlation function and the quadrupole-to-monopole ratio are
related to the redshift distortion parameter β on large scales
(Hamilton 1992):

ξ (0/r)(r) ≡ ξ0(r)
ξ (r)(r)

= 1 +
2
3
β +

1
5
β2, (9)

ξ (2/0)(r) ≡ ξ2(r)

ξ0(r) − ξ̄0(r)
=

4
3β + 4

7β2

1 + 2
3β + 1

5β2
, (10)

where ξ̄0(r) = (3/r3)
∫ r

0 ξ0(r ′)r ′2dr ′. When one wants to con-
strain the pairwise velocity dispersion (PVD) of galaxies which
becomes dominant on small scales, the real-space correlation
function is convolved with the distribution function of pair-
wise velocities to give the redshift-space correlation function
(Peebles 1980), which is not the purpose of this paper (see, e.g.,
Peacock et al. 2001; Zehavi et al. 2002; Hawkins et al. 2003; Jing
& Börner 2004; Guzzo et al. 2008; Cabré & Gaztañaga 2009).
We will briefly discuss the effect of the pairwise velocities on β
reconstruction in Section 4.2.

4. RESULTS AND DISCUSSION

4.1. β Reconstruction

In Figure 4, we show the resulting β values of dark matter
halos, LRGs, and dark matter reconstructed by the methods
described in Section 3. In each panel, the horizontal lines
show the large-scale values predicted by general relativity,
β = Ω0.55

m (z)/b (Linder 2005). For the bias parameters in
Fourier and configuration space, we use the best-fit values
obtained in Figure 3. The β value of dark matter is simply equal
to the growth rate f because b = 1. We can see the agreement
of the β values obtained from the L600 and L1200 samples
with the same halo mass, thus the different number of particles,
indicating that the resolution of a halo with 12 particles is

5
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Although this approach has been used primarily to model observa-

tions of small-scale distortions (e.g. Peebles 1979; Bean et al. 1983;

Davis & Peebles 1983), equation (1) is valid in the linear regime as

well (Fisher 1995). Scoccimarro (2004) demonstrated that, provided

P(vz) is correct, the streaming ‘model’ is a valid description of the

relation between the real- and redshift-space correlation functions

on all scales.

As presented, equation (1) contains no cosmology. The afore-

mentioned investigations utilized the streaming model to estimate

the velocity dispersion of galaxy pairs, which was used to estimate

the matter density parameter !m through a ‘cosmic virial theorem’.

More recent studies of redshift-space distortions have utilized a

modified linear theory model of anisotropies that, when applied to

the real-space galaxy power spectrum PR(k), takes the form

PZ (k, µ) = PR(k)(1 + βµ2)2

(

1 +
k2σ 2

k µ2

2

)−1

, (2)

where β = !0.6
m /bg, bg is the linear bias parameter, and µ is the co-

sine of the angle between the wavevector k and the line of sight. The

term (1 + βµ2)2, derived from linear theory by Kaiser (1987), mod-

els the coherent flow of matter out of underdense regions and into

overdense regions. The last term on the right-hand side represents

an exponential distribution of random, uncorrelated peculiar veloci-

ties, which dominates PZ on small scales and is meant to encapsulate

the FOG effect described above. Equation (2), commonly referred

to as the ‘dispersion model’, has two free parameters, β and the

galaxy velocity dispersion σ k. Scoccimarro (2004) points out sev-

eral deficiencies in this model, both in the inability of linear theory

to properly describe anisotropies even in the large-scale limit, and

in the oversimplification of using a single parameter σ k, which has

no clear physical definition, to model small-scale velocities. Conse-

quently, equation (2) introduces a 10–15 per cent systematic error

in the determination of β (Hatton & Cole 1999; Paper I), a level of

error significant compared with the precision achievable with SDSS

and the 2dFGRS.

The goal of this paper is to create an analytic model for the

redshift-space correlation function by combining the streaming

model of equation (1) with the halo occupation distribution (HOD;

see e.g. Jing, Mo & Boerner 1998; Ma & Fry 2000; Peacock & Smith

2000; Seljak 2000; Benson 2001; Scoccimarro et al. 2001; Berlind

& Weinberg 2002; Cooray & Sheth 2002). The HOD quantifies bias

on both linear and non-linear scales for a given galaxy sample by

specifying the probability P(N|M) that a halo of mass M contains

N galaxies of a given type, together with any spatial and velocity

biases between galaxies and dark matter within individual haloes.

The HOD has been utilized to model the real-space clustering of

galaxies in the SDSS (Zehavi et al. 2004, 2005; Tinker et al. 2005)

and the 2dFGRS (Yang, Mo & van den Bosch 2003; Tinker et al.

2006b). In this paper we extend the HOD model from real space to

redshift space by providing a model for P(vz) which is physically

motivated and empirically calibrated on numerical simulations.

Several recent papers have presented calculations of redshift-

space distortions using halo models of dark matter and galaxy clus-

tering (Seljak 2001; White 2001; Kang et al. 2002; Cooray 2004;

Skibba et al. 2006; Slosar, Seljak & Tasitsiomi 2006), providing

insight into the role of non-linear dynamics and non-linear bias

in shaping clustering and anisotropy. However, these studies rely

on the same linear theory component of equation (2) for large-

scale anisotropies. Kang et al. (2002) show that their model only

reproduces the dark matter PZ (k, µ) from N-body simulations af-

ter introducing a σ k parameter for the haloes, even after the virial

motions of particles within haloes were taken into account. Skibba

et al. (2006) demonstrate the difficulty is modelling redshift-space

galaxy clustering in the transition region between quasi-linear and

fully non-linear regimes using a linear theory description of halo ve-

locities. Other recent papers have used the halo approach to model

galaxy and dark matter velocity statistics (Sheth et al. 2001a; Sheth

& Diaferio 2001; Sheth et al. 2001b). While the model outlined in

these papers is derived from first principles, in contrast to the cali-

brated model presented here, it is still based on linear theory, which

does not provide the required accuracy for a robust implementation

of equation (1). The purpose of our model is less as a first-principles

derivation of P(vz) than as a tool to extract information from forth-

coming observational data. In this context, the accuracy of the model

is the paramount concern. In the course of developing the model,

we will also gain new insight into the physics that determines P(vz),

especially the role of environment in producing a non-Gaussian ve-

locity distribution.

An accurate model for ξ (rσ , rπ ) with the HOD must properly

incorporate halo motions. A proper model for halo pairwise ve-

locities Ph(v) must correctly describe the DF for an arbitrary pair

of halo masses, at any angle with respect to the line of sight, and

as a function of separation. In the large-scale limit, linear theory

is adequate for describing the mean infalling velocities of haloes

(see e.g. Juszkiewicz, Springel & Durrer 1999; Sheth et al. 2001a).

However, the applicability of linear theory is problematic at scales

where the observational data are robust. At all scales, linear theory

does not accurately predict the pairwise dispersion (Scoccimarro

2004). Higher order moments also play an important role in Ph(v).

N-body results have shown that the radial velocity PDF of dark mat-

ter haloes exhibits significant skewness and kurtosis (Zurek et al.

1994; Juszkiewicz, Fisher & Szapudi 1998).1 The skewness arises

from the infall of matter into overdense regions (Juszkiewicz et al.

1998). The kurtosis, manifesting as exponential wings in both the

radial and tangential velocities, is due to local non-linear effects for

each halo in the pair. Scoccimarro (2004) concludes that a Gaus-

sian is never a good description of velocities, even at the largest

scales. Scoccimarro (2004) focuses on velocity statistics of dark

matter, but local non-linear effects apply to haloes as well (Kang

et al. 2002), and Ph(v) from simulations are non-Gaussian at all

scales. It is not sufficient for Ph(v) to describe the first two moments

of the velocity distribution. To accurately model ξ (rσ , rπ ), Ph(v)

must reasonably describe higher order moments of the distribution

as well (see e.g. Fisher et al. 1994).

As stated in Paper I, our method for analysing redshift-space dis-

tortions is to first use measurements of the projected correlation

function wp(rp) to determine the parameters of the HOD for a given

cosmology. If HOD parameters cannot be found that allow the cos-

mological model to reproduce the observed wp(rp) then that model

is ruled out. Once the HOD has been determined, the redshift-space

clustering is investigated by the analytic model presented here or the

N-body approach of Paper I. The cosmological parameters that most

directly influence redshift-space clustering are the matter density

parameter !m, the amplitude of the linear matter power spectrum,

defined here by σ 8, the rms linear-theory mass fluctuation in 8 h−1

Mpc spheres (where h ≡ H0/100 km s−1 Mpc−1), and the velocity

bias of the galaxy sample, which we parametrize by αv, the ratio

1 In this paper we use the convention of radial being the direction connecting

the halo pair, tangential being in a direction orthogonal to the radial, and line

of sight to be the direction from the observer. Velocities in these directions

will be referred to as vr, vt and vz , respectively.
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anisotropy of galaxy clustering. The light-blue error bars (shown with a slight o↵set in redshift for visualisation purposes) represent the
case of a galaxy density reduced by a factor of two with respect to that forecasted for the galaxies observed by Euclid (Geach et al.
2008). The solid black line represents the fiducial f �

8

, computed for the cosmology shown in Eq. (5). The dashed green line shows the
growth of a flat DGP model (calculated by numerical integration of the corresponding equation for f(z)). The red dotted line represents
f �

8

of a coupled models with coupling parameter �
c

= 0.2. All models are computed for ⌦
m0

= 0.271 and for the same �
8

(z
CMB

) as for
the fiducial model. In the same plot we also show measurements of f �

8

from past surveys (magenta error bars) and the recent Wiggle-z
survey (pink error bars), see explanation in the text.

survey reference paper z f�
8

VVDS F22 Guzzo et al. (2008) 0.77 0.49± 0.19
wide

2SLAQ Ross et al. (2007) 0.55 0.50± 0.07
galaxy

SDSS LRG Cabre & Gaztanaga (2009) 0.34 0.53± 0.07
Samushia et al. (2011) 0.25 0.35± 0.06
Samushia et al. (2011) 0.37 0.46± 0.04

2dFGRS Hawkins et al. (2003) 0.15 0.39± 0.08

WiggleZ Blake et al. (2011) 0.22 0.49± 0.07
0.41 0.45± 0.04
0.6 0.43± 0.04
0.78 0.78± 0.04

Table 2. Current measurements of f�
8

We notice that we reach accuracies between 1.3% and
4.4% in the measurement of f �

8

depending on the redshift
bin, where the highest precision is reached for redshifts z '
1.0.

5.1 Comparison to other surveys

Together with Euclid, other ongoing and future surveys will
constrain cosmology by measuring f�

8

. Here we compare the
relative errors on f�

8

obtained using di↵erent spectroscopic
galaxy redshift surveys. In particular, we consider the BOSS
survey5 (see Schlegel et al. 2009), the BigBOSS6 Emission
Line Galaxies (ELGs) and Luminous Red Galaxies (LRGs)7

Regarding the fiducial bias, we use the forecasts by Orsi
et al. (2009) for BigBOSS ELGs. We use b = 2G(0)/G(z)
(where G(z) is the standard linear growth rate) for BOSS
and BigBOSS LRGs (see Reid et al. (2010)). Table 3 sum-
marises the main characteristics of these surveys.

The results are shown in Fig. 3. We first notice that Eu-
clid (represented by dark-green circles) will obtain the most
precise measurements of growth, even in the pessimistic situ-
ation of detecting only half the galaxies (light-green circles).
In redshift coverage it will be perfectly complementary to
BOSS. The partial overlap with BigBOSS, whose ELG sam-
ple will reach similar errors up to z ⇠ 1.4, will allow for inter-
esting useful independent measurements and cross-checks.

5 http://cosmology.lbl.gov/BOSS/
6 http://bigboss.lbl.gov/
7 We thank the BigBOSS consortium for providing their latest
estimate of their expected galaxy densities, which we used in cre-
ating this plot.
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as �

g

= b
L

�. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter � = f/b

L

, which accounts
for the large-scale linear bias b

L

of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,
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Hereafter, we will refer as the different P
K

models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as � / ✓. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = b

L

and a general non-linear bias which we define as
b(k) = (P

gg

/P
��

)

1/2

(k) = b
L

b
NL

(k), where P
gg

is the galaxy
power spectrum and b

NL

(k) is the scale-dependent part of the bias
that tends to unity at small k.

The redshift-space distortions models necessitate P
��

, P
�✓

,
and P

✓✓

real-space power spectra as input. Here we use the P
��

provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain P

✓✓

and P
�✓

from P
��

. The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ⇤CDM and quintessence dark energy
cosmological models. Alternatively P

✓✓

, P
�✓

, P
��

can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the P
��

, P
�✓

, P
✓✓

calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0

and z = 1. We find that all power spectra agree very well below
k ' 0.2 and k ' 0.3 respectively for the two redshifts considered,
except in the case of P

�✓

for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the P

�✓

fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as �
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= b
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�. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter � = f/b
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, which accounts
for the large-scale linear bias b
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of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,
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Hereafter, we will refer as the different P
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models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as � / ✓. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = b
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and a general non-linear bias which we define as
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k = 0.2 for both standard ⇤CDM and quintessence dark energy
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can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the P
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calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0

and z = 1. We find that all power spectra agree very well below
k ' 0.2 and k ' 0.3 respectively for the two redshifts considered,
except in the case of P
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for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the P
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fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as �
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�. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter � = f/b
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, which accounts
for the large-scale linear bias b

L

of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
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tion as their Fourier-space counterpart for clarity. All the models
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B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as � / ✓. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
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can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).
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where we defined uk(r) = �vk(r)/(faH(a)) with f being the
linear growth rate. The linear growth rate parameter is defined as
the logarithmic derivative of the linear growth factor D(a) and
given by f(a) = d lnD/d ln a. To a very good approximation it
has a generic form (Wang & Steinhardt 1998; Linder 2005),

f(a) ' ⌦

m

(a)� (4)

where

⌦

m

(a) =
⌦

m,0

a3

H2

0

H2

(a)
. (5)

In this parametrisation, while ⌦
m

characterises the mass content in
the Universe, the exponent � directly relates to the theory of gravity
(e.g. Linder 2004). General Relativity scenarios have � ' 0.55.

From Eq. 2 and Eq. 3, one can write the redshift-space density
field as,

�s(s) =
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� �
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��1

. (6)

One usually assumes an irrotational velocity field for which
uk(r) = @k�

�1✓(r) and where ✓(r) = r · v(r) is the veloc-
ity divergence field and � denotes the Laplacian. In that case Eq. 6
can be recast,
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In Fourier space, it is noticeable that @2

k�
�1

= (kk/k)
2

= µ2

with µ being the cosine of the angle between the line-of-sight and
the separation vector. Therefore, one can write the redshift-space
density field (Scoccimarro et al. 1999) as,
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and the redshift-space power spectrum as,
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where in the latter equation, �uk = uk(x) � uk(x
0
) and r =

x � x

0. The redshift-space power spectrum given in Eq. 10 is al-
most exact, the only approximation which has been done is to as-
sume that all object line-of-sight separations are parallel. This ap-
proximation is valid for samples with pairs covering angles typ-
ically lower than 10

� (Matsubara 2000). Eq. 10 captures all the
different regimes of distortions. While the terms in square brackets
describe the squashing effect or “Kaiser effect” which leads to an
enhancement of clustering on large scales due to the coherent infall
of mass towards overdensities, the exponential prefactor is respon-
sible to some extent for the Fingers-of-God effect (FoG, Jackson
1972) which disperses objects along the line-of-sight due to ran-
dom motions in virialised structures. Scoccimarro (2004) proposed
a simple ansatz for the redshift-space anisotropic power spectrum
by making the assumption that the exponential prefactor and the
term involving the density and velocity fields can be separated in
the ensemble average. In that case Eq. 10 simplifies to,
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(k, µ) = e�(fkµ�v)
2 ⇥

P
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where P

��

, P
�✓

, P
✓✓

are respectively the non-linear mass density-
density, density-velocity divergence, and velocity divergence-
velocity divergence power spectra and �

v

is the pairwise velocity

dispersion defined as,
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=
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6⇡2

Z
P
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(k)dk. (12)

It is found that this model captures most of the distortion fea-
tures predicted by N-body simulations (Scoccimarro 2004; Jen-
nings et al. 2011) although it breaks down in the non-linear regime
(Percival & White 2009; Taruya et al. 2010). Note that in the linear
regime where P

��

= P
�✓

= P
✓✓

= P and in the limit where k�
v

tends to zero, one recovers the original Kaiser (1987) formula,

P s

(k, µ) = [1 + 2µ2f + µ4f2

]P (k), (13)

derived from linear-order calculations.
In principle, the exponential prefactor and the term involving

the density and velocity fields in Eq. 10, which we will refer to as
the damping and Kaiser terms in the following, cannot be treated
separately. Additional terms may arise in Eq. 11 from the coupling
between the exponential prefactor and the velocity divergence and
density fields. Taruya et al. (2010) proposed an improved model
that takes into account these couplings, adding two correction terms
C

A

and C
B

to Scoccimarro (2004)’s formula such as,

P s

(k, µ) = D(kµ�
v

)

⇥
P
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(k) + 2µ2fP
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(k) + µ4f2P
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(k)

+C
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(k, µ; f) + C
B

(k, µ; f)] , (14)

whose perturbative expressions are given in their appendix A. In
the improved model, the exponential prefactor has been replaced
by an arbitrary functional form D(kµ�

v

) for which �
v

is an ef-
fective pairwise velocity dispersion parameter that can be fitted for.
Taruya et al. (2010) showed that while adopting a Gaussian or a
Lorentzian for the damping function and letting �

v

free, one im-
proves dramatically the fit to the redshift-space power spectrum in
large dark matter simulations, particularly on translinear scales.

The function D(kµ�
v

) damps the power spectra in the Kaiser
term but also partially mimics the effects of the pairwise velocity
distribution (PVD) in virialised systems, which translate into the
FoG seen in the anisotropic power spectrum and correlation func-
tion on small scales. This is analogous to the phenomenological
dispersion model proposed in the early nineties (e.g. Fisher et al.
1994; Peacock & Dodds 1994) in which the linear Kaiser model
in configuration space (Hamilton 1992) is radially convolved with
a PVD model to reproduce the FoG elongation on small scales, as
for the early streaming model (Peebles 1980).

There is however not any simple general functional form for
the PVD that matches all scales for all types of tracers. The shape
of the PVD is found to depend on galaxy physical properties and
halo occupation (Li et al. 2006; Tinker et al. 2006), and its asso-
ciated pairwise velocity dispersion to vary with scale, in particular
at small separations (e.g. Hawkins et al. 2003; Cabré & Gaztañaga
2009b). It can be shown mathematically that the PVD is in fact not
a single function but rather an infinite number of PVD correspond-
ing to different scales and angles between velocities and separation
vectors (Scoccimarro 2004). In practice however, the use of an ex-
ponential distribution, a Gaussian or other forms with more degrees
of freedom (e.g. Tang et al. 2011; Kwan et al. 2012) shows to be
very useful to fit the residual small-scale distortions remaining once
the large-scale Kaiser distortions are accounted for, unless one is
interested in modelling the very small highly non-linear scales.

2.2 Configuration space

The redshift-space anisotropic two-point correlation function can
be obtained by Fourier-transforming the anisotropic redshift-space
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0. The redshift-space power spectrum given in Eq. 10 is al-
most exact, the only approximation which has been done is to as-
sume that all object line-of-sight separations are parallel. This ap-
proximation is valid for samples with pairs covering angles typ-
ically lower than 10

� (Matsubara 2000). Eq. 10 captures all the
different regimes of distortions. While the terms in square brackets
describe the squashing effect or “Kaiser effect” which leads to an
enhancement of clustering on large scales due to the coherent infall
of mass towards overdensities, the exponential prefactor is respon-
sible to some extent for the Fingers-of-God effect (FoG, Jackson
1972) which disperses objects along the line-of-sight due to ran-
dom motions in virialised structures. Scoccimarro (2004) proposed
a simple ansatz for the redshift-space anisotropic power spectrum
by making the assumption that the exponential prefactor and the
term involving the density and velocity fields can be separated in
the ensemble average. In that case Eq. 10 simplifies to,
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It is found that this model captures most of the distortion fea-
tures predicted by N-body simulations (Scoccimarro 2004; Jen-
nings et al. 2011) although it breaks down in the non-linear regime
(Percival & White 2009; Taruya et al. 2010). Note that in the linear
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derived from linear-order calculations.
In principle, the exponential prefactor and the term involving

the density and velocity fields in Eq. 10, which we will refer to as
the damping and Kaiser terms in the following, cannot be treated
separately. Additional terms may arise in Eq. 11 from the coupling
between the exponential prefactor and the velocity divergence and
density fields. Taruya et al. (2010) proposed an improved model
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by an arbitrary functional form D(kµ�
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) for which �
v

is an ef-
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Taruya et al. (2010) showed that while adopting a Gaussian or a
Lorentzian for the damping function and letting �
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free, one im-
proves dramatically the fit to the redshift-space power spectrum in
large dark matter simulations, particularly on translinear scales.

The function D(kµ�
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) damps the power spectra in the Kaiser
term but also partially mimics the effects of the pairwise velocity
distribution (PVD) in virialised systems, which translate into the
FoG seen in the anisotropic power spectrum and correlation func-
tion on small scales. This is analogous to the phenomenological
dispersion model proposed in the early nineties (e.g. Fisher et al.
1994; Peacock & Dodds 1994) in which the linear Kaiser model
in configuration space (Hamilton 1992) is radially convolved with
a PVD model to reproduce the FoG elongation on small scales, as
for the early streaming model (Peebles 1980).

There is however not any simple general functional form for
the PVD that matches all scales for all types of tracers. The shape
of the PVD is found to depend on galaxy physical properties and
halo occupation (Li et al. 2006; Tinker et al. 2006), and its asso-
ciated pairwise velocity dispersion to vary with scale, in particular
at small separations (e.g. Hawkins et al. 2003; Cabré & Gaztañaga
2009b). It can be shown mathematically that the PVD is in fact not
a single function but rather an infinite number of PVD correspond-
ing to different scales and angles between velocities and separation
vectors (Scoccimarro 2004). In practice however, the use of an ex-
ponential distribution, a Gaussian or other forms with more degrees
of freedom (e.g. Tang et al. 2011; Kwan et al. 2012) shows to be
very useful to fit the residual small-scale distortions remaining once
the large-scale Kaiser distortions are accounted for, unless one is
interested in modelling the very small highly non-linear scales.

2.2 Configuration space

The redshift-space anisotropic two-point correlation function can
be obtained by Fourier-transforming the anisotropic redshift-space
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 An undesirable perspective...(?)  

  Non-linear RSD model by Taruya et 
al. (2010) in terms the two-point 
correlation function multipole 
moments 

  Accurate but need to be able to 
predict the non-linear density-
density, velocity-div - density and 
velocity-div –velocity-div power 
spectra for any cosmology.  
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where b is the spatial bias of the considered tracers and,
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where functions A
mn

(r, x), eA
mn

(r, x), a
mn

(r, x), B
ab

(r, x) are
given in Appendix A of Taruya et al. (2010), P (k) is the linear
mass power spectrum, P

12

(k) = P
�✓

(k), and P
22

(k) = P
✓✓

(k).
By using the Kaiser term in Eq. A4 (i.e. Eq. A4 without the damp-
ing function D(kµ�

v

)) into Eq. A3 and A2, one obtains the cor-
responding correlation function multipole moments. The non-null

multipole moments are then given by,
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where ⇠
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and ⇠
Bnab

are the Fourier conjugate pairs of P
Amn

and P
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in Eqs. A5 and A6, and ⇠
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X

are the correlation function
multipole moments associated with P
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as defined in Eq. A2. For
orders l = 2, l = 4, l = 6 and l = 8, the latter can be conveniently
rewritten as,
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where,
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These identities, which orders l = 2 and l = 4 were already found
by Hamilton (1992) and Cole et al. (1994), are obtained by using re-
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Figure 4. Top: relative systematic error on f for L > L⇤ galaxies at z = 1

in the case of models for which galaxy bias is assumed to be linear. The
light (dark) shaded band marks the 2% (5%) region around the fiducial
value. Bottom: corresponding 1� statistical errors on f .
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Figure 5. Same as Fig. 4 but at redshift z = 0.1. Note the very different
behaviour of all estimators with respect to the z = 1 case.

rate by 3 � 7% and 5 � 8% at z = 1 and z = 0.1 respectively.
Finally, we note that model A with exponential damping (A-
EXP) applied to scales rmin

? < 10h

�1

Mpc, which is one of the
most commonly used model in the literature, performs worst,
systematically underestimating f by up to 10% in agreement
with recent analysis (e.g. Bianchi et al. 2012).

These results are qualitatively consistent with the power
spectrum analysis of Kwan et al. (2012), who show that for
dark matter only at z = 0, z = 0.5 and z = 1, C-GAUSS1

is the least biased model when fitting up to k
max

= 0.1. Our
tests show however that for galaxies, model C-EXP is less biased
than C-GAUSS. In fact the choice of damping function has only a
significant impact on model’s ability to handle small scales, with
the difference diminishing with increasing rmin

? given the similar
asymptotic behaviour of the two functional forms. Conversely, we
note that the Gaussian damping produces in general slightly lower
statistical errors than the exponential damping. These tend also to
be about 15% smaller for models A and B than for model C.

It is important to note that for rmin

? < 10h

�1

Mpc, the
accuracy with which f is recovered tends to deteriorate for
all models. This may be associated with the increase of non-
linearities in the clustering. In this regime, the assumption of
linear biasing breaks down and it becomes crucial to account
for non-linearities to recover unbiased measurements of the
growth rate, as we will discuss in the next sections.

3.3 Effect of galaxy scale-dependent bias

We now let the galaxy bias vary with scale in the models and
study whether this can improve the recovery of the growth
rate parameter, in particular when including scales below
10h

�1

Mpc in the fitting. In general, the galaxy bias in config-
uration space can be defined as,

b(r) =

✓
⇠
gg

(r)

⇠
��

(r)

◆
1/2

= b
L

b
NL

(r) (26)

where ⇠
gg

is the galaxy real-space auto-correlation function and
b
NL

(r) is the non-linear scale-dependent part of the bias. It is im-
portant to stress that ⇠

gg

(r) is directly measurable from observa-
tions by deprojecting the observed projected correlation function
w(r?) (Saunders et al. 1992). This procedure allows one to cor-
rectly recover the shape of ⇠

gg

(r) up to about 30h�1

Mpc (e.g.
Saunders et al. 1992; Cabré & Gaztañaga 2009b) while it can
possibly introduce noise. In principle the latter can increase
the statistical error but may not introduce any systematic bias
in the recovery of f , although this has to be investigated in
more details in practical applications. In the following we will
therefore make the assumption that ⇠

gg

(r) is known and use the
measured real-space ⇠

gg

(r) from the simulated catalogues to infer
b
NL

(r) to be used in the models. In fact, it is not necessary to know
the exact shape of ⇠

gg

(r) on scales larger than about 20 � 30 h

�1

Mpc, where one generally finds the galaxy bias to be almost scale-
independent and can thus safely assume b

NL

(r) = 1. A notable
exception is that of more non-linear objects, for which the scale
dependence may extend to larger scales (see section 3.3.2).

Fig. 8 shows the non-linear scale-dependent component of
galaxy bias, b

NL

(r), for the different galaxy populations in our
simulated catalogues at the two reference redshifts considered,
z = 1 and z = 0.1. In the previous section we considered only
catalogues of galaxies with L > L⇤, while in this figure we in-
troduce more extreme galaxy populations, which we analyse in the
following section. To define b

NL

(r), the linear bias b
L

has been
determined for each galaxy population by minimising the differ-
ence between ⇠

gg

and b2
L

⇠
��

on scales above r = 10h

�1

Mpc.

1 This model is referred to as Taruya++ with empirical damping in Kwan
et al. (2012)

c� 2011 RAS, MNRAS 000, 1–16

(de la Torre & Guzzo 2012) 

Most advanced non-linear models 
allow to better model RSD when 
going to the quasi-non-linear 
regime. 
 
Taruya et al. 2010 model allows 
recovering f at the 5% percent level 
 
 

à We are not yet at the 
percent accuracy on the 

growth rate 



Summary 

  RSD is a fundamental probe to test and understand the cosmological 
model and in particular the origin of cosmic acceleration 

  Current measurements are consistent with standard (Einstein) gravity 
but are not able to distinguish between different gravity models 

  Next generation massive redshift surveys such as Euclid will allow the 
measurement of f(z) to a few percent up to z=2  

 à But RSD models need to be improved to reduce  
 systematics  

  Improved non-linear prescriptions have been recently proposed but can 
be difficult to implement, need to converge on models  


