HGCAL for ILD @ LLR - February 2015
Linear Collider Data Quality Monitoring (LCDQM)

Eté Rémi <rete@ipnl.in2p3.fr>

Université Claude Bernard Lyon 1 - Institut de Physique Nucléaire de Lyon

2 février 2015

wrnl

Calorimeter for IL

R. Eté (UCBL - IPNL) LCDQM 2 février 2015

1/9

-
LCDQM : a monitoring system

Why a common monitoring system for our data ?

-
LCDQM : a monitoring system

Why a common monitoring system for our data ?

— The answer is in the question !

-
LCDQM : a monitoring system

Why a common monitoring system for our data ?

— The answer is in the question !

@ acommon tool to monitor our data

-
LCDQM : a monitoring system

Why a common monitoring system for our data ?

— The answer is in the question !

@ acommon tool to monitor our data

@ important need for common test-beams (ECAL + HCAL)

LCDQM : a monitoring system

Why a common monitoring system for our data ?

— The answer is in the question !

@ a common tool to monitor our data
@ important need for common test-beams (ECAL + HCAL)
© global view of what is going on during test beam

All collider experiments have their own DQM system (CMS, ATLAS, ALICE, LHCb, ...)

Many ideas here are taken from the ALICE DQM system, AMORE (B. Von Haller)

Global software overview

Global software overview
LCDQM : Linear Collider Data Quality Monitoring

Main ideas :
@ Standalone run control for DQM
Data distributing system (services) over the network

°

@ Data processing adapted to DQM (+ archiving)

@ Histograms distributing system (services) over the network
o

Vizualization interface (GUI, web page)

Global software overview

Global software overview
LCDQM : Linear Collider Data Quality Monitoring

Main ideas :
@ Standalone run control for DQM
@ Data distributing system (services) over the network
@ Data processing adapted to DQM (+ archiving)
@ Histograms distributing system (services) over the network
@ Vizualization interface (GUI, web page)
The software should consists mainly in executables ...
@ start a run control
@ start a standalone event service for Icio files
@ start a module processing (see next slides)
@ start a vizualisation interface (GUI or web page)

Global software overview

Global software overview
LCDQM : Linear Collider Data Quality Monitoring

Main ideas :
@ Standalone run control for DQM
@ Data distributing system (services) over the network
@ Data processing adapted to DQM (+ archiving)
@ Histograms distributing system (services) over the network
@ Vizualization interface (GUI, web page)
The software should consists mainly in executables ...
@ start a run control
@ start a standalone event service for Icio files
@ start a module processing (see next slides)
@ start a vizualisation interface (GUI or web page)
.. and libraries :

@ to plug the data service and run control into the DAQ
@ to plug the analysis modules that produce histograms

@ to extend the vizualisation interfaces

Global software overview

Global software overview
LCDQM : Linear Collider Data Quality Monitoring

Main ideas :
@ Standalone run control for DQM
@ Data distributing system (services) over the network
@ Data processing adapted to DQM (+ archiving)
@ Histograms distributing system (services) over the network
@ Vizualization interface (GUI, web page)
The software should consists mainly in executables ...
@ start a run control
@ start a standalone event service for Icio files
@ start a module processing (see next slides)
@ start a vizualisation interface (GUI or web page)
.. and libraries :

@ to plug the data service and run control into the DAQ
@ to plug the analysis modules that produce histograms

@ to extend the vizualisation interfaces

Dependencies : LCIO, ROOT, Qt (GUI), Wt (Web), DIM (networking). All in C++!!

Global software overview

Packages overview

Software mainly split in three parts :

@ Data service : Publication of LCEvents (TCP/IP) via
a service, standalone DQM Run Control (SOR,
EOR), data serialization. Easy to couple to an DAQ
system (XDAQ, EUDAQ)

@ Data processing : Modules process data received by
a service. Produce monitor elements (histograms,
graphs, scalars, etc ...) and publish them via a
service (TCP/IP).

@ Vizualisation : Graphical/Web interface application
receives monitor elements on request, organize
them and display them.

Data and runs in LCIO format.

All services/client connections handled by DIM by TCP/IP
(sockets).

Histograms, graphs, etc ... encapsulated in ROOT objects.
Vizualisation interfaces implemented with Qt (GUI) and Wt
(Web).

DATA

LCEvent data server
(DAQ, LCIO file)

Bridge

(LCRunHeader)

Start of run
End of run

ANALYSIS \

Analysis Module
+

Monitor element service,

TProfile, string |

TH1, TH2,

float, ...

viz

Vizualisation interface

(GUI, Web)

2 février 2015

4/9

Slobal software overview

‘

Module application

Overview

A module is a user plug-in code like a Marlin processor. Its pro-
cesses a fast analysis of the received data and produces moni-
tor elements (histograms, graphs, scalars, ...). These elements are
published in a service (TCP/IP) at the end of a cycle.

Wrapper of ROOT histograms, graphs, scalars, profiles, etc ... A
monitor element is qualified by its quality, a name, a title, a reset
policy (when the element has to be reset), a short description, a
run number and its associated module name. Monitor elements
are book via the DQMModuleApi (see next slides).

Series of processEvent(evt) calls of a module. Can be of many
types :

@ Event counter cycle

@ Timer cycle

@ Event size cycle (N bytes)
At the end of a cycle, the list of monitor elements associated to its

module are published via a service.

Start of run

Start of cycle

End of cycle

Module application flow

2 février 2015

5/9

Global software overview

Module application

Module interface

class DQMModule

{
virtual const std::string &getDetectorName () const = 0;
virtual const DQMVersion &getVersion() const = 0;
virtual StatusCode init() = 0;
virtual StatusCode readSettings (const TiXmlIHandle &xmlHandle) = 0;
virtual StatusCode end() = 0;
virtual StatusCode processEvent(EVENT::LCEvent spLCEvent) = 0;
virtual StatusCode startOfCycle() = 0;
virtual StatusCode endOfCycle() = 0;
virtual StatusCode startOfRun (EVENT::LCRunHeader *pRunHeader) = 0;
virtual StatusCode endOfRun(EVENT::LCRunHeader *pRunHeader) = 0;
virtual StatusCode reset() = 0;

}s

class DQMModuleApi

{
static StatusCode bookRealHistogram1D (DQMModule *const pModule,
const std::string &name, const std::string &title , int
static StatusCode bookIntHistogram1D (DQMModule *const pModule,
const std::string &name, const std::string &title , int
static StatusCode bookCharHistogram1D (DQMModule *const pModule,
const std::string &ame, const std::string &title , int
11
1

LcDQMm

R. Eté (UCBL - IP

DQMMonitorElement *&pMonitorElement ,
nBins, float minimum, float maximum);
DQMMonitorElement *&pMonitorElement ,
nBins, float minimum, float maximum);
DQMMonitorElement *&pMonitorElement ,
nBins, float minimum, float maximum);

2 février 2015 6/9

Global software overview

Vizualisation interface

Gui implementation with Qt and web implementation with Wt (Qt-like for web).
Functionalities :
@ module and monitor elements search
@ histogram vizualisation
@ comparison of histograms with reference histograms
@ extensibility for a different viz implementation
Qt implementation :
@ advantage : root histogram handling, easy deployement (simple executable)
@ drawback : need to install locally the package and open your viz
Web implementation :
@ advantage : easy to handle -> open your browser and enter the correct address

@ drawback : no root histogram handling (generated image), needs efforts on deployment

In sdhcal DAQ

Software General View of m3

f and
asics co

DIM DB
Manager

USB Device
ver

DIF Data
Handler ‘ DIM DIF ‘
Server

& \

DIM DIF
Client

Readout

ccc

Sbcc | USB Device| L Manager | | piM ccc &4
ver server | Y]]

Readout

Online
Analysis

Configuration
DB (Oracle)

Archived data

Running on DAQ Rpls DIM

interface

Running anywhere on
the DAQ network

This is where the DQM
system should be plugged!

R. Eté (UCBL - IPNL)

LcDQMm

2 février 2015 8/9

Global software overview

Software status

Data serialization DATA OK -

Event service DATA OK -

Event client DATA OK -

Run control DATA OK -
Bridge service DATA NO 2 days
Memory check DATA NO 2 days
Module api ANALYSIS DEV 1 week
Module application flow ANALYSIS | OK-DEV 1 week
Memory check ANALYSIS NO 3 days
Monitor element service/client | ANALYSIS NO 2 weeks

[Gui/Web implementation Viz DEV [1-1.5months]

First working implementation forseen in april with SDHCAL modules implementation (V. Buridon)

Code available on Github : https ://github.com/rete/LCDQM.
Easy to install with cmake (needs DIM additionally)
For an ECAL implementation, please feel free to contact me to discuss on how to do it.

Possibility to have :
@ SDHCAL modules
@ ECAL modules
@ Coupled ECAL+SDHCAL modules

R. Eté (UCBL - IPNL)

LcDQMm

	Global software overview

