OCEVU Workshop : Beyond 6 parameters **Clusters abundance** & mass-temperature scaling

Stéphane ILIĆ

with A. Blanchard

3rd March 2015

Introduction

- 2 Our method
- 3 Results on the scaling law
- Implications for Planck results

Context

Dark Energy (DE)

- Responsible for accelerated expansion of the Universe
- Evidenced in the late 1990s
- Crowned by the 2011 Nobel Prize in Physics

- In the standard model : $\Lambda \rightarrow {\rm most}$ "economical"
- But many alternatives :
 - scalar fields
 - modified gravities
 - inhomogeneous models...

Sensitive indicator of cosmology

Galaxies surveys

- (Statistical) Properties depend on cosmology
- In particular : Two-point correlation function
- How about "one-point" (⇔ abundance)?

Sensitive indicator of cosmology

Galaxies are non-linear, abundance hard to predict; however....

Clusters of galaxies

- Scales closer to the linear regime
- Strong dependence on growth rate of structures

Clusters as cosmological probes

How to extract information from clusters?

- Count them
- Compare to predictions

- Predicts n_{clusters} for any M & $z \rightarrow$ mass function
- Fits N-body simulations well
- Modern variants (S&T, Tinker, ...)

Theoretical mass function

(blue=S&T, green=Tinker, dashed green=Tinker w/ σ_8 shift)

Objective : compare observed and predicted $n_{\text{clusters}}(M, z)$

Difficult in practice :

- Identifying clusters in the real data?
- Precise definition of a cluster?
- Total mass is not an observable !

Application to data

Several definition of cluster mass/radius :

- $R/M_{\rm virial}$
- M₅₀₀
- $M_{500 \text{critical}}$,...

Several observables :

- X-Ray Temperature
- Sunyaev-Zel'dovich
- Weak Lensing
 - Masses and observables need to be calibrated
 - Often need additional assumptions/models

Current status

In the literature :

- Tensions between observables, e.g. T_X vs. WL masses
- Over/under/no bias ? Not clear

Also :

- \bullet Tensions in derived cosmological results \Rightarrow Planck SZ
- Pb with clusters mass (bias ~ 0.6)? Selection function? Or cosmology (ΛCDM extensions)?

3 Results on the scaling law

Instead of using clusters for cosmology...

... use cosmology to constrain physical state of clusters

In practice :

- Start from observation : robust sample of X-ray clusters w/ T_X
- Formulate a T_X -M scaling law w/ free normalisation
- Enforce agreement with cosmology
- No other assumptions needed

1st ingredient : clusters data

Starting point : flux limited sample of (70) local X-ray clusters each with detection volume

1st ingredient : clusters data

From this : unbiased estimator of n(>T)

$$n(>T) = \sum_{T_i > T} \frac{1}{V_i}$$

- Virial theorem : $T \propto GM/R$
- Cluster definition : $M_{\Delta} = \frac{4\pi}{3} \Delta \Omega_m \rho_c (1+z)^3 R^3$

Scaling law :

$$T = A_{TM} (hM_{\Delta})^{2/3} \left(\frac{\Omega_m \Delta}{178}\right)^{1/3} (1+z)^{1+\alpha_{TM}}$$

 \Rightarrow Use cosmology to determine A_{TM}

1 Introduction

Using the CosmoMC engine :

- Perform MCMC on { cosmological parameters $+ A_{TM}$ }
- Fits cosmological data (CMB)...
- ... and fits n(>T) thanks to a new module
- At each step :

Calibrating T-M with cosmology

Likelihoods for A_{TM} for any M definition and MF model

Calibrating T-M with cosmology

We can estimate M for any X-ray cluster

...but calibration valid only if cosmology is valid...

1 Introduction

3 Results on the scaling law

Planck masses

- Measure of SZ observables (Y_{500}, θ_{500})
- (External) SZ-M scaling relation (w/ hydrostatic equilibrium)
- Resulting masses known to be biased : $M_{estimated} = (1 b)M_{true}$
- Fiducial (1 b) = 0.8 (motivated by num. simulations)

Our masses

- Measure of X-ray temperatures
- T_X -M scaling law with free parameter A_{TM}
- A_{TM} determined by cosmological data

Comparing our mass estimates with Planck SZ masses

- Planck masses < ours
- We can play on Planck bias (1-b) to match both

• One
$$A_{TM} \rightarrow$$
 one $(1-b)$

Translate A_{TM} likelihood into (1-b) likelihood

• CMB cosmology favours $(1 - b) \sim 0.6 \Rightarrow$ Same as determined by Planck

• "SZ cosmology" favours $(1 - b) \sim 0.8 \Rightarrow$ Same as "fiducial" SZ Planck

Everything appears coherent

Conclusions

- Local temperature distribution well reproduced
- M/T calibration determined with a $\sim 10\%$ accuracy
- Self-consistency with ΛCDM

Prospects

- Move to higher redshift
- Include possible evolution effects
- Strong constraints on growth rate
- Discriminate Dark Energy/MG