Status of the SDHCAL simulation In ILD

<u>Gérald Grenier</u> With contributions of lots of people.

SDHCAL simulation

- Simulation uses GEANT4 application
 - Prototype simulation done in a standalone GEANT4 application interfaced with LCIO
 - ILD simulation done in Mokka (model = ILD_O2_v05)
- Final part of simulation (the digitization) done at reco phase in a Marlin Processor (MarlinReco).
 - Digitisation developped from prototype simulation.
 - See Arnaud Steen talk
 - Step angle correction not available for ILD simulation.

Model ILD_O2_v05

- The model was finalized in Mokka by Gabriel Musat at LLR.
- The model has been the basis of the SDHCAL à la Videau geometry studies for the DBD.
 - Standard Mokka config file and Marlin reco config file are available in ilcsoft config.
 - Reconstruction uses PandoraPFA with linear energy reconstruction formula : $E_{reco} = \alpha N_1 + \beta N_2 + \gamma N_3$
- tth, WW, ZZ MC data samples for full ILD are available

Check of model ILD_O2_v05

- First tests were done in Mokka with Geantino particle guns with verbose tracking.
- Other tests are done with single muons produced by Mokka.
 - Digitizer produces tuples to check calorimeter hits and Geant4 steps position.
 - In default ILCSOFT, for each cell, the middle position of each G4Step contributing to the hit is stored.
 - This allows playing with the cell size without resimulating everything.

Global geometry

• Hit r vs z

blue=Endcap, red=ring, black=barrel sqrt(hitx**2+hity**2):hitz {chtlayout==2}

Global geometryHit z vs module number in cellid

hitz:(hitcellid&7)

HGC4ILD 2-4 fevruary 2015

Global geometry

• Hit y vs x

blue=Endcap, red=ring, black=barrel

HGC4ILD 2-4 fevruary 2015

Barrel staves

• Hit y vs x

02/02/15

Barrel staves

• Direction of increasing layer and I number

02/02/15

HGC4ILD 2-4 fevruary 2015

Barrel staves

• All staves superimposed.

normalx*x+normaly*y:Ix*x+Iy*y {chtlayout==1}

02/02/15

normalx*x+normaly*y:lx*x+ly*y-26.729999542236328*layer {chtlayout==1}

HGC4ILD 2-4 fevruary 2015

Barrel cells

- Determine position zero corresponding to I (resp J) =0
- Draw cell position position zero divided by I (resp J)
- Should peak at CellSize+interPad=10.408

EndCaps Staves

• Hit y vs x

EndCaps Staves

• Hit y vs x

02/02/15

HGC4ILD 2-4 fevruary 2015

-0.5

-1

JX

0.5

EndCaps cells

- Determine position zero corresponding to I (resp J) =0
- Draw cell position position zero divide by I (resp J)
- Should peak at CellSize+interPad=10.408

Ring Staves

• Hit y vs x

02/02/15

HGC4ILD 2-4 fevruary 2015

Ring cells

- Determine position zero corresponding to I (resp J) =0
- Draw cell position position zero divide by I (resp J)
- Should peak at CellSize+interPad=10.408

Future DD4HEP

- Moving SDHCAL ILD simulation to DD4HEP is planed.
- The digitizer provides necessary tools to check the new simulation.

Conclusion

- Mokka Model ILD_O2_v05 is the current basis for physics analysis
 - PandoraPFA based reconstruction with linear SDHCAL energy reconstruction available.
- Preparation of ArborPFA based reconstruction with non linear energy reconstruction ongoing.
- Plan to move to DD4HEP-based SDHCAL simulation.