

CEPC simulation studies, "« Status & Plan Manqi an Est

FR

Simulation study: key ingredients

Conceptual CEPC Detector: modified from ILD

HGC4ILD@LLR

Simulation & Reconstruction Software

Geant 4 Full Simulation:

Geometry can be edited freely (Y. Xu, NKU & X. Chen, USTC) Series of geometries has been generated Reconstruction Chain Tracking: Clupatra & ILD tracking (B. Li, etc THU) PFA: Arbor (M. Ruan, etc, IHEP) Flavor Tagging: LFCIPlus (G. Li, etc, IHEP) unvur=0. EventNur=23

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Rum/Event: 1 / 1 Lumi section: 1

Samples & Computing

• Sample

Generators: Full SM sample (Moxin) + Several BSM Signals

T. Yan @ IHEP

Resources Status

#	Site Name	CPU Cores	OS	Status	Shared by VO
1	CLOUD.IHEP-OPENSTACK.cn	144	SL 6.5	Active	bes,cepc,juno
2	CLOUD.IHEP-OPENNEBULA.cn	120	SL 6.5	Active	bes,cepc,juno
3	CLUSTER.WHU.cn	100	SL 6.4	Active	cepc,bes,juno
4	CLUSTER.SJTU.cn	100	SL 6.5	Active	cepc,bes
5	CLUSTER.GXU.cn	50	CentOS 5.10	Active	серс
6	CLUSTER.BUAA.cn	50	SL 5.8	Testing	bes,cepc
7	CLUSTER.PKU.cn	64	SL 5.10	Testing	bes,cepc
8	CLUSTER.SDU-MLL.cn	150	SL 6.6	Testing	bes,cepc
9	CLUSTER.SDU-HXT.cn	100		Preparing	bes,cepc
10	CLOUD.WHU.cn	120	SL 6.6	Preparing	cepc,bes,juno
11	CLOUD.IHEP-PUBLIC.cn	10+	SL 6.6	Preparing	cepc,bes,juno
	Total (Active + Testing)	778			

- Computing: resource is not ideal (1 -2k CPU + 2 – 3 PB storage), but sufficient for us to carry on lots of studies already
- Distributed computing is needed

CEPC Higgs Analysis: Status

	di-muon	di-electron	di-neutrino	di-jets
σ(ZH)			-	
Мн				
σ(ZH)*Br(H→bb)				
σ(ZH)*Br(H→cc)				
σ(ZH)*Br(H→gg)				
σ(ZH)*Br(H→WW)				
$\sigma(ZH)^*Br(H\rightarrow ZZ)$				
σ(ZH)*Br(H→ττ)				
σ(ZH)*Br(H→γγ)				
σ(ZH)*Br(H→μμ)				
σ(vvH)*Br(H→bb)	-	-		-
Br(H→invisible)			-	
Br(H→exotic)				

Signal with CEPC Full Simulation, Bkgrd with Fast Simulation

CEPC Fast Simulation

Extrapolated from ILC/FCC-ee results

Higgs Analysis: Higgs mass & $\sigma(ZH)$

Mass measurement: 5.0 MeV from di-muon channel & 17 MeV from di-electron channel

Z.X Chen (PKU & IHEP) L.Yuan (Kobe University, Japan) Y. Haddad (LLR, France & Imperial University, UK)

Xsec measurement:

0.9% from di-muon, 2.1% from di-electron, 0.65% from di-jet

0.5% accuracy on σ(ZH), the anchor of absolute Higgs measurements,
 0.25% accuracy on g(HZZ), an extremely sensitive probe to NP

Model independent tagging of Higgs boson (though recoil mass spectrum) Make CEPC extremely sensitive to BSM Higgs decay...

Benchmark tests:

Br(H \rightarrow inv) can measured to **0.14%** accuracy with Br = 100% Br(H \rightarrow bb + MET) will induce 9.4 σ deviation with Br = 0.2% Br(H \rightarrow bbbb) will induce 8.4 σ sigma deviation with Br = 0.04% HGC4ILD@LLR

$Z \rightarrow \mu \mu / ee, H \rightarrow bb, cc, gg$

- Preliminary analysis
 - With fully simulated Higgs signal
 - Only consider µµ/eeqq background. Ignore other SM background and Higgs backgrounds
- Method:
 - Force everything besides two leading leptons into 2 jets
 - Event selection on leptons and jets kinematics
 - Flavor tagging: classify selected events into possible flavor combination (bb, cc, gg, bc, bg, cg)
 - Resolve back the signal and background yields (only bb, cc, gg numbers)

$Z \rightarrow \mu \mu$, $H \rightarrow bb$, cc, gg

02/02/2015

HGC4ILD@LLR

$Z \rightarrow ee, H \rightarrow bb, cc, gg$

02/02/2015

HGC4ILD@LLR

Measurements

	modo	ILC result		
	Expected events	Solution	Error	
7H	11416	11485	0.85%	bb 1.0%
<u> </u>	562	523	10.00%	
Di-muon channel	1494	1522	3.96%	
				yy 1 .070
	Expected events	Solution	Error	
	343	344	14.88%	
ZZ	618	565	7.98%	
	1498	1495	3.68%	
				ILC result
	Expected events	Solution	Error	
ZH	8154	8123	1.25%	bb 11%
	399	412	19.05%	cc 6.5%
Di alaatran ahannal	1408	1409	6.33%	$a = \frac{1}{2} \frac{80}{2}$
Di-electron channel				yy 4.070
	Expected events	Solution	Error	
	679	767	9.53%	
ZZ	1205	1083	7.63%	
	2864	2905	3.28%	

Electron channel significantly worse than muon for: 1, electron tagging efficiency & 2, larger background

Higgs Analysis: Br(H \rightarrow WW*, ZZ*) & $\sigma(vvH)$ *Br(H \rightarrow bb)

states, partial explored

HGC4ILD@LLR

50

100

M^{bb}_{miss}[GeV]

150

Higgs Rare Decays

Figure 3.14 $\sigma(ZH, \nu\nu H) \times Br(H \to \gamma\gamma)$ measured from $llH, \nu\nu H$ and qqH channels with different modelling of ECAL energy resolutions.

HGC4ILD@LLR

Comparison to ILC/FCC-ee

	ILC Extrapolation	FCC-ee Extrapolation	CEPC Simu
mH (Model Independent)	8 MeV		4.7 MeV
σ(ZH)	0.7 %	0.55%	0.5%
Higgs CP			
Δ(σ*Br)/(σ*Br)			
ZH, H→bb	0.4%	0.27%	0.24%
H→cc	2.1%	1.6%	2.6%
H→gg	1.8%	1.9%	1.3%
H→WW*	1.3%	1.2%	1.5%
Н⊸тт	1.2%	1.0%	1.2%
H→ZZ*	5.1%	4.3%	4.3%
Н→үү	8%	4.1%	8.2%
H→µµ	-	18%	17%
H→Inv.	0.14%	-	0.14%
vvH, H→bb	3.8%	2.9%	2.6%

Normalize to same Higgs Yields at 3 facilities... FCC-ee at 240 GeV (sigma(ZH) = 197 fb, sigma(vvH) = 6.1 fb), ILC/CEPC at 250 GeV (sigma(ZH) = 209 fb, sigma(vvH) = 6.8 fb) Number in blue, recent update.

From measurements to couplings

Δm_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\nu H)\times BR(h\to bb)$
5.5 MeV	2.9%	0.5%	2.6%

Decay mode	$\sigma(ZH)\times BR$	Branching Ratio $BR(h \rightarrow XX)$
h ightarrow bb	0.25%	0.56%
$h \to cc$	3.2%	3.2%
h ightarrow gg	1.3%	1.4%
$h \to \tau \tau$	1.2%	1.3%
$h \rightarrow WW$	1.5%	1.6%
$h \to ZZ$	4.3%	4.3%
$h ightarrow \gamma \gamma$	8.2%	8.2%
$h ightarrow \mu \mu$	16%	16%
$h \to inv$	0.14%	0.5%

Combination group: (Y. Fang, Z. Liu, etc)

Model independent result compared to ILC & Model dependent result compare to LHC (LHC: very limited access to model Independent measurement)

Higgs measurements at CEPC: roughly understood

Z pole: EW & Flavor

07/05/14

Summary

- Writing a note on CEPC Z-pole physics
 - 30% written
 - More measurements to be covered
 - · Z mass/width measurement
 - QCD alpha_S measurement

•

Observable	LEP precision	CEPC precis
A _{FB (b)}	1.7%	0.15%
$Sin^2\theta_W$	0.1%	0.01%
R ^b	~0.3%	0.08%
N_v (direct measurement)	1.7%	0.18%
R ^{mu}	0.2%	0.05%
R ^{tau}	0.2%	0.05%

Z. Liang at USCD

- 2.1 Higgs Factory as excellent `early' ZO Factory about Beauty, Charm Hadrons & Dynamics
 - 2.1.1 Introduction
 - **2.1.2** Tools
 - 2.1.3 Beauty transitions
 - 2.1.4 Charm mesons & baryons transitions
 - 2.1.5 Very rare decays
 - 2.1.6 Production of beauty & charm hadrons
 - 2.1.7 CPV in decays and production
 - 2.1.8 Charged Lepton Flavor Violation
 - 2.1.9 Summary

References

At Higgs invariant mass

Arbor Uses GRPC Hadron Calorimeter, whose intrinsic resolution – based on current energy estimator is worse than that Pandora Used (Scintillator Tile Analogy HCAL). 02/02/2015 HGC4ILD@LLR

Lepton identification (Preliminary)

NHits Vs FD for 60GeV Mixed Run (714594)

10GeV	P_PID_e(%)	P_PID_mu(%)	P_PID_pi(%)
e	99.02	0.09	0.89
mu	0.02	98.24	1.74
pi	5.34	4.14	90.66
20GeV	P_PID_e(%)	P_PID_mu(%)	P_PID_pi(%)
e	99.47	0.06	0.47
mu	0.09	99.11	0.80
pi	5.56	1.99	92.45
	D DID (0/)	D DID (0/)	D DID 1/0/)
30GeV	P_PID_e(%)	P_PID_mu(%)	P_PID_pi(%)
e	99.47	0.03	0.50
mu	0.06	99.20	0.74
рі	5.28	1.84	92.88

%)
%)
%)
%)
%)

60GeV	P_PID_e(%)	P_PID_mu(%)	P_PID_pi(%)
e	99.71	0.09	0.20
mu	0.24	99.56	0.20
pi	5.84	1.63	92.53
70GeV	P_PID_e(%)	P_PID_mu(%)	P_PID_pi(%)
e	99.62	0.09	0.29
mu	0.25	99.58	0.17
pi	5.06	1.78	93.26
80GeV	P_PID_e(%)	P_PID_mu(%)	P_PID_pi(%)
e	99.47	0.09	0.44
mu	0.22	99.68	0.10
pi	5.00	2.49	92.51
90GeV	P_PID_e(%)	P_PID_mu(%)	P_PID_pi(%)
e	99.46	0.05	0.49
mu	0.25	99.69	0.06
pi	5.00	2.34	92.76
100GeV	P_PID_e(%)	P_PID_mu(%)	P_PID_pi(%)
e	99.28	0.03	0.69
mu	0.43	99.56	0.01
pi	4.24	2.59	93.17

Binsong MA @ IHEP: Arbor Clusters: Efficiency > 99% is achieved for muon/electron: On going activity: understand the pion mis-id case... Push to low energy cases

...Pile ups...

140 PU: 100 k hits ~ o(100 TeV) energy deposition at each EndCap...

CMS

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 1 Lumi section: 1

£.

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 1 Lumi section: 1

Lindsey Gray

KD-Tree implemented:

 $N^2 \rightarrow Nlog(N)$

One event ~ 40 sec...

Reconstruction: next steps

- Tracking
 - TPC?
 - Tagging of pre interaction, kink, etc...
- PFA
 - Arbor development:
 - Efficiency orientated
 - Photon energy reconstruction
 - Neutral Hadron energy measurement
 - Bremsstrahlung photon tagging & electron id
- FlavorTagging
 - Identification between quark jets/gluon jets?
 - Optimization with Inner detector design

Arbor-v2: on going

Toward the CDR: CEPC

1-2 years

- Physics @ CEPC
 - Higgs measurement simulated (Fast/Full)
 - SM
 - BSM
 - Z pole
 - Flavor physics
 - EW measurements
- ILD based, Conceptual detector model(s) realized at Full Simulation level
- Workable software chain, optimization stage
- MDI: preliminary design

- Higgs
 - Analysis converged to Full simulation level
- Z pole
 - EW (& flavor?): dedicated Fast simulation tool to be developed
- Iterate with sub-detector studies, and converged to 1 - 2 benchmark detectors
- Develop/Optimize reconstruction algorithm/software by iteration with physics analysis
- MDI: iterate with acc. Group to fix the design...

Toward the CDR: SPPC

- Physics potential
 - SM: Higgs (g(HHH), g(Htt), rare generation/decay)
 - SM: Non-Higgs
 - BSM: representative NP models
- Detector design
 - Understand the correlation between object reconstruction & performance...
 - Constrains: High eta region layout
- Software:
 - Fast simulation tool: support Potential Demonstration & Detector Design
 - Full-sim/reco validation & preparations
- Design of experimental area, interference with 2 beam lines (electron-positron & proton-proton)...

HGC4ILD@LLR

Lots of interesting/well-defined tasks...

Team Building & trainings

LLR

Go to

Training

August 2014

11 Aug - 15 Aug Detector Simulation and Geometry editing

October 2013

19 Oct - 20 Oct CEPC Training: Physics Analysis, Detector Optimization and Software tools

International Summer school on TeV Experimental Physics (iSTEP)

20-29 August 2014 IHEP Asia/Shanghai timezone Continuous efforts + dedicated training

A small group of analyzers trained...

Summary

- Pre-CDR phase: Finalizing...
 - Workable simulation reconstruction chain
 - Higgs analysis covered by Simulation study (50% at Full simulation level)
- Lots of interesting tasks in the coming two years
 - Optimize detector geometries/adequate reconstruction for CEPC
 - Get conceptual detector design for pp collision phase
- Arbor PFA
 - Promising at both ee & pp collision...
 - Arbor v2 under development: efficiency & tagging oriented
- Team building
 - A small group of analyzers
 - Full simulation analysis chain

Backup

183 6.7 zz_sl0mu_up

207 6.31 sze_sl0uu

