

Tau reconstruction for reduced ECAL size

Trong Hieu TRAN Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3

<u>Outline:</u>

- Tau decay modes
- Analysis procedures
- Comparison between ILD models (baseline vs reduced radius)

High granularity calorimeter for ILD workshop LLR, Feb 2015

Tau decay modes

Tau jet reconstruction: a crucial key for an estimation of detector performance. Tau jet is compact.

Topologically: 3 decay modes (1,3,5-prong)

1-prong: single charged pion and any number of π^0 3-prong: $\pi^+\pi^-\pi^+$

Final state	Branching fraction
$e^-\bar{\nu}_e\nu_\tau$	$17.85 \pm 0.05\%$
$\mu^- \bar{\nu}_\mu \nu_\tau$	$17.36 \pm 0.05\%$
$\pi^- \nu_{\tau}$	$10.91 \pm 0.07\%$
$\rho^- \nu_\tau \ (\rho^- \to \pi^- \pi^0)$	$25.52 \pm 0.10\%$
$a_1^- \nu_\tau \ (a_1^- \to \pi^- \pi^0 \pi^0)$	$9.27 \pm 0.12\%$
$a_1^- \nu_\tau \ (a_1^- \to \pi^- \pi^+ \pi^-)$	$8.99 \pm 0.06\%$
24 other modes	10.10%
$ \frac{\pi \nu_{\tau}}{\rho^{-}\nu_{\tau} \ (\rho^{-} \to \pi^{-}\pi^{0})} $ $ \frac{a_{1}^{-}\nu_{\tau} \ (a_{1}^{-} \to \pi^{-}\pi^{0}\pi^{0})}{a_{1}^{-}\nu_{\tau} \ (a_{1}^{-} \to \pi^{-}\pi^{+}\pi^{-})} $ $ \frac{24 \text{ other modes}}{\rho^{-}\nu_{\tau}} $	$\begin{array}{c} 10.91 \pm 0.07\% \\ 25.52 \pm 0.10\% \\ 9.27 \pm 0.12\% \\ 8.99 \pm 0.06\% \\ 10.10\% \end{array}$

Branching fraction of main decays

This analysis: consider only 1-prong decay

$\pi^- \nu_{\tau}$
$\rho^- \nu_\tau \ (\rho^- \to \pi^- \pi^0)$
$a_1^- \nu_\tau \ (a_1^- \to \pi^- \pi^0 \pi^0)$
· · · ·

0 photon 2 photons 4 photons

Samples

DBD generators $e^+ e^- \rightarrow Z \rightarrow T^- T^+$

τ energy ~ 125 GeV

 $e^{-(8)}$ $\tau^{+(2)}$ Z $e^{+(4)}$ 2 $\tau^{-(1)}$

Simulation & reconstruction

Softwares Ilcsoft v01-17-06, Mokka-08-04 Garlic v3.0.2

- Baseline ILD design (DBD): SiW ECAL,
 R_{ECAL} inner = 1843 mm
- Alternative setup: $R_{FCAI}^{inner} = 1450 \text{ mm}$

 ■ Reduced TPC radius → ECAL, HCAL, Yoke, ... radii are reduced

- Keep same aspect ratio: Radius/Length (→ for a reduced radius, the length is reduced as well)
- Other configurations unchanged (cell size, thicknesses)

Garlic (v3.0.2) is used for photon reconstruction

however its cuts are not used but some simple cuts based on track-cluster distance & cluster energy

Strategy:

- preselection based on MC info: choose only 1-prong decays
- □ |cos(theta)| ^{tau} < 0.7</p>
- photon in tau direction within 0.5 rad (to be optimised)
- sample with only one track in tau direction

Example (1)

Example (2)

Photon selection: photonE vs distance to track

Trong Hieu TRAN

Photon selection: fake EM clusters

Fake clusters created from interaction of with detector

"Asymmetry" of energy very close to 1

Example of photon invariant mass vs asymmetry

Angle photon-photon

Choose to merge closest clusters with asymmetry close to 1.

Number of reconstructed photons

Decay mode known from MC info. Look at samples with different number of reconstructed photons. If everything is fine: πv : 0 photon, ρv : 2 photons, a_1v : 4 photons.

Invariant mass $\pi^+\gamma(s)$: key for final state distinction

Comparison: $R_{FCAI} = 1843 \text{ vs } R_{FCAI} = 1450 \text{ mm}$

Reconstructed tau jet invariant mass for known decay modes. Slight difference between radii 1843 and 1450 mm. (Same cuts are used.)

Reconstruction efficiency

Slight difference in term of efficiency for two ECAL models. This is due to tighter angle between photons for reduced radius **BUT also: cuts are determined for R=1843 for the moment!**

Summary

- Tau decay mode reconstruction ($E_{tau} \sim 125 \text{ GeV}$ which is equivalent to taus in ZH, $H \rightarrow T$
 - rt at 500 GeV cms) being investigated using Garlic v3.0.2 (ilcsoft v01-17-06).
- Nice mass peaks observed
- High reconstruction efficiency even with a reduced detector size
- Comparison between ILD with ECAL of radii 1843 and 1450 mm shows slight difference! (up to 5% of in term of efficiency)
- Next steps:
 - ◆ to look at ZH, H → T⁺T⁻ events (500 GeV)
 - optimise cuts (1843mm || 1450mm)

Rec efficiency vs cosTheta

Slight dependence on $|\cos\theta|$

Effect of distance-energy cut

tau@LLR.HGC4ILD.WS

More comparison: 1843 vs 1450

Effect of merging

