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The Universe is accelerating!

...why?!



• Two main classes of observables:


Dark energy: current situation



• Two main classes of observables:


• Background: compatible with w=-1 (LCDM)


Dark energy: current situationDark energy: current situation

• Background: compatible with w = -1
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ABSTRACT
We have developed a technique to systematically discover and study high-redshift supernovae that can

be used to measure the cosmological parameters. We report here results based on the initial seven of
more than 28 supernovae discovered to date in the high-redshift supernova search of the Supernova
Cosmology Project. We �nd an observational dispersion in peak magnitudes of this disper-p

MB
\ 0.27 ;

sion narrows to after ““ correcting ÏÏ the magnitudes using the light-curve ““ width-p
MB,corr \ 0.19

luminosity ÏÏ relation found for nearby (z ⇥ 0.1) Type Ia supernovae from the Cala� n/Tololo survey
(Hamuy et al.). Comparing light-curve widthÈcorrected magnitudes as a function of redshift of our
distant (z \ 0.35È0.46) supernovae to those of nearby Type Ia supernovae yields a global measurement
of the mass density, for a " \ 0 cosmology. For a spatially Ñat universe (i.e.,)M \ 0.88~0.60`0.69 )M ] )" \
1), we �nd or, equivalently, a measurement of the cosmological constant,)M \ 0.94~0.28`0.34 )" \ 0.06~0.34`0.28
(\0.51 at the 95% con�dence level). For the more general Friedmann-Lemaiü tre cosmologies with inde-
pendent and the results are presented as a con�dence region on the plane. This region)M )", )M-)"does not correspond to a unique value of the deceleration parameter We present analyses and checksq0.
for statistical and systematic errors and also show that our results do not depend on the speci�cs of the
width-luminosity correction. The results for are inconsistent with "-dominated, low-)"-versus-)Mdensity, Ñat cosmologies that have been proposed to reconcile the ages of globular cluster stars with
higher Hubble constant values.
Subject headings : cosmology : observations È distance scale È supernovae : general

1. INTRODUCTION

The classical magnitude-redshift diagram for a distant
standard candle remains perhaps the most direct approach
for measuring the cosmological parameters that determine
the fate of the cosmic expansion (Sandage The1961, 1989).
�rst standard candles used in such studies were �rst-ranked
cluster galaxies & Oke Sandage, &(Gunn 1975 ; Kristian,
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Westphal and the characteristic magnitude of the1978)
cluster galaxy luminosity function More recent(Abell 1972).
measurements have used powerful radio galaxies at higher
redshifts & Longair Lacey, & Eales(Lilly 1984 ; Rawlings,

Both the early programs (reviewed by1994). Tammann
and the recent work have proved particularly impor-1983)

tant for the understanding of galactic evolution but are
correspondingly more difficult to interpret as measurements
of cosmological parameters. The Type Ia supernovae (SN
IaÏs), the brightest, most homogeneous class of supernovae,
o†er an attractive alternative candle and have features that
address this evolution problem. Each supernova explosion
emits a rich stream of information describing the event,
which we observe in the form of multicolor light curves and
time-varying spectra. Supernovae at high redshifts, unlike
galaxies, are events rather than objects, and their detailed
temporal behavior can thus be studied on an individual
basis for signs of evolution relative to nearby examples.

The disadvantages of using supernovae are also obvious :
they are rare, transient events that occur at unpredictable
times and are therefore unlikely candidates for the sched-
uled observations necessary on the largest telescopes. The
single previously identi�ed high-redshift (z \ 0.31) SN Ia,
discovered by a 2 year Danish/ESO search in Chile, was
found (at an unpredictable time) several weeks after it had
already passed its peak luminosity et al.(NÔrgaard-Nielsen
1989).

To make high-redshift supernovae a more practical
““ cosmological tool,ÏÏ the Supernova Cosmology Project has
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However: beware of theoretical prejudice!



• Two main classes of observables:


• Background: compatible with w=-1 (LCDM)


• Perturbations: some interesting tension…


Dark energy: current situation

3

ζ0 ζ1 ρ χ2 1-PTE

-2.94±1.94 0.32±0.13 -0.72 1.34 0.99

-2.07±1.88 0.28±0.10 -0.70 3.31 0.86

TABLE II: Results from fits to the RSD data. The first line
of results is for the LRG60 data set, and the second line is for
LRG200. For each set, we present the best-fit values of the
gravitational slip at redshift 0 and 1 (ζ0 & ζ1). The uncer-
tainties are at the one-standard deviation level. The fiducial
value of both parameters in General Relativity is 0. We also
indicate the correlation coefficient ρ of the distribution of the
fit to these two parameters, the minimum χ2 of the fit and
corresponding Probability To Exceed (PTE).

We consider the χ2 statistic for the fits, given by

χ2 = (x− x̄)C−1(x− x̄) (2)

where x is a vector of observed values, x̄ is a vector of
corresponding values from a model for x, and C is the
covariance matrix for the data. We note that for both
data sets, the χ2 is substantially less than the 7 degrees
of freedom in the fit. We calculate the Probability To
Exceed (PTE) this χ2, under the assumption that the
uncertainties are indeed correctly estimated. The very
low PTE values suggest that either the uncertainties have
been over estimated, or genuine scatter in the measure-
ments is being systematically suppressed. While only ad-
ditional observations will determine whether this trend is
truly statistically significant, the results already in hand
appear to suggest that either the quoted uncertainties
have been overestimated, or the analysis is suppressing
genuine scatter in the measurements.
We note that the PTE decreases with the LRG200 data

set, since the LRG200 measurements have a larger scatter
than the LRG60 measurements. This is likely due to the
fact that most of the coherent clustering signal is due
to correlations on scales less than 100 h−1Mpc, so the
additional correlations are effectively adding noise to the
signal.
In most recent results, the uncertainties have been es-

timated from several hundred simulated realisations of
the survey, from which the uncertainty (and the covari-
ance between measurements, in the case of several red-
shift bins) can be deduced from the scatter in the re-
alisations. Although it may appear that the uncertain-
ties on the measurements have been overestimated, good
agreement between the quoted values and Fisher fore-
casts [e.g., 30] of the minimum intrinsic statistical uncer-
tainties suggests that this is not the case, although [21]
note that the uncertainties in the BOSS growth rate mea-
surements are around 40% larger than the Fisher matrix
predictions.
Perhaps the stage of an RSD analysis most likely to

introduce a systematic shift, and artificially reduce the
scatter, may be in fitting a model to the two-dimensional
two-point correlation function (or power spectrum). [17]
analysed simulated catalogues for the WiggleZ survey
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FIG. 1: Comparing models to recent measurements of
f(z)σ8(z). We are plotting results for the LRG200 data set.
The open markers are the original published values from the
RSD measurements, and the filled markers are after account-
ing for the Alcock-Paczynski effect in going from WMAP to
Planck cosmology. The measurement error bars are at the
1 standard deviation uncertainty level. The dashed red line
illustrates the expected growth rate from ΛCDM with Planck
parameters, with the 1 and 2 standard deviation uncertainty
illustrated with the shaded bands. The solid blue line and
corresponding blue shaded regions illustrates the best fit to
the RSD data with the gravitational slip model. We note
that almost all the measurements include our best fit model
at the 1 standard deviation uncertainty level, which is re-
flected in the low χ2 in Table II. The one standard deviation
range of the model (the darker blue band) is narrower than
the typical one standard deviation uncertainty on any of the
measurements because the fit has been calculated from the
several independent measurements.

with a range of models for the RSD effect, and found
that measurements of Ωm (which is directly sensitive to
the growth rate) were highly dependent on the model
used. In particular, the model of a HALOFIT [27] P (k)
with a linear model for the redshift space distortion re-
covered a lower Ωm compared to the fiducial value on
which the simulation was based.
The preference for a lower growth rate or σ8 appears

to agree with recent results from [20], studying Sunyaev-
Zeldovich (SZ) cluster counts, who find σ8 = 0.77± 0.02
and Ωm = 0.29 ± 0.02. Collectively, these results may
be suggesting that ΛCDM does not fully model simulta-
neously the Cosmic Microwave Background and the Uni-
verse at z < 1. However, future work will require detailed
work with simulated catalogues for a range of cosmolog-
ical models [e.g., 11, 12] and an improved understanding
of the relationship between the observed galaxies, the pe-
culiar velocity field, and the underlying dark matter [e.g.,
22, 26], before we can more robustly use RSD measure-
ments to study departures from ΛCDM.
We thank the two anonymous referees for useful com-

Macaulay et al. ’13



• Two main classes of observables


Dark energy: current situation

S[�, gµ� ,�m]
Background

⇥ = ⇥0(t)

ds2 =� dt2 + a2(t)dx2

�m = �m(t)

Perturbations

�⇥m(t, ⌅x) �⇤(t, ⌅x)

equation of state w(z) growth rate, lensing potential, etc.



• Two main classes of observables


•  EUCLID, DESI etc... are specifically designed to target perturbation sector  


• `No shortage’ of dark energy models (>5000 papers on Spires)               
Need for a Phenomenology               


• A limited number of effective operators, each one responsible for an 
observable dynamical feature (e.g. flavor-changing neutral currents in  
physics beyond Standard Model) 

Ideally... 

Dark energy: current situation



• Most general description of 1 scalar degree of freedom added to GR


• Cosmological perturbations as the relevant objects of the theory


• Background (0th order) and perturbation (linear and +) sectors 


• Unifying framework for DE observables, stability


• Good parameter space to constrain with data (see Planck 2015)

The effective field theory (EFT) of dark energy
Gubitosi, FP, Vernizzi 2012



The Effective Field Theory of Inflation

Main idea: scalar degrees of freedom are `eaten’ by the metric. Ex:

Unitary gauge in Cosmology (technical detour)

⇥(t, ⇤x) ! ⇥0(t) (�⇥ = 0) �1

2
⇥�2 ! �1

2
�̇2
0(t) g

00

(Creminelli et al. `06, Cheung et al. `07)
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The Effective Field Theory of Inflation

Main idea: scalar degrees of freedom are `eaten’ by the metric. Ex:

⇥(t, ⇤x) ! ⇥0(t) (�⇥ = 0) �1

2
⇥�2 ! �1

2
�̇2
0(t) g

00

(Creminelli et al. `06, Cheung et al. `07)

Effective Field Theory of Dark Energy:       (Gubitosi, F.P.,  Vernizzi 2012)

1) Assume WEP (universally coupled metric                )  

2) Write the most generic action for       compatible with the residual
   un-broken symmetries (3-diff). 

Sm[gµ� ,�i]

gµ�

Unitary gauge in Cosmology (technical detour)



The Action

S =

Z
d4x

⇥
�g

M2(t)

2

⇥
R � 2⇤(t) � 2C(t)g00

+ µ2
2(t)(�g

00)2 � µ3(t) �K�g00 + ⇥4(t)

✓
�Kµ

� �K
�
µ � �K2 +

R(3) �g00

2

◆
+ . . .

�

Gleyzes, Langlois, F.P., Vernizzi, 1304.4840




The Action

S =
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d4x
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⇥
R � 2⇤(t) � 2C(t)g00

+ µ2
2(t)(�g

00)2 � µ3(t) �K�g00 + ⇥4(t)

✓
�Kµ

� �K
�
µ � �K2 +

R(3) �g00

2

◆
+ . . .

�

Time-dependent couplings

Background (expansion history)

only affect perturbations



Examples
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Quintessence

const.



Examples

S =

Z
d4x

⇥
�g

M2(t)

2

⇥
R � 2⇤(t) � 2C(t)g00

+ µ2
2(t)(�g

00)2 � µ3(t) �K�g00 + ⇥4(t)

✓
�Kµ

� �K
�
µ � �K2 +

R(3) �g00

2

◆
+ . . .

�

Non-minimally coupled scalar field 
(Brans-Dicke, f(R) etc.)



K-essence (Amendariz-Picon et al., 2000)

Examples

S =

Z
d4x

⇥
�g

M2(t)

2

⇥
R � 2⇤(t) � 2C(t)g00

+ µ2
2(t)(�g

00)2 � µ3(t) �K�g00 + ⇥4(t)

✓
�Kµ

� �K
�
µ � �K2 +

R(3) �g00

2

◆
+ . . .

�

const.

S =

Z
d4x

p
�gP (�, X) X ⌘ gµ�⇥µ�⇥��



“Galilean Cosmology” (Chow and Khoury,  2009)

Examples

S =

Z
d4x

⇥
�g

M2(t)

2

⇥
R � 2⇤(t) � 2C(t)g00

+ µ2
2(t)(�g

00)2 � µ3(t) �K�g00 + ⇥4(t)

✓
�Kµ

� �K
�
µ � �K2 +

R(3) �g00

2

◆
+ . . .

�

S =

Z
d4x

p
�g


M2

2
e�2�/MR� r2c

M
(⇥�)2⇤�

�



“Generalized Galileons” (≡ Horndeski) (Deffayet et al.,  2011)

L2 = A(�, X) ,

L3 = B(�, X)⇤� ,

L4 = C(�, X)R� 2C,X(�, X)
⇥
(⇤�)2 � (⇥µ⇥��)

2
⇤
,

L5 = D(�, X)Gµ�⇥µ⇥��+
1

3
D,X(�, X)

⇥
(⇤�)3 � 3(⇤�)(⇥µ⇥��)

2 + 2(⇥µ⇥��)
3
⇤
,

Examples

S =

Z
d4x

⇥
�g

M2(t)

2

⇥
R � 2⇤(t) � 2C(t)g00

+ µ2
2(t)(�g

00)2 � µ3(t) �K�g00 + ⇥4(t)

✓
�Kµ

� �K
�
µ � �K2 +

R(3) �g00

2

◆
+ . . .

�

Gleyzes, Langlois, F.P., Vernizzi, 1304.4840




Examples

Beyond Horndeski (linear)

S =

Z
d4x

⇥
�g

M2(t)

2

⇥
R � 2⇤(t) � 2C(t)g00

+ µ2
2(t)(�g

00)2 � µ3(t) �K�g00 + ⇥4(t)

✓
�Kµ

� �K
�
µ � �K2 +

R(3) �g00

2

◆
+ . . .

�

�̃4(t)

The most general (linear) theory without higher 
derivatives on the propagating degree of freedom

�4(t)

Gleyzes, Langlois, F.P., Vernizzi, 1304.4840


(see David’s talk before this)




Complete background separation/redundancies

S =

Z
d4x

⇥
�g

M2(t)

2

⇥
R � 2⇤(t) � 2C(t)g00

+ µ2
2(t)(�g

00)2 � µ3(t) �K�g00 + ⇥4(t)

✓
�Kµ

� �K
�
µ � �K2 +

R(3) �g00

2

◆
+ . . .

�

F. P., C. Marinoni, H. Steigerwald 1312.6111


related by Friedmann eq.

also participates in perturbations



Expansion History

Perturbation sector

Complete background separation/redundancies

S =

Z
d4x

⇥
�g

M2(t)

2

⇥
R � 2⇤(t) � 2C(t)g00

+ µ2
2(t)(�g

00)2 � µ3(t) �K�g00 + ⇥4(t)

✓
�Kµ

� �K
�
µ � �K2 +

R(3) �g00

2

◆
+ . . .

�

F. P., C. Marinoni, H. Steigerwald 1312.6111


w̄(t)

µ(t)

µ3(t)

�4(t)

µ2
2(t)

{�(t), C(t), µ(t) � d lnM2(t)

dt



Expansion History

Complete background separation/redundancies

S =

Z
d4x

⇥
�g

M2(t)

2

⇥
R � 2⇤(t) � 2C(t)g00

+ µ2
2(t)(�g

00)2 � µ3(t) �K�g00 + ⇥4(t)

✓
�Kµ

� �K
�
µ � �K2 +

R(3) �g00

2

◆
+ . . .
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w̄(t)

µ(t)

µ3(t)

�4(t)

µ2
2(t)

{
}

Expansion History

Growth rate, lensing etc.

Unconstrained

�(t), C(t), µ(t) � d lnM2(t)

dt



Stability

S⇡ =

Z
a3(t)M2

(t)

"
A
�
µ, µ2

2, µ3, �4
�
⇥̇2

+ B (µ, µ3, �4)
(

⇤r⇥)2

a2

#
+ lower order in derivatives.

No ghost:  A>0 No gradient instabilities:  B>0

µ2
2 = 0



Effective Newton constant 

4⇥Ge� =
1

2M2

2C + 2(µ+ �̊4)2 + µ̊3 � 2Ḣ�4 + 2H �̊4 + 3(a/k)2A
(1 + �4)2[2C + µ̊3 � 2Ḣ�4 + 2H �̊4] + 2(1 + �4)(µ+ �̊4)(µ� µ3)� (µ� µ3)2/2 + 3(a/k)2A0

A ⇥ 2ḢC � Ḣµ̊3 + Ḧ(µ� µ3)� 2HḢµ3 � 2H2(µ2 + µ̇), A0 ⇥ (1 + �4)
2A

``always” negligible Notable exception: f(R)   


See also Baker et. al. 1409.8284


If modified gravity is responsible for acceleration
 Ge↵(z, k)



4⇥Ge� =
1

2M2

2C + 2(µ+ �̊4)2 + µ̊3 � 2Ḣ�4 + 2H �̊4 + 3(a/k)2A
(1 + �4)2[2C + µ̊3 � 2Ḣ�4 + 2H �̊4] + 2(1 + �4)(µ+ �̊4)(µ� µ3)� (µ� µ3)2/2 + 3(a/k)2A0

If modified gravity is responsible for acceleration
 Ge↵(z, k)

Effective Newton constant 

More than just parameterize                !
Ge↵(z)



Growth rate

f ⌘ d ln �

d ln a
= ��0+�1 ln(�m)

m

F. P., C. Marinoni, H. Steigerwald 1312.6111


Figure 3: Expected 68%, 95%, and 99% likelihood contours on the ⇤0 and ⇤1 parameters from an EUCLID-like
survey. The black dotted line (“stronger/weaker gravity”) divides the plane according to the present value
of f , as calculated in (53). The �CDM model is shown by a black full square. Stabitility regions are shown
in green and assume ⌅2 = 0. Upper left: we also show the range of parameters � and ⇥ which corresponds
to theories of gravity which are both stable and compatible with data. Upper right: same as before but for
theories specified in terms of the parameters � and ⌅3. Lower left: same as before but for theories specified
in terms of the parameters � and ⌅4. Lower right: same as before but for theories specified in terms of the
parameters ⌅3 and ⌅4.

• It appears that Brans-Dicke like models o⇥er a maximum coverage of the likelihood surface,
with parameters � and ⇥ varying roughly in the range [0, 0.2] and [0, 0.15] respectively. On the
contrary, the space of viable theories parameterized by ⌅3 and ⌅4 is much more constrained, as
can be seen in panel d).

• By opportunely choosing the EFT parameters in each panel, the growth rate f can be made
larger or smaller than the growth rate in the fiducial model. The black dotted line, drawn as
explained in [73], divides the ⇤0 � ⇤1 plane according to whether local gravity, i.e. the mecha-
nism responsible for the linear growth of structures, is stronger or weaker than in the fiducial
�CDM model. For example, in Brans-Dicke like models, in which an increase of �(/⇥) pro-
duces a decrease(/increase) of ⇤0(/⇤1), theoretically stable and observationally viable theories
may generate a present day growth rate f that is 12% smaller and 5% higher than that of the
fiducial model. Note, however, that in the vast majority of cases, stable theories predicting
a background expansion rate identical to that of the �CDM model, also predict growth sup-

20

Non trivial result:

�0 < �0(�CDM)

Steigerwald, Bel Marinoni 1403.0898




Growth rate (preliminary)
Modified gravity: less growth than LCDM?

⌦m

Perenon, Marinoni, F. P. in preparation



Other observables (preliminary)Planck Collaboration: Planck 2015 results. XIV. Dark energy and modified gravity
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Fig. 14. 68 % and 95 % contour plots for the two parameters {µ0 � 1, ⌘0 � 1} obtained by evaluating Eqs. (46) and (47) at the present
time when no scale dependence is considered (see Sect. 5.2.2). We consider both the DE-related (left panel) and time-related
evolution cases (right panel). Results are shown for the scale-independent case (c1 = c2 = 1). In the labels, Planck stands for Planck
TT+lowP.

Fig. 16. Redshift dependence of the function 2[µ(z, k)�1]+ [⌘(z, k)�1], defined in Eqs. (46,47), which corresponds to the maximum
degeneracy line identified within the 2 dimensional posterior distributions. This combination shows the strongest allowed tension
with ⇤CDM. The left panel refers to the DE-related case while the right panel refers to the time-related evolution (see Sect. 5.2.2).
In both panels, no scale dependence is considered. The coloured areas show the regions containing 68 % and 95 % of the models. In
the labels, Planck stands for Planck TT+lowP.

ing for scale dependence, the tension with ⇤CDM is washed out
by the weakening of the constraints and the goodness of fit does
not improve with respect to the scale independent case.

5.3. Further examples of particular models

Quite generally, DE and MG theories deal with at least one extra
degree of freedom that can usually be associated with a scalar
field. For ‘standard’ DE theories the scalar field couples mini-
mally to gravity, while in MG theories the field can be seen as the
mediator of a fifth force in addition to standard interactions. This
happens in scalar-tensor theories (including f (R) cosmologies),
massive gravity, and all coupled DE models, both when matter
is involved or when neutrino evolution is a↵ected. Interactions

and fifth forces are therefore a common characteristic of many
proposed models, the di↵erence being whether the interaction is
universal (i.e., a↵ecting all species with the same coupling, as in
scalar-tensor theories) or is di↵erent for each species (as in cou-
pled DE, Wetterich 1995b; Amendola 2000 or growing neutrino
models, Fardon et al. 2004; Amendola et al. 2008a). In the fol-
lowing we will test well known examples of particular models
within all these classes.

5.3.1. Minimally coupled DE: sound speed and k-essence

In minimally coupled quintessence models, the sound speed
is c2

s = 1 and DE does not contribute significantly to clus-
tering. However, in so-called “k-essence” models, the kinetic
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Conclusions

• Unifying framework for dark energy/modified gravity


• Perturbations “know” about the background (stability)


•          : more information than just a “blind fit”


• Observational constraints and forecasts: much work in progress
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