

"Classical" measurements:

directly inferring m_{top} from the top-quark decay products

- are dominated by systematic errors → most of which are correlated across channels, methods, and experiments
- give the input MC top-quark mass parameter → a properly defined short distance mass should enter the SM fits

"Alternative" measurements:

measuring kinematic or dynamic variables correlated to mtop

measurements whose systematic uncertainties are as less as possible correlated to the latter ones

or

analyses explicitly sensitive to the top-quark pole mass

arXiv:1403.4427

Figure 1: Input measurements and result of the world combination. The overall uncertainty is dominated by in situ JES and systematic uncertainties.

Outline

Introduction

Measuring the input MC top-quark mass parameter

Using the $m_{\ell h}$ variable

Single-top enhanced topologies

Using exclusive b decays

B hadron lifetime technique

Kinematic endpoint method

Using the stransverse mass

Measuring the top-quark pole mass

From the tt cross-section

From the $t\bar{t}$ + jet differential cross-section

Conclusion

Using meh

Conclusion

- ▶ Among $\sqrt{s} = 7$ TeV data (4.7 fb⁻¹), selecting dileptonic t \bar{t} events (e⁺e⁻, $\mu^+\mu^-$, and e[±] μ^\mp) with \geq 2 jets, of which exactly 2 are b-tagged
- For each event, computing m_{ℓb} for the 2 top-quarks, considering the jet assignment leading to the lowest average mass
 - \hookrightarrow correct in 77% of the cases
- Performing a likelihood fit for Gaussian + Landau templates generated for 7 values of m_{top}^{MC} between 165 and 180 GeV/c²

arXiv:1503.05427

Figure 2: Fitted $m_{\ell \rm b}$ distribution in data. The inset shows the -2 log likelihood profile as a function of the fitted top-quark mass.

$$m_{\text{top}} = 173.09 \pm 0.64 \text{ (stat.)} \pm 1.50 \text{ (syst.)} \text{ GeV/c}^2$$

Main systematic sources: JES, bJES, and b-tagging efficiency

< □ > < □ > りへ(~)

Using m_{ℓh}

Conclusion

- Among $\sqrt{s} = 8$ TeV data (19.7 fb⁻¹), selecting $e^{\pm}\mu^{\mp}$ dileptonic $t\bar{t}$ events with > 2 jets, of which at least 1 is b-tagged
- ▶ For each event, computing $m_{\ell b}$ for only 1 of the top-quarks: the b-jet of highest p_T is associated to one of the leptons, so that the lowest invariant mass is obtained \hookrightarrow correct in 85% of the cases
- Top-quark mass derived by comparison (χ² minimization) of the experimentally observed yields in individual bins of the $m_{\ell h}$ distribution with the prediction for different values of $m_{\rm top}^{\rm MC}$ between 166.5 and 178.5 GeV/c²

CMS PAS TOP-14-014

Figure 3: Normalized event yields for tt production, presented as a function of $m_{\ell h}$. The inset shows the χ^2 distribution as a function of the MC simulation parameter.

$$m_{\rm top} = 172.3 \pm 1.3 \, \text{GeV/c}^2$$

Main systematic sources: JES, bJES, and b-tagging efficiency

Single-top enhanced topologies

- Among $\sqrt{s} = 8$ TeV data (20.3 fb⁻¹), selecting single-top events with 1 lepton and 2 jets, of which 1 is b-tagged (t-channel) \hookrightarrow color reconnection and Q^2 scale very different from the tt decays
- Defining signal and control regions to train a 3-layer feed-forward neural network with a preprocessing of 12 input variables. \hookrightarrow a requirement on the neural-network based discriminant increases the proportion of t-channel events from 13% to 47%
- Performing a likelihood fit of the $m_{\ell h}$ distribution for Gaussian + Landau templates generated for 7 values of $m_{\text{top}}^{\text{MC}}$ between 165 and 180 GeV/c²

Figure 4: Fitted $m_{\ell h}$ distribution in data with the normalization and m_{top} being the best fit values. The inset show the -2 log likelihood profile as a function of the top-quark mass.

 $m_{\text{top}} = 172.2 \pm 0.7 \text{ (stat.)} \pm 2.0 \text{ (syst.)} \text{ GeV/c}^2$

Main systematic uncertainties: JFS and hadronization

m(lb) [GeV]

Leptonic final states with b \rightarrow J/ ψ + X $\rightarrow \mu^{+}\mu^{-}$ + X

- Using the correlation between the top-quark mass and the invariant mass of the $J/\psi + \ell$ combination \rightarrow CERN/LHCC92-3 (1992) 90
- Systematic uncertainties mainly imputable to b-fragmentation, not impacted by jet-related sources or b-tagging
- ► Low branching ratio: $BR(t\bar{t} \to (W^+b)(W^-\bar{b}) \to (\bar{\ell} \nu_{\ell} J/\psi X)(gg'\bar{b})) \sim 0.55\%$ Considering only $J/\psi \rightarrow \mu^+\mu^-$ and $\ell \in \{e, \mu\}$: $BR \sim 2.1 \cdot 10^{-4}$ \hookrightarrow 1st time this method is tried, with 8 TeV data

Analysis in progress at LPNHE by F. Derue

Analysis in progress at IPNL

Introduction

Outline

Outline

Leptonic final states with b \rightarrow J/ ψ + X $\rightarrow \mu^{+}\mu^{-}$ + X

- Selecting events with 1(2) isolated lepton(s) (e or μ), 1 opposite-sign di-muon pair whose invariant mass is around the J/ψ one, and satisfying a jet criterion, among $\sqrt{s} = 8 \text{ TeV} \text{ data } (19.8 \text{ fb}^{-1})$
- MC samples for calibration available since last week

Figure 5: Normalized differential production cross-section of J/ψ candidates in $t\bar{t}$ events, as function of the relative p_T measured with respect to the jet axis direction.

Figure 6: Di-muon invariant mass after requiring 1 isolated lepton (e or μ), a di-muon pair, and a jet criterion.

Studies on b-fragmentation also on-going to reduce systematic uncertainties

E. Bouvier (IPNL)

7 of 15

Conclusion

B hadron lifetime technique (L_{xy})

- ► Selecting $t\bar{t}$ events among $\sqrt{s} = 8$ TeV data (19.6 fb⁻¹)
 - events with 1 charge isolated lepton (e or μ), \geq 4 jets
 - ▶ events with 1 electron, 1 muon, and ≥ 2 jets
- Based on the fact that, in the rest frame of the top-quark, the top-quark decay producs momenta are correlated to m_{top}
- Considering the B-hadron decay length L_{xy} to be analogously correlated to m_{top} as most of the energy is transfered from the b-quark to the B-hadron

 Exploiting the linear dependency of \$\hat{L}_{xy}\$ on the top-quark mass of \$O(0.0025 - 0.0030 cm) per GeV/c²

$$m_{\text{top}} = 173.5 \pm 1.5 \text{ (stat.)}$$

 $\pm 1.3 \text{ (syst.)} \pm 2.6 (p_T \text{ (t)}) \text{ GeV/c}^2$

Main systematic uncertainties: background normalization, hadronization, $p_T(t)$ modeling

20000

Figure 7: $\widehat{L_{\mathrm{xy}}}$ as a function of m_{lop} from simulation (left) and inclusive fit to the flavour content of a dijet sample based on the secondary vertex mass distribution (right).

E. Bouvier (IPNL)

Kinematic endpoint method

Conclusion

- Selecting dileptonic tr events among $\sqrt{s} = 7$ TeV data (5.0 fb⁻¹)
- Testing mass determination method that may be used in beyond SM physics scenarios
 - particles

- Underconstrained system $\hookrightarrow \mu_{bb}$: variable designed on purpose, weakly-correlated to the invariant mass Mn/
- $\blacktriangleright \mu_{\rm bh}^{\rm max}$ and $M_{\rm b\ell}^{\rm max}$ correlated to the top-quark mass
- Assuming $m_{\rm V} = 0$ and $M_{\rm W} = 80.4 \, {\rm GeV/c^2}$ in the joint unbinned likelihood fit procedure
- No MC calibration needed
- Main systematic uncertainties: fit range, JER

Figure 8: Simultaneous fit of the μ_{bb} (left) and $M_{b\ell}$ (right) distributions. The red line is the full fit, while the blue and green curves are for the background and signal shapes.

E. Bouvier (IPNL)

Using the stransverse mass

- ▶ Among \sqrt{s} = 7 TeV data (4.7 fb⁻¹), selecting e[±] μ [∓] dileptonic t \bar{t} events with ≥ 2 jets
- Defining the stransverse mass m_{T2}, a kinematic variable used in pair-production events where each parent particle decays into visible particles and one undetected particle
 - (cf. Phys. Rev. D31 (2010) 031102) $\hookrightarrow \vec{p}_T^{\text{miss}}$ and 4-vectors of the 2 leptons and 2 b-jets are used, m_V is set to 0
- Using the dependence of the mean value m̄_{T2} of the m_{T2} distribution on the top-quark mass
 - \hookrightarrow MC samples with varied input $m_{\text{top}}^{\text{MC}}$ are used to create a calibration curve

ATLAS CONF 2012-082

Figure 9: Calibration curve based on Monte Carlo simulation of tt events at different input top-quark masses including all expected backgrounds.

$$m_{\text{top}} = 175.2 \pm 1.6 \text{ (stat.)}^{+3.1}_{-2.8} \text{(syst.) GeV/c}^2$$

Main systematic sources: JES, bJES, generator model, and color reconnection

□ > < □ > < ○

From the tt cross-section Contribution from F. Déliot (IRFU)

- Using the measurement of $\sigma_{f\bar{f}}$ derived at $\sqrt{s} = 7$ TeV, through a multivariate analysis, from data collected in the $e^{\pm}\mu^{\mp}$ dileptonic channel (35 pb⁻¹)
- Theoretical predictions at approximate NNLO or NLO+NNLL, dependence on $m_{\text{top}}^{\text{pole}}$ described by a 3rd-order polynomial divided by $(m_{\text{top}}^{\text{pole}})^4$
- Using kinematical distributions from lepton and jet observables and information from b-tagging, feeding a profile likelihood

$$m_{\text{top}}^{\text{pole}} = 166.4_{-7.3}^{+7.8} \text{ GeV/c}^2$$

ATLAS CONF 2011-054

Figure 10: Comparison of the predicted cross-section and the experimentally measured cross-section as function of the top-quark mass.

From the tt cross-section

Outline

- ▶ Using the measurement of $\sigma_{t\bar{t}}$ derived at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV from data collected in the $e^\pm \mu^\mp$ dileptonic channel (4.6 fb⁻¹ and 20.3 fb⁻¹)
- Extraction performed by maximizing a Bayesian likelihood from the expected σ_{tt}:
 - expected σ_{tt} calculated to NNLO by the program TOP++ 2.0
 - soft-gluon resummation being performed at NNLL accuracy
 - dependence on $m_{\text{top}}^{\text{pole}}$ described by a 2^{nd} -order polynomial divided by $(m_{\text{top}}^{\text{pole}})^4$

$$m_{\text{top}}^{\text{pole}} = 172.9 \, {}^{+2.5}_{-2.6} \, \text{GeV/c}^2$$

EPJC 74 (2014) 3109

Figure 11: Predicted NNLO+NNLL $t\bar{t}$ production cross-section at 7 and 8 TeV as a function of the top-quark pole mass, using several PDF sets, compared to the cross-section measured by ATLAS assuming $m_{\rm loo} = m_{\rm loo}^{\rm pole}$.

< □ > < □ > < ○ < ○

From the tt cross-section

Outline

▶ Using the measurement of $\sigma_{f\bar{f}}$ derived at $\sqrt{s} = 7$ TeV from data collected in the dileptonic decay channel (2.3 fb⁻¹)

- \triangleright Constraining α_S at the scale of the Z-boson mass to the current world average and assuming that the measured $\sigma_{f\bar{f}}$ is not affected by non-SM physics
- Constructing a Bayesian prior from the expected $\sigma_{t\bar{t}}$:
 - expected σ_{ff} calculated to NNLO by the program TOP++ 2.0
 - soft-gluon resummation performed at NNLL accuracy
 - dependence on $m_{\text{top}}^{\text{pole}}$ described by a 3^{rd} -order polynomial divided by $(m_{\text{top}}^{\text{pole}})^4$

Figure 12: Predicted tt cross-section at NNLO+NNLL as a function of the top-quark pole mass, using 5 different NNLO PDF sets, compared to the cross-section measured by CMS assuming $m_{\text{top}} = m_{\text{top}}^{\text{pole}}$.

From the $t\bar{t}$ + jet differential cross-section

- Among $\sqrt{s} = 7$ TeV data (4.6 fb⁻¹), selecting semileptonic tt events with 1 lepton, ≥ 2 b-tagged jets, ≥ 3 other non b-tagged jets
- Based on the large dependence of gluon radiation on m_{top}
- Measuring the differential cross-section of top-quark pair production in association with a high-pT jet:

$$\mathcal{R}(m_{\mathrm{top}}^{\mathrm{pole}}, \rho_{\mathcal{S}}) = \frac{1}{\sigma_{\mathrm{t\bar{t}+jet}}} \frac{d\sigma_{\mathrm{t\bar{t}+jet}}}{d\rho_{\mathcal{S}}}$$
 with $\rho_{\mathcal{S}} = 2m_0/\sqrt{s_{\mathrm{t\bar{t}+jet}}}$,

- Correcting for detector effects and hadronization after background subtraction
- Comparing to NLO+PS prediction using the least square method

ATLAS CONF 2014-053

Figure 13: \mathcal{R} -distribution at parton level corrected for detector and hadronizaton effects after the background subtraction.

$$m_{\text{top}}^{\text{pole}} = 173.7 \pm 1.5 \text{ (stat.)}$$

 $\pm 1.4 \text{ (syst.)}_{-0.5}^{+1.0} \text{ (theo.) GeV/c}^2$

Main systematic uncertainties: JFS and ISR/FSR

Conclusion and outlook

- Plenty more data to be taken in the next vears:
 - ▶ Using 5 fb⁻¹ of data at \sqrt{s} = 7 TeV as a baseline for the projection

Measuring the input MC top-quark mass parameter

- Assuming cross-section increase compensates trigger efficiency decrease
- Assuming detector upgrade helps keeping PU under control
- Assuming data constrain systematic sources
- NLO-multileg generators expected to provide a finer description
- b-JES, soft QCD, and more generally models expected to be better constrained by data

Figure 14: Projection of the top-quark-mass precision obtained with different measurement methods, for various integrated luminosity.

For more top-quark related results from the ATLAS collaboration: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults For more top-quark related results from the CMS collaboration: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Backup

Using the b-jet energy spectrum

► The E_b^{lab} distribution is peaking at:

$$E_{\mathrm{b}}^{\mathrm{rest}} = \frac{m_{\mathrm{top}}^2 - m_{\mathrm{W}}^2 + m_{\mathrm{b}}^2}{2m_{\mathrm{top}}}$$

robust wrt \sqrt{s} , top-quark boost, and ISR variations

- ► Generating pseudo-experiments for $e^{\pm}\mu^{\mp}$ t t events at $m_{\text{top}}^{\text{MC}} = 173 \text{ GeV/c}^2$, assuming a luminosity of 5 fb⁻¹ at $\sqrt{s} = 7 \text{ TeV}$
- Fitting $x = E_b^{lab}/E_b^{rest}$ with:

$$f(x) = K_1^{-1}(p) \exp\left[-\frac{p}{2}\left(x + \frac{1}{x}\right)\right],$$

p being a parameter and $K_1(p)$ a modified Bessel function

 Purely kinematic method, needing precise detection of only one decay product Phys.Rev. D88 (2013) 5, 057701

Figure 15: Fit of the energy distribution of the b-jets in a pseudo-experiment between 30 and 150 GeV.

For 100 pseudo-experiments, using the Delphes 1.9 detector simulation:

$$\langle m_{\rm top} \rangle = 173.1 \pm 2.5 \, \mathrm{GeV/c^2}$$

Bi-Event Subtraction Technique (BEST)

- testing mass determination method that may be used in beyond SM physics scenarios
- subtracting combinatorial background due to inclusion of particles which do not come from the cascade decay of interest
 - several times for the same decay chain reconstruction
 - m_{ii}^{same} dijet invariant mass distribution from one sample
 - m_{ii} dijet invariant mass distribution from a bi-event sample not coming from a W
 - $=m_{ii}^{\text{same}}-C_{ii}^{\text{BEST}}\cdot m_{ii}^{\text{bi}}$ showing a W-boson mass peak almost without combinatorial background

Figure 16: Dijet invariant mass distribution (left) and W+b invariant mass distribution (right) using BEST.

Systematic uncertainties (1)

Source		$\Delta m_{\rm t} [{\rm GeV}]$		
		μ +jets	e+jets	еµ
Statistical		1.0	1.0	2.0
	Jet energy scale	0.30 ± 0.01	0.30 ± 0.01	0.30 ± 0.01
	Multijet normalization (ℓ+jets)	0.50 ± 0.01	0.67 ± 0.01	-
Experimental	W+jets normalization (ℓ+jets)	1.42 ± 0.01	1.33 ± 0.01	-
	DY normalization ($\ell\ell$)	-	-	0.38 ± 0.06
	Other backgrounds normalization	0.05 ± 0.01	0.05 ± 0.01	0.15 ± 0.07
	W+jets background shapes (ℓ+jets)	0.40 ± 0.01	0.20 ± 0.01	-
	Single top background shapes	0.20 ± 0.01	0.20 ± 0.01	0.30 ± 0.06
	DY background shapes ($\ell\ell$)	-	-	0.04 ± 0.06
	Calibration	0.42 ± 0.01	0.50 ± 0.01	0.21 ± 0.01
	Q ² -scale	0.47 ± 0.13	0.20 ± 0.03	0.11 ± 0.08
Thoony	ME-PS matching scale	0.73 ± 0.01	0.87 ± 0.03	0.44 ± 0.08
Theory	PDF	0.26 ± 0.15	0.26 ± 0.15	0.26 ± 0.15
	Hadronization model	0.95 ± 0.13	0.95 ± 0.13	0.67 ± 0.10
	B hadron composition	0.39 ± 0.01	0.39 ± 0.01	0.39 ± 0.01
	B hadron lifetime	0.29 ± 0.18	0.29 ± 0.18	0.29 ± 0.18
	Top quark p _T modeling	3.27 ± 0.48	3.07 ± 0.45	2.36 ± 0.35
	Underlying event	0.27 ± 0.51	0.25 ± 0.48	0.19 ± 0.37
	Colour reconnection	0.36 ± 0.51	0.34 ± 0.48	0.26 ± 0.37

Figure 17: Statistical, experimental and theoretical systematic uncertainties on m_{top} for the B hadron lifetime technique (CMS PAS TOP-12-030).

Systematic uncertainties (2)

	Value [GeV]
Measured value	172.2
Statistical uncertainty	0.7
Jet energy scale	1.5
Jet energy resolution	< 0.1
Jet vertex fraction	< 0.1
Flavour tagging efficiency	0.3
Electron uncertainties	0.3
Muon uncertainties	0.1
Missing transverse momentum	0.2
W+jets normalisation	0.4
W+jets shape	0.3
Z+jets/diboson normalisation	0.2
Multijet normalisation	0.2
Multijet shape	0.3
Top normalisation	0.2
t-channel generator	< 0.1
t-channel hadronisation	0.7
t-channel colour reconnection	0.3
t-channel underlying event	< 0.1
tt,Wt, and s-channel generator	0.2
tt hadronisation	< 0.1
tt colour reconnection	0.2
tt underlying event	0.1
tt ISR/FSR	0.2
Proton PDF	< 0.1
Simulation sample statistics	0.3
Total systematic uncertainty	2.0
Total uncertainty	2.1

Figure 18: Statistical and systematic uncertainties on $m_{\rm lop}$ using single-top enhanced topologies (ATLAS CONF 2014-055).

4 L/N	
Source	Uncertainty [GeV]
tt generator model	-1.3 / +1.3
Parton shower	-0.9 / +0.9
Colour reconnection	-1.2 / +1.2
ISR/FSR	-0.5 / +0.5
PDF	-0.1 / +0.1
Fakes norm. and shape	-0.3 / +0.3
Calibration curve	-0.3 / +0.3
Underlying event	-0.2 / +0.2
Jet energy scale	-1.4 / +1.6
b-jet energy scale	-1.2 / +1.5
Jet energy resolution	-0.5 / +0.5
Leptons	-0.1 / +0.2
$E_{\rm T}^{\rm miss}$ and jets	-0.1 / +0.1
b-tagging	-0.4 / +0.3
Syst. uncertainty	-2.8 / +3.1
Stat. uncertainty	-1.6 / +1.6
Total uncertainty	-3.3 / +3.5

Figure 19: Statistical and systematic uncertainties on $m_{\rm top}$ using the stransverse mass (ATLAS CONF 2012-082).

Systematic uncertainties (3)

Description	Value [GeV]
Measured value	173.09
Statistical uncertainty	0.64
Method calibration	0.07
Signal MC generator	0.20
Hadronisation	0.44
Underlying event	0.42
Colour reconnection	0.29
ISR/FSR	0.37
Proton PDF	0.12
Background	0.14
Jet energy scale	0.89
b-jet energy scale	0.71
b-tagging efficiency and mistag rate	0.46
Jet energy resolution	0.21
Missing transverse momentum	0.05
Pile-up	0.01
Electron uncertainties	0.11
Muon uncertainties	0.05
Total systematic uncertainty	1.50
Total uncertainty	1.63

Figure 20: Systematic and statistical uncertainties on $m_{\rm top}$ using $m_{\ell \rm b}$ (arXiv:1503.05427).

Source	Value [GeV]
Jet energy scale	+0.5 -1.4
Fit range	± 0.6
Jet energy resolution	± 0.5
Background modeling	± 0.5
Efficiency	+0.1 -0.2
Color reconnection	± 0.6
Syst. uncertainty	+1.2 -1.8
Stat. uncertainty	± 0.9

Figure 21: Systematic and statistical uncertainties on $m_{\rm lop}$ for the kinematic endpoint method (EPJC 73 (2012) 2494).

The top-quark mass in the Standard Model: How fundamental is this parameter?

- key role in the prediction of many observables either directly or via electroweak radiative corrections
 - $\hookrightarrow \textit{BR}\big(\mathsf{B}_\mathsf{s} \to \mu^+\mu^-\big),\, \textit{m}_\mathsf{W} = \textit{f}\big(\textit{m}_\mathsf{top}^2, \ln \textit{m}_\mathsf{H}\big)$
- key input to electroweak fit, which enables comparisons between experimental results and predictions within and beyond the SM
- highest Yukawa coupling to the Higgs boson: probe for the stability of the electroweak vacuum and Higgs boson properties

http://cern.ch/Gfitter

Figure 22: Contours of 68% and 95% confidence level obtained from scans of fits with fixed variable pairs $M_{\rm W}$ vs $m_{\rm top}$. The narrower blue and larger grey allowed regions are the results of the fit including and excluding the $M_{\rm H}$ measurements respectively.