Digitizer

Shower number of hits

SDHCAL digitizer status HGC4ILD - High Granularity Calorimeters for ILD WS

Arnaud Steen

IPNL

3 February 2015

Outline

2 Digitizer

Shower number of hits

4 Shower radial profile

6 Conclusion

• SDHCAL prototype simulation :

- Geant4 version 9.6.p01 is used
- FTFP_BERT_HP and QGSP_BERT_HP are used

- pi-, mu-, e- and proton simulated samples
- simulation output : list of GEANT4 steps inside gas gaps and deposited energy in gas by those steps
- Digitizer : simulate the GRPC response to charged particles \rightarrow transform GEANT4 steps into realistics semi-digital hits.
 - MarlinReco v01-10 in ilcsoft v01-17-06 is the baseline

Digitizer

Shower number of hits

layer 19 efficiency map

• Polya function :

$$P(q)=(qrac{1+ heta}{ar{q}})e^{-rac{q}{ar{q}}(1+ heta)}$$
 (1)

- Polya parameters extracted from threshold scan
- Charge spread function :

$$f_n(x,y) = \sum_{i=0}^n \alpha_i e^{\frac{(x_0 - x)^2 + (y_0 - y)^2}{\sigma_i^2}}$$
(2)

• Charge spread parameters : (tuned with muons)

Parameter	Value
α_0	1
α_1	0.00072
σ_0	1 <i>mm</i>
σ_1	10 <i>mm</i>

• $d_{cut} = 1mm$ (tuned with electrons)

0.4

CALICE Fe-SDHCAL Preliminary

- θ = angle between reconstructed track and normal to RPCs
- need an angle correction to reproduce the multiplicity as function of cosθ :

• $\theta = {\rm angle}$ between reconstructed track and normal to RPCs

• need an angle correction to reproduce the multiplicity as function of $cos\theta$:

$$Q_{Corrected} = \left\{ egin{array}{c} Q_{ind} (rac{d_{s}}{d_{gap}})^{\kappa} & ext{if } rac{d_{s}}{d_{gap}} > 1 \ Q_{ind} & ext{otherwise} \end{array}
ight.$$

• $\theta = {\rm angle}$ between reconstructed track and normal to RPCs

• need an angle correction to reproduce the multiplicity as function of $cos\theta$:

$$Q_{Corrected} = \left\{ egin{array}{c} Q_{ind} (rac{d_s}{d_{gap}})^\kappa & ext{if } rac{d_s}{d_{gap}} > 1 \ Q_{ind} & ext{otherwise} \end{array}
ight.$$

- $\kappa = 0.45$ (tuned with cosmics)
- not yet available in MarlinReco

Data time calibration

- Charge screening effect because of glass resistivity
- One calibration per run; per threshold

$$N_i^{corr} = N_i - \sum_{j=1}^d p_j t^j \tag{4}$$

Electromagnetic shower number of hits

Electromagnetic shower data used for parameter optimisation.

Arnaud Steen (IPNL)

SDHCAL digitizer status

Hadronic shower number of hits

Hadronic shower number of hits

Hadronic shower number of hits

Shower number of clusters

Digitizer

Introduction

Shower number of clusters

Electromagnetic shower radial profile

Hadronic shower radial profile

Conclusion

- Digitizer parameters tuned with muon and electron data.
- Muon and electromagnetic shower simulation are a in good agreement with data.
- Significant disagreement between data and simulation above 50 GeV on total number of hits for hadronic showers. Investigation on shower topology is ongoing.
- CALICE note on the digitizer is in preparation.