Exotic searches in the same-sign dilepton channel

Romain Kukla CEA Saclay, DSM/Irfu/SPP

Top LHC France 19 mai 2015

Outline

Same-sign phenomenology

- Motivations
- BSM models
- SM processes
- Data-driven backgrounds
- Selection

8 TeV searches - CMS (VLQ, T5/3) - ATLAS (VLQ, XD, SUSY, T5/3)

Same-sign dilepton phenomenology

Requiring 2 SS leptons suppresses the main background ttbar

b

- → rare SM processes contribute
 W/Z boson + top decays (ttV)
 ttVV, ttH
- Dibosons (VV)
- Tribosons VVV

<u>Very pure channel</u> : highly sensitive to BSM can be rejected by requiring additionnal bjets

t

b

Same-sign dilepton phenomenology

Many BSM models have 2SSL final states

BSM 4tops (2UED-RPP)

VLQ (pair production)

Common final states :

- 2 SS leptons
- ≥ 2 jets (incl. bjets)
- large MET
- large HT

VLQ single production (here T5/3)

4/19

FCNC (tt)

Same-sign dilepton phenomenology

SM processes with real 2ISS events

Data driven methods

Fakes/non-prompt

The fake lepton should not pass the selection criteria

How to estimate it?

Define 2 quality definitions : *loose* with relaxed criteria
(ID/isolation) *tight* standard analysis definition

Then, estimate in data the probability for a loose lepton to pass tight criteria in CR and apply it in SR

Charge mis-identification

The electron's charge is wrong (high pT or tridents)

How to estimate it?

Estimate the probability of flipping the charge in a pure region $(Z \rightarrow e+e-)$ in data

Then, apply the probability to MC simulation of the contributing processes **requiring OS events**

Analysis selection

French lab involvements

ATLAS

- Clermont
- Saclay

20.3 ifb common analysis (VLQ, 4tops, T5/3) at 8 TeV in 21SS+31

will focus on this analysis(but also present CMS ones quickly)

- Clermont
- Saclay
- Grenoble

Run2 preparation for early searches : both exotic (VLQ, XD, SUSY) and SM (4tops)

CMS As far as I know, no French CMS group working in 21SS searches

ATLAS generic search CERN-PH-EP-2015-060

8 SR * 7 channels (ee,em,mm,eee,eem,emm,mmm)

Definition			Name		
$e^{\pm}e^{\pm} + e^{\pm}\mu^{\pm} + \mu^{\pm}\mu^{\pm} + eee + ee\mu + e\mu\mu + \mu\mu\mu, N_j \ge 2$					
	$N_b = 1$	$= 1$ $= 2$ $E_{\rm T}^{\rm miss} > 40 {\rm GeV}$		SRVLQ0	
$400 \text{ GeV} < H_T < 700 \text{ GeV}$	$N_b = 2$			SR4t0/VLQ1	-
	$N_b \geq 3$			SR4t1/VLQ2	
	$N_{b} = 1$	$40 \text{ GeV} < E_{\text{T}}^{\text{minss}} < 100 \text{ GeV}$		SRVLQ3	
U > 700 CAU		$E_{\rm T}^{\rm miss} \ge 100 {\rm Ge}$	V O C-V	SRVLQ4	
$H_T \ge 700$ GeV	$N_b = 2$	$40 \text{ GeV} < E_{\text{T}}^{\text{mins}} < 10$	U Gev	SR4t2/VLQ5	
	$N_{\rm c} > 2$	$E_{\rm T}^{\rm miss} \ge 100 \text{ Ge}$	v r	SR415/VLQ0	
	$N_b \ge 5$	L _T > 40 Gev		SK414/VLQ/	
Selection observ	ables	: Nb(iet). Nb	(biet	t). HT. MET	
				,, ,	
	SBI	/L.O6/SB4+3	ST	$\overline{WLO7/SR}/tA$	
	510	1 40/511415	51		2
$t ar{t} W/Z$	2.46 :	$\pm 0.11 \pm 1.06$	0.57	$7 \pm 0.05 \pm 0.25$	
$tar{t}H$	0.44	$\pm~0.04~\pm~0.06$	0.08	$8\pm0.02\pm0.02$	
Dibosons	0.04 :	$\pm \ 0.12 \pm 0.03$	0.00	$0\pm0.12\pm0.00$	
Fake/Non-prompt	0.00 :	$\pm \ 1.02 \pm 0.28$	0.04	$4\pm0.83\pm0.24$	N II N
\mathbf{Q} mis-Id	1.09	$\pm \ 0.14 \pm 0.34$	0.30	$0\pm0.09\pm0.10$	
Other bkg.	0.23	$\pm~0.08~\pm~0.05$	0.14	$4\pm0.08\pm0.08$	CARE OF
Total bkg.	4.3	\pm 1.1 \pm 1.1	1.1	$1\pm 0.9\pm 0.4$	No.
Data		12		6	
<i>p</i> -value		0.029		0.036	

✓arious signals (VLQ, b', single T5/3, 4tops)
 → common SR's, different interpretations
 Cut and count analysis

 2.5σ excess observed in SRVLQ6&7

Fakes : matrix method

Tight = leptons passing the analysis criteria (isolation, tight ++) Loose = medium++ electrons, tight muons, no isolation

Real efficiencies (r) extracted from high MET or mT(W) region Fake eff. (f) from low MET, mT(W) or high |d0sign| region

Systematics : choice of the regions, statistics, MC substraction \rightarrow 70 % uncertainty in final SR

Cross-checked with OS regions, different triggers, other isolation, to understand the excess.

ERN-PH-EP-2015-060

$$N_{\text{fake}}^{\text{tt}} = N_{\text{rf}}^{tt} + N_{\text{fr}}^{\text{tt}} + N_{\text{ff}}^{\text{tt}}$$

= $r_1 f_2 N_{\text{rf}}^{\text{ll}} + f_1 r_2 N_{\text{fr}}^{\text{ll}} + f_1 f_2 N_{\text{ff}}^{\text{ll}}$

10/19

Misid likelihood method

 $N_{ij}^{ss} \simeq (\epsilon_i + \epsilon_j) N_{ij}$

Charge flip for electron i and j

CERN-PH-EP-2015-060

SS/OS events in Z peak \rightarrow charge flip probability as f(pT, eta) Extrapolated to high pT with ttbar MC truth matching

Systematics : likelihood stat, pT extrapolation, Z peak definition,

fake removal)

 \rightarrow 30 % uncertainty in final SR

Trident fake lepton overlap removed

	$p_{\rm T}$ range					
$ \eta $ range	[0, 50] GeV	[50, 80] GeV	[80, 100] GeV	[100, 200] GeV	[200, 1000] GeV	
[0, 0.8]	0.000565	0.000708	0.00178	0.0024	0.00427	
[0.8, 1.1]	0.000909	0.002	0.00739	0.00869	0.0168	
[1.1, 1.37]	0.0025	0.00162	0.00552	0.0066	0.00686	
[1.52, 1.8]	0.00844	0.0087	0.0195	0.0266	0.0303	
[1.8, 2.3]	0.0128	0.0155	0.0393	0.0467	0.055	
[2.3, 2.6]	0.0315	0.0349	0.053	0.0606	0.123	

Sample	ee	$e\mu$	$\mu\mu$
Q mis-Id	$136\pm2\pm41$	$118\pm1\pm35$	
Fake/Non-prompt	$153\pm11\pm107$	$225\pm11\pm158$	$29\pm3\pm20$
$t\bar{t}W/Z$	$4.57 \pm 0.19 \pm 1.88$	$14.2\pm0.3\pm5.8$	$8.43 \pm 0.27 \pm 3.56$
$t \bar{t} H$	$0.39 \pm 0.04 \pm 0.04$	$1.31 \pm 0.08 \pm 0.13$	$0.76 \pm 0.06 \pm 0.07$
Dibosons	$5.57 \pm 0.45 \pm 1.08$	$15.9\pm0.8\pm2.9$	$9.00 \pm 0.58 \pm 1.79$
Other bkg.	$0.32 \pm 0.11 \pm 0.11$	$0.75 \pm 0.20 \pm 0.20$	$0.27 \pm 0.06 \pm 0.06$
Total bkg.	$299\pm11\pm115$	$375\pm11\pm162$	$47\pm3\pm20$
Data	271	307	52

and the second	Contraction of the second second second			and the state of the
Sample	eee	$ee\mu$	$e\mu\mu$	$\mu\mu\mu$
Fake/Non-prompt	$8.0\pm2.3\pm5.6$	$13.2 \pm 2.4 \pm 9.2$	$17.9 \pm 2.8 \pm 12.5$	$1.34 \pm 0.55 \pm 0.94$
$t\bar{t}W/Z$	$1.20 \pm 0.09 \pm 0.46$	$2.55 \pm 0.13 \pm 0.87$	$3.38 \pm 0.16 \pm 1.15$	$2.70 \pm 0.14 \pm 1.00$
$t\bar{t}H$	$0.07 \pm 0.02 \pm 0.01$	$0.28 \pm 0.03 \pm 0.03$	$0.32 \pm 0.03 \pm 0.03$	$0.14 \pm 0.02 \pm 0.01$
Dibosons	$5.78 \pm 0.51 \pm 1.14$	$6.78 \pm 0.57 \pm 1.33$	$8.42 \pm 0.57 \pm 1.78$	$9.23 \pm 0.65 \pm 1.82$
Other bkg.	$0.04 \pm 0.02 \pm 0.02$	$0.11 \pm 0.02 \pm 0.02$	$0.12 \pm 0.02 \pm 0.02$	$0.15 \pm 0.03 \pm 0.03$
Total bkg.	$15.1 \pm 2.4 \pm 5.7$	$22.9\pm2.5\pm9.4$	$30.1 \pm 2.8 \pm 12.7$	$13.6 \pm 0.9 \pm 2.4$
Data	15	18	36	14

Yields in validation region for all the background in 21SS and 31 channels

Charge flip prob.

Exclusion limits : 4tops

The was for man se the of

For 3 models :

- contact interaction
- 2UED-RPP

- sgluon

Limit at 95 % CL on SM cross-section : $\sigma > 70$ fb

BSM contact interaction : $|C|/\Lambda^2 > 15.1$ and cross-section $\sigma > 61$ fb

Sgluons limit at 95 % CL m>0.83 TeV

CERN-PH-EP-2015-060

12/19

ATLAS generic search CERN-PH-EP-2015-060

Exclusion limits : VLQ TT, BB and T5/3

 $T5/3 \rightarrow tW \ 100 \%$

Single production too conservative

m(T5/3)>0.74 TeV (PP) m(T5/3)>0.75 TeV (PP+SP)

Assuming singlet BR : m(B)>0.62 TeV and m(T)>0.59 TeV

ATLAS generic search CERN-PH-EP-2015-060

Amerid & - Automs

Low dias This to be a surger

Exclusion limits : tt

Tested for 3 chiralities (LL, RR, LR) No excess found in tt specific regions

DEST PROVIDE LAPORTANTA

Model	$\sigma(pp \to tt)$ [fb]		Coupling const.	
	Exp.	Obs.	Observed	
Contact interaction	n mode	1	$ C /\Lambda^2 [\text{TeV}^{-2}]$	
Left-left	64	62	0.053	
Left-right	53	51	0.137	
Right-right	40	38	0.042	
Higgs-like FCNC	model	-	κ_{utH} or κ_{ctH}	
$uu \to tt \ (m_H = 125 \text{ GeV})$	37	35	0.16	
$uu \to tt \ (m_H = 250 \text{ GeV})$	21	20	0.17	
$uu \to tt \ (m_H = 500 \text{ GeV})$	12	11	0.20	
$uu \to tt \ (m_H = 750 \text{ GeV})$	9.3	8.4	0.24	
$cc \to tt \ (m_H = 250 \text{ GeV})$	71	69	0.81	
$cc \rightarrow tt \ (m_H = 500 \text{ GeV})$	37	35	1.02	
$cc \rightarrow tt \ (m_H = 750 \text{ GeV})$	28	27	1.29	

$$\mathcal{L}_{tt} = \frac{1}{2} \frac{C_{\text{LL}}}{\Lambda^2} (\bar{u}_{\text{L}} \gamma^{\mu} t_{\text{L}}) (\bar{u}_{\text{L}} \gamma_{\mu} t_{\text{L}}) + \frac{1}{2} \frac{C_{\text{RR}}}{\Lambda^2} (\bar{u}_{\text{R}} \gamma^{\mu} t_{\text{R}}) (\bar{u}_{\text{R}} \gamma_{\mu} t_{\text{R}}) - \frac{1}{2} \frac{C_{\text{LR}}}{\Lambda^2} (\bar{u}_{\text{L}} \gamma^{\mu} t_{\text{L}}) (\bar{u}_{\text{R}} \gamma_{\mu} t_{\text{R}}) - \frac{1}{2} \frac{C'_{\text{LR}}}{\Lambda^2} (\bar{u}_{\text{L}a} \gamma^{\mu} t_{\text{L}b}) (\bar{u}_{\text{R}b} \gamma_{\mu} t_{\text{R}a})$$

Exclusion limits : b'

For BR(b' \rightarrow tW)=100 % b' pair production excluded at 95 % CL for m(b') < 0.73 TeV

With different BR(b' \rightarrow tW) and BR(b' \rightarrow cW)

CERN-PH-EP-2015-060

15/19

CMS VLQ B with charge -1/3 B2G-12-020-PAS

Selected events :

- 21 SS strict (no 31)
- at least 4 jets
- -ST = HT + MET regions (5 bins * 3 channels)

Cut and count analysis

MisId rates estimated from MC : systematics ~30 % Fakes estimated with MM : systematics ~50 %

CMS Preliminary 19.6 fb⁻¹ at $\sqrt{s} = 8$ TeV Br(b' \rightarrow tW:bZ:bH)= 100: 0: 0 σ 95% Upper Limit [/] σ_{NNLO} 0 00 00 00 00 00 ---- Prediction σ — Observed Limit 2σ ---- Expected Limit 10 10 10⁻¹ 900 1000 500 600 700 800 400 M_{h'} [GeV]

For BR(tW)=100 %, CL limit m(B) > 0.8 TeV

Also for various BR

$800 \le S_T < 1200$ Data Background Estimation 6.45 ± 0.67 (stat.) ± 2.03 (sys.) 3.39 ± 0.44 (stat.) ± 1.17 (sys.) 4.13 2.84 Prompt-Prompt Prompt-NonPrompt 2.23 0.53 0.08 0.03 NonPrompt-NonPrompt 0.00 0.00 Charge Flip $600 \le S_T < 800$ $800 \le S_T < 1200$ Data 5 Background Estimation 4.52 ± 0.56 (stat.) ± 1.43 (sys.) 8.67 ± 0.79 (stat.) ± 2.83 (svs.) 3.58 2.42 Prompt-Prompt Prompt-NonPrompt 4.31 1.66 NonPrompt-NonPrompt 0.15 0.14 0.30 0.63 Charge Flip $600 \le S_T < 800$ $800 \le S_T < 1200$ µe Data 9 8 Background Estimation 14.14 ± 1.33 (stat.) ± 4.31 (sys.) 10.77 ± 1.15 (stat.) ± 3.28 (sys.) Prompt-Prompt 7.14 5.86Prompt-NonPrompt 6.55 4.62 0.13 0.13 NonPrompt-NonPrompt 0.320.15 Charge Flip

 $600 \le S_T \le 800$

CMS VLQ T with charge 2/3

Physics Letters B 729 (2014) 149-171

The state of the way of the state of the sta

Selected events :

- T \rightarrow tZ/H (no bW)
- 21 SS, pT>20 GeV
- at least 3 jets
- HT > 500 GeV
- ST = HT + MET > 700 GeV Cut and count analysis

Fig. 5. Observed and expected distributions of S_T for the same-sign dilepton sample. The arrow indicates the chosen requirement.

	and the second
Channel	SS
tī	-
Single top quark	-
Z	-
tīW	5.8 ± 1.9
tīZ	1.83 ± 0.93
WW	0.53 ± 0.29
WZ	0.34 ± 0.08
ZZ	0.03 ± 0.00
WWW/WWZ/ZZZ/WZZ	0.13 ± 0.07
tīWW	-
Charge misidentification	0.01 ± 0.00
Non-prompt	7.9 ± 4.3
Total background	16.5 ± 4.8
Data	18

For BR(tW)=100 %, CL limit m(T) > 0.7-0.78 GeV (BR dependant)

CMS VLQ T5/3 CMS-B2G-12-012

Selected events :

- Pair prod only
- Boosted analysis (enhances 10-20%)
- 21 SS
- at least 5 constituents
- HT > 900 GeV

Cut and count analysis

95 % CL limit m(T5/3) > 0.8 GeV

found

CMS

 $L = 19.5 \text{ fb}^{-1}$

√s = 8 TeV

Observed Limit Expected Limit

Expected Limit ± 10

Signal Cross Section

Channel	ee	еµ	μμ	All
Same-sign	0.8 ± 0.2	1.9 ± 0.4	1.3 ± 0.3	4.0 ± 0.8
Chrg. misid.	0.06 ± 0.02	0.04 ± 0.01		0.11 ± 0.02
Non-prompt	1.9 ± 1.2	0.6 ± 0.9	0.3 ± 0.6	$\textbf{2.8} \pm \textbf{1.9}$
Tot. bkgnd	2.7 ± 1.3	2.5 ± 1.0	1.6 ± 0.7	6.8 ± 2.1
Obs. events	0	6	3	9
T _{5/3}	2.1 ± 0.1	4.7 ± 0.3	2.8 ± 0.2	9.7 ± 0.5

(dq) (X + ⁺l⁺l ←

10⁻¹

Conclusions

Same-sign used for VLQ searches : very pure channel but needs some work on data-driven methods

CMS does not see any excess, ATLAS has one.

Run2 preparation : new members from Clermont/Grenoble, new signals ... so new physics ?