

LATEST ATLAS SUSY RESULTS

Marija Marjanović

A biased selection of ATLAS SUSY searches new since last GDR

ATLASSUSYPublicResults

- \Box 1 energetic jet + E_T^{miss}
- \Box 2 leptons + jets + E_T^{miss}
- Analyses combination
- Run-2 expected sensitivity
- □ Conclusion

- February 2015
- March 2015
- March 2015
- March 2015

1 energetic jet + E_T^{miss}

Search for new phenomena in final states with an energetic jet and large E_T^{miss} with ATLAS

1 energetic jet + E_T^{miss} Target of the search

- Multiple interpretations:
 - Iarge extra spatial dimensions (LED)
 - pair production of weakly interacting dark matter candidates (WIMP)
 - production of very light gravitinos in a GMSB SUSY model
- WIMPs are assumed to be produced in pairs, and the events are identified via the presence of an energetic jet from initial-state radiation (ISR) yielding large
 E_T^{miss}
- Event selection:
 - **a** at least one jet with $p_T > 120$ GeV, $\mid \eta \mid < 2$
 - no leptons
 - leading jet $p_T/E_T^{miss} > 0.5$
 - **d** ϕ (jet, E_T^{miss}) > 1.0
 - 9 SRs with increasing E_T^{miss} requirements
 (> 150 GeV > 700 GeV)

1 energetic jet + E_T^{miss} Background estimation

- □ W+jets and Z($\rightarrow v\overline{v}$)+jets backgrounds are estimated using MC normalized using data in CRs
- □ $Z/\gamma^*(\rightarrow l^+l^-)$ +jets, t t, single top, and dibosons are determined using MC
- Multijet background contribution extracted from data
- MC expectations provide a fair description of the shapes in data

1 energetic jet + E_{τ}^{miss} Signal regions definition arxiv:1502.01518

- Signal region 7:
 - **a** at least one jet with $p_T > 120 \text{ GeV}$
 - no leptons
 - leading jet $p_T/E_T^{miss} > 0.5$
 - $\Delta \phi$ (jet, E_T^{miss}) > 1.0

Events / GeV

10

 10^{3}

102

10

1

ATLAS

√s=8 TeV, 20.3 fb1

E_T^{miss}>500 GeV

Data 2012

Di-boson tt + single top Multi-jet

Z(→ II)+jets

D5 M=100GeV, M*=670GeV ADD n=2, M_=3TeV

 \widetilde{G} + $\widetilde{q}/\widetilde{g}$ M_{as}=1 TeV, M₂=10⁻⁴ eV

SM uncertainty

 $Z(\rightarrow vv)$ +jets W($\rightarrow hv$)+jets

1 energetic jet + E_T^{miss} SUSY interpretations

- Good agreement between data and SM expectations
- Results interpretation in GMSB scenarios
 - the gravitino \overline{G} (spin-3/2 superpartner of the graviton) is the LSP
- The gravitino mass as a function of squark mass for degenerate and non degenerate squark and gluino masses (m(\tilde{g})=1/2m(\tilde{q}))

2 leptons + jets + E_T^{miss}

Search for SUSY in events containing a sameflavour opposite-sign dilepton pair, jets, and large E_T^{miss} with the ATLAS detector

2 SFOS leptons + jets + E_T^{miss} Target of the search

Off-Z

- Search outside Z window for a kinematic edge in dilepton invariant mass *M_{ll}*
- ≥ 2 or 4 jets, with or without b-tags
- CMS found ~2.4σ excess

arxiv:1502.06031

- Decays of squarks and gluinos (cascades) with Z bosons in the final state
- Peak in the *m_{ll}* distribution around the Z-boson mass
- □ large E_T^{miss} , large H_T , ≥ 2 jets

2-leptons + jets + E_T^{miss} Background estimation

"Flavour-symmetric"	processes	dominant
---------------------	-----------	----------

- Same-flavour (SF) contributions can be estimated using information from the different-flavour (DF) contribution
 - Data driven technique
- Dominated by ttbar, and also includes WW, single top (Wt) and $Z \rightarrow \tau \tau$ production
- □ 60 % in on-Z SRs
- 90 % in off-Z SRs

Z/γ^* + jets background

- \Box Consequence of artificial E_T^{miss} from jet mismeasurements
- Important in on-Z search:
 - Data-driven technique is used jet smearing

Diboson background

- Real Z boson production
- While small in the off-Z regions, contribute up to 25% of the total background in the on-Z regions

Off-Z + jets + E_T^{miss} Signal and control regions definition arxiv:1503.03290

50

100

150

200

250

m_{II} [GeV]

300

Off-Z region E_r^{miss} [GeV] nJet

- Control regions (CR) designed to constrain the dominant backgrounds
- Validation regions (VR) to check the modeling
- CMS-like region
 - SR-loose

 $m_{\ell\ell} \notin [80, 110]$ >(150,100) SF SR-loose (2,≥3) **CRZ-loose** >(150,100) (2,≥3) SF $80 < m_{\ell\ell} < 110$ $m_{\ell\ell} \notin [80, 110]$ >(150,100) (2,≥3) **CRT-loose** DF 100-150 $m_{\ell\ell} \notin [80, 110]$ SF VR-offZ =2 GeV Events / 10 GeV 220 ATLAS ATLAS õ 200 √s = 8 TeV. 20.3 fb⁻¹ $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ Standard Model ²⁵⁰ VR-offZ μμ Flavour Symmetric 180 E VR-offZ ee Flavour Symmetric Events / Z+iets 7+iets 160 Other Backgrounds Other Backgrounds 200 q̃q̃ 2-step, m(q̃, χ̃[±], χ̃⁰₂, l̃/ṽ, χ̃⁰₁) $\widetilde{q}\widetilde{q}$ 2-step, m($\widetilde{q}, \widetilde{\chi}_{a}^{\dagger}/\widetilde{\chi}_{a}^{0}, \widetilde{V}\widetilde{\nu}, \widetilde{\chi}$ 140 (465,385,345,305) GeV (465.385.345.305) GeV 120 545.465.425.385) GeV 545 465 425 385) GeV 150 65 465 365 265) Ge 100 uμ 80 100 ee 60 40F 50 20F Data/SM Data/SM 0.5

MII [GeV]

50

100

150

200

 $u/\ell \ \ell/
u$

 ℓ/ν

SF/DF

250

m_"[GeV]

300

Off-Z + jets + E_T^{miss} Signal region definition

- Z-boson mass window is vetoed, 2 regions defined:
 - **2** 20 < $m_{\ell\ell}$ < 80 GeV
 - □ *M_{ℓℓ}* > 110 GeV
- At least 2 jets + b-jet veto
 - targeting squark pair production
- At least 4 jets + b-jet veto
 - targeting gluino pair production
- At least one b-tagged jet
 - models where sbottom is the lightest squark
- $\Box E_T^{miss} > 200 \text{ GeV}$

Off-Z + jets + E_T^{miss} SR-loose

Events / 10 GeV ATLAS 350 ATLAS Events / 10 Ge Vs = 8 TeV, 20.3 fb No excess found in the region with the √s = 8 TeV, 20.3 250 300 - SR-loose μμ SR-loose ee 200 250 Other Backgrounds same cuts as the one CMS found excess $m(\tilde{q}, \tilde{\chi}^*_1/\tilde{\chi}^0_2, \tilde{l}/\tilde{\chi})$ $m(\tilde{q}, \tilde{\chi}^*, \tilde{\chi}^0)$ 200-150 425 385) GeV 150 100 ee 100 50 Data/SM Data/SM 0.5 0.5 m_{II} [GeV] m_{II} [GeV] Two channels: μμ 10⁵ Events ee, μμ ATLAS Data Vs=8 TeV. 20.3 fb⁻¹ Flavour-symmetric 10⁴ above Z Z/γ*+jets Two regions: below Z Other Backgrounds 10³ Total SM Below and above Z 10² ee+μμ 10 — Data ee Standard Model $(N_{obs}$ - N_{exp})/ σ_{tot} 2 **ee+**μμ μμ ee Flavour Symmetric μμ Z+jets SR-2j-bveto SR-2j-btag SR-4j-bveto SR-4j-btag SR-2j-bveto SR-2j-btag SR-4j-bveto SR-4j-btag VR-off2 VR-offZ SR-loose SR-loose Other Backgrounds

Off-Z + jets + E_T^{miss} Interpretations

 ν/ℓ

May be produced in the cascade decays of squarks and gluinos via several mechanisms

On-Z + jets + E_T^{miss} Event selection

- At least two leptons (electrons or muons) oppositely charged
- At least 2 jets
- □ Z boson mass window $81 < m_{\ell\ell} < 101$ GeV
- $\Box \quad E_{T}^{miss} > 225 \text{ GeV}$
- \square H_T > 600 GeV
- \Box d ϕ (jet, E_T^{miss}) > 0.4
 - reject events with jet mismeasurements

$$H_{\rm T} = \sum_i p_{\rm T}^{\text{jet},i} + p_{\rm T}^{\text{lepton},1} + p_{\rm T}^{\text{lepton},2}$$

On-Z + jets + E^{miss} Signal region arxiv:1503.03290

On-Z + jets + E_T^{miss} Signal region arxiv:1503.03290

On-Z + jets + E_T^{miss} Interpretations

q

q

 \mathcal{D}

p

 \tilde{q}

q

q

GGM model:

- the gravitino is the LSP and the NLSP is a higgsino-like neutralino
- lacksquare The higgsino mass parameter, μ , and the gluino mass are free parameters
- **Gaugino mass parameters,** M_1 and M_2 , are fixed to be 1 TeV
- All other sparticles are set at 1.5 TeV
- $\hfill\square$ μ is set to be positive to make the dominant NLSP decay
- $\tan \beta = 1.5$ (left) and $\tan \beta = 30$ (right)

Results in SR-Z ee and SR-Z μμ are considered simultaneously

22 Combination 0/1-lepton + jets + E_T^{miss}

Combination of searches for strongly-produced SUSY particles with the ATLAS detector Statistical combination of all-hadronic and onelepton analyses targeting scalar top pair production with the ATLAS detector

Combination 0/1-lepton + jets + E_T^{miss} sq/gl searches

- Statistical combination of analyses targeting strong production:
 - 0-lepton + jets + E_T^{miss} <u>arxiv:1405.7875</u>

23

- $\square 1-lepton + jets + E_T^{miss} \underline{arxiv:1501.03555}$
- Analyses have similar sensitivities in some of the considered simplified models
 - Pair production of gluinos or squarks with a decay through intermediate chargino
- Some modification in CRs to ensure a complete statistical independence

Combination 0/1-lepton + jets + E_T^{miss} stop searches ATLAS-CONF-2015-010

24

²⁵ Run-2 expected sensitivity

Expected sensitivity studies for gluino and squark searches using the early LHC 13 TeV Run-2 dataset with the ATLAS experiment

- Discovery reach in Run-2 is expected to be greatly enhanced due to LHC going from 8 TeV to 13 TeV
- Understanding when our 13TeV discovery potential will surpass our 8TeV limits for several analyses
- Analyses similar to Run-1
 - Same discriminating variables: m_{eff} , E_T^{miss} , $d\phi$ (jet, E_T^{miss}), E_T^{miss}/m_{eff} ... $m_{eff} \equiv \sum_{i=1}^{n} |\mathbf{p}_T^{(i)}| + E_T^{miss}$
- Signal region 5jet selection:
 - **D** $p_T(jet1)$ and $p_T(jet2) > 200 \text{ GeV}$
 - At least 5 jets with $p_T > 60 \text{ GeV}$
 - Electron and muon veto
 - $\bullet \ E_T^{miss}/m_{eff} > 0.2$
 - \square m_{eff} > 2200 GeV

Run-2 expected sensitivity O-lepton + jets + E^{miss} ATL-PHYS-PUB-2015-005

- Various assumptions on the integrated luminosity (1, 2, 5, or 10 fb⁻¹)
 - LHC is expected to deliver 2 fb⁻¹ by the summer of 2015, 10 fb⁻¹ in the first year of Run-2
- Uncertainty on the total background prediction is assumed to be 20% as in Run-1
 - $\hfill\square$ Also consider a conservative scenario with the total background uncertainty of 40%
- Several signal regions defined

- Same discriminating variables: m_{eff}, E_T^{miss}, m_T...
- Signal region selection:
 - 1 lepton with $p_T > 25 \text{ geV}$
 - 5 jets with $p_T > 100 \text{ GeV}$
 - p_{τ} (leading jet) > 150 GeV
 - $E_{T}^{miss} > 200 \text{ GeV}$
 - m_⊤ > 250 GeV
 - $m_{eff} > 1400 \text{ GeV}$

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss} (1 - \cos[\Delta \phi(\vec{\ell}, p_{\rm T}^{\rm miss})])}$$
$$m_{\rm eff}^{\rm lepton} = p_{T}^{\ell} + \sum p_{T}^{\rm jet} + E_{\rm T}^{\rm miss}$$

 $-P_T + / P_T + E_T$

With an integrated luminosity of 5 fb⁻¹, 3σ evidence can be obtained for a gluino with a mass of 1400 GeV

Conclusion

- Still new interesting papers from ATLAS with Run-1 data!
 - Filling gaps, finishing complex searches
 - **\Box** Excess in on-Z + jets + E_T^{miss} search!!
 - Need to follow it up in Run-2!
- In parallel getting ready for 13 TeV data

Back up

1 energetic jet + E_T^{miss} Control regions

Table 3Summary of the methods and control samples used to constrain the different background contributions in thesignal regions.

Background process	Method	Control sample
$Z(\rightarrow \nu \bar{\nu}) + \text{jets}$	MC and control samples in data	$Z/\gamma^*(\to \ell^+\ell^-), W(\to \ell\nu) \ (\ell = e, \mu)$
$W(\rightarrow e\nu)$ +jets	MC and control samples in data	$W(\rightarrow e\nu)$ (loose)
$W(\rightarrow \tau \nu)$ +jets	MC and control samples in data	$W(\rightarrow e\nu)$ (loose)
$W(\rightarrow \mu \nu)$ +jets	MC and control samples in data	$W(ightarrow \mu u)$
$Z/\gamma^* (\to \ell^+ \ell^-) + \text{jets} \ (\ell = e, \mu, \tau)$	MC-only	
$t\bar{t}$, single top	MC-only	
Diboson	MC-only	
Multijets	data-driven	
Non-collision	data-driven	

1 energetic jet + E_T^{miss} WIMP

Name	Initial state	Type	Operator
C1	qq	scalar	$rac{m_q}{M_\star^2}\chi^\dagger\chiar q q$
C5	gg	scalar	$\frac{1}{4M_\star^2}\chi^\dagger\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$
D1	qq	scalar	$rac{m_q}{M_\star^3}ar\chi\chiar q q$
D5	qq	vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$
D8	qq	axial-vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$
D9	qq	tensor	$\frac{1}{M_\star^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_\star^3} \bar{\chi} \chi \alpha_{\rm s} (G^a_{\mu\nu})^2$

32

1 energetic jet + E_T^{miss} WIMP

1 energetic jet + E_T^{miss} WIMP

On-Z + jets + E_T^{miss} Control regions

On-Z	$E_{_{\mathrm{T}}}^{\mathrm{miss}}$	H_{T}	n _{jets}	m _{ll}	SF/DF
Region	[GeV]	[GeV]	Ū	[GeV]	
Signal region	ns				
SR-Z	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF
Control regi	ons				
Seed region	-	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF
CReµ	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	DF
CRT	> 225	> 600	≥ 2	$m_{\ell\ell} \notin [81,101]$	SF
Validation re	egions				
VRZ	< 150	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF
VRT	150-225	> 500	≥ 2	$m_{\ell\ell} \notin [81, 101]$	SF
VRTZ	150-225	> 500	≥ 2	$81 < m_{\ell\ell} < 101$	SF

on Z + jets + met

36

on Z + jets + met

ATLAS SUSY Searches* - 95% CL Lower Limits

Sta	ntus: Feb 2015						$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	¹] Mass limit	Reference
	MSUGRA/CMSSM	0	2-6 jets 2-6 jets	Yes	20.3	\tilde{q}, \tilde{g} \tilde{q}, \tilde{g} \tilde{q}	1405.7875
S	$\tilde{q}q, q \rightarrow q \lambda_1$ $\tilde{a} \tilde{a} \gamma, \tilde{a} \rightarrow a \tilde{\chi}_1^0$ (compressed)	1γ	0-1 jet	Yes	20.3	\tilde{q} 250 GeV $m(\tilde{a}) = m(\tilde{c})$	1411.1559
che	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0	2-6 jets	Yes	20.3	<u>κ</u> 1.33 TeV m(\tilde{k}_1^0)=0 GeV	1405.7875
ar	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$	1 e, µ	3-6 jets	Yes	20	\tilde{s} 1.2 TeV $m(\tilde{\chi}_1^0) < 300 \text{ GeV}, m(\tilde{\chi}^+) = 0.5(m(\tilde{\chi}_1^0) + m(\tilde{g}))$	1501.03555
Š.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^0$	2 e, µ	0-3 jets	-	20	\tilde{s} 1.32 TeV $m(\tilde{\chi}_1^0)=0$ GeV	1501.03555
ive	GMSB (ℓ NLSP)	$1-2\tau + 0-1\ell$	0-2 jets	Yes	20.3		1407.0603
Insi	GGM (bino NLSP)	2γ	-	Yes	20.3	g 1.28 TeV m(X ²)>50 GeV	ATLAS-CONF-2014-001
nci	GGM (WIND NLSP)	$1e, \mu + \gamma$	1.6	Yes	4.8	κ 619 GeV $m(k_1)>50 \text{ GeV}$	AILAS-CONF-2012-144
	GGM (higgsino NI SP)	2 e u (Z)	0-3 iets	Ves	4.0 5.8	r 600 GeV m(NLSP)>200 GeV	ATLAS-CONF-2012-152
	Gravitino LSP	0	mono-jet	Yes	20.3	¹ ^{1/2} scale 865 GeV m(<i>G̃</i>) > 1.8 × 10 ⁻⁴ eV, m(<i>φ̃</i>) = m(<i>q̃</i>) = 1.5 TeV	1502.01518
	$\tilde{q} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$	0	3 <i>b</i>	Yes	20.1	ž 1.25 TeV m(X ⁰)<400 GeV	1407.0600
jen ed.	$\tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0	7-10 jets	Yes	20.3	š 1.1 TeV m(\tilde{r}_1^0) -350 GeV	1308.1841
⁹ ^p	$\tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	3 b	Yes	20.1	\tilde{s} 1.34 TeV m (\tilde{t}_{1}^{0}) <400 GeV	1407.0600
00° m	$\tilde{g} \rightarrow b \bar{t} \tilde{\chi}_1^+$	0-1 <i>e</i> , <i>µ</i>	3 <i>b</i>	Yes	20.1	\tilde{g} 1.3 TeV $m(\tilde{\chi}_1^0) < 300 \text{ GeV}$	1407.0600
s L	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$	0	2 <i>b</i>	Yes	20.1	\tilde{b}_1 100-620 GeV m(\tilde{x}_1^0)<90 GeV	1308.2631
ark	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$	2 <i>e</i> , <i>µ</i> (SS)	0-3 <i>b</i>	Yes	20.3	b_1 275-440 GeV $m(\tilde{\chi}_1^+)=2m(\tilde{\chi}_1^0)$	1404.2500
and	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$	1-2 <i>e</i> ,μ	1-2 b	Yes	4.7	i_1 110-167 GeV 230-460 GeV $m(\tilde{k}_1^2) = 2m(\tilde{k}_1^2), m(\tilde{k}_1^2) = 55 \text{ GeV}$	1209.2102, 1407.0583
. St	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$	2 e, µ	0-2 jets	Yes	20.3	<i>t</i> ₁ 90-191 GeV 215-530 GeV m(ℓ [*] ₁)=1 GeV	1403.4853, 1412.4742
en st p	$t_1 t_1, t_1 \rightarrow t \chi_1^2$	0-1 <i>e</i> ,μ	1-2 b	Yes	20	t_1 (210-b40 GeV (m(x))=1 GeV (m(x))=1 GeV	1407.0583,1406.1122
^d g	$t_1 t_1, t_1 \rightarrow c \lambda_1$ $\tilde{t}_1 \tilde{t}_1$ (natural GMSB)	$2 e. \mu(Z)$	1 h	Ves	20.3		1403 5222
с, Э	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, μ (Z)	1 <i>b</i>	Yes	20.3	\tilde{t}_2 290-600 GeV $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$	1403.5222
	$\tilde{\ell}_{1} p \tilde{\ell}_{1} p, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$	2 e, µ	0	Yes	20.3	$\tilde{\ell}$ 90-325 GeV m($\tilde{\chi}_{1}^{0}$)=0 GeV	1403.5294
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$	2 e, µ	0	Yes	20.3	$\tilde{\chi}_{1}^{\pm}$ 140-465 GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(\tilde{\chi}_{1}^{0})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1403.5294
t /	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$	2 τ	-	Yes	20.3	$\tilde{\chi}_{1}^{\pm}$ 100-350 GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(\tilde{\chi}_{1}^{0})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1407.0350
EN	$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu)$	3 e, µ	0	Yes	20.3	$\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{0} \qquad \qquad \mathbf{m}(\tilde{k}_{1}^{*}) = \mathbf{m}(\tilde{k}_{2}^{0}), \mathbf{m}(\tilde{k}_{1}^{0}) = 0, \mathbf{m}(\tilde{\ell}, \tilde{\nu}) = 0.5(\mathbf{m}(\tilde{k}_{1}^{*}) + \mathbf{m}(\tilde{k}_{1}^{0}))$	1402.7029
9	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$	2-3 e,µ	0-2 jets	Yes	20.3	$\tilde{\chi}_1^+, \tilde{\chi}_2^0$ 420 GeV $m(\tilde{\chi}_1^+)=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled	1403.5294, 1402.7029
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma$	$\gamma e, \mu, \gamma$	0-2 b	Yes	20.3	χ_1^*, χ_2^* 250 GeV m($\tilde{\chi}_1^*$)=m($\tilde{\chi}_2^*$), m($\tilde{\chi}_1^*$)=0, sleptons decoupled	1501.07110
	$\chi_2^*\chi_3^*, \chi_{2,3}^* \to \ell_{\mathrm{R}}\ell$	4 <i>e</i> , µ	0	Yes	20.3	$\begin{array}{c} \mathbf{X}_{2,3} \\ \mathbf{M}_{2,2} $	1405.5086
σ.,	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	20.3	$\tilde{\chi}_1^{\pm}$ 270 GeV m($\tilde{\chi}_1^{\pm}$)-m($\tilde{\chi}_1^{0}$)=160 MeV, $\tau(\tilde{\chi}_1^{\pm})$ =0.2 ns	1310.3675
ive les	Stable & B-hadron	U trk		res	27.9	$\frac{g}{2}$ $\frac{G_{32}}{G_{32}}$ $m(x_1)=100$ GeV, $10\ \mu\text{S}<\tau(g)<1000$ S	1411 6795
rtic	GMSB stable $\tilde{\tau} \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e} \ \tilde{u}) + \tau(e)$	μ) 1-2 μ	-	-	19.1	2 ⁰ 537 GeV 10 <tarβ<50< td=""><td>1411.6795</td></tarβ<50<>	1411.6795
pa	GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	μ) μ 2 γ	-	Yes	20.3	$\frac{1}{2}$ 435 GeV $2<\tau(x_1^0)<3$ ns. SPS8 model	1409.5542
7	$\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu \text{ (RPV)}$	1 μ , displ. vtx	-	-	20.3	\tilde{q} 1.0 TeV 1.5 < cr <156 mm, BR(μ)=1, m($\tilde{\chi}_1^0$)=108 GeV	ATLAS-CONF-2013-092
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$	2 e,µ	-	-	4.6	\tilde{v}_{τ} 1.61 TeV λ'_{311} =0.10, λ_{132} =0.05	1212.1272
	$LFV \ pp \to \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \to e(\mu) + \tau$	$1 e, \mu + \tau$	-	-	4.6	$\bar{\mathbf{y}}_{\tau}$ 1.1 TeV λ'_{111} = 0.10, $\lambda_{1(2)33}$ = 0.05	1212.1272
>	Bilinear RPV CMSSM	2 <i>e</i> , <i>µ</i> (SS)	0-3 <i>b</i>	Yes	20.3	\tilde{q}, \tilde{g} 1.35 TeV $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$	1404.2500
5	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \to W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to e e \tilde{v}_\mu, e \mu \tilde{v}_e$	4 e,μ	-	Yes	20.3	$\tilde{\chi}_{1}^{\pm}$ 750 GeV $m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{121} \neq 0$	1405.5086
-	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \to W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_\tau$	$3 e, \mu + \tau$	-	Yes	20.3	$\bar{\chi}_1^{\pm}$ 450 GeV m($\bar{\chi}_1^{\pm}$)>0.2×m($\bar{\chi}_1^{\pm}$), $\lambda_{133} \neq 0$	1405.5086
	$g \rightarrow qqq$	0	6-7 jets	-	20.3	g 916 GeV BR(t)=BR(c)=0% #	ATLAS-CONF-2013-091
_	$g \rightarrow \iota_1 \iota, \iota_1 \rightarrow \upsilon s$	2 e, µ (33)	0-3 <i>b</i>	res	20.3		1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \chi_1^{\circ}$	0	2 c	Yes	20.3	<i>c</i> 490 GeV m(∛ ₁)<200 GeV	1501.01325
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV artial data	$\sqrt{s} = $ full	8 TeV data	1	⁻¹ 1 Mass scale [TeV]	

ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

mSUGRA summary

