Fully covering the MSSM Higgs sector at the LHC

Jérémie Quevillon (King's College London)

GDR Terascale à Saclay, le 30 Mars 2015

1. The definition of the hMSSM

MSSM Higgs sector simple at tree level, only 2 inputs: MA, tanß

Complications due to Radiative Corrections involving M_S,X_t,X_b,µ,...

$$\mathbf{M_h^2} \stackrel{\mathbf{M_A} \gg \mathbf{M_Z}}{\to} \mathbf{M_Z^2} |\mathbf{cos^2 2\beta}| + \frac{3\bar{\mathbf{m}}_t^4}{2\pi^2 \mathbf{v^2} \sin^2 \beta} \left[\log \frac{\mathbf{M_S^2}}{\bar{\mathbf{m}}_t^2} + \frac{\mathbf{X}_t^2}{\mathbf{M_S^2}} \left(1 - \frac{\mathbf{X}_t^2}{12 \,\mathbf{M_S^2}} \right) \right]$$

The LHC told us : $M_h = 125 \text{ GeV}, M_S \ge 1 \text{ TeV}$

hMSSM: trade the value $M_h = 125$ GeV against the radiative corrections

Back to tree-level: only 2 inputs MA, tanß for Higgs sector and non SUSY parameters:

$$\begin{split} \mathbf{M_{H}^{2}} &= \frac{(\mathbf{M_{A}^{2}} + \mathbf{M_{Z}^{2}} - \mathbf{M_{h}^{2}})(\mathbf{M_{Z}^{2}} \mathbf{c}_{\beta}^{2} + \mathbf{M_{A}^{2}} \mathbf{s}_{\beta}^{2}) - \mathbf{M_{A}^{2}} \mathbf{M_{Z}^{2}} \mathbf{c}_{2\beta}^{2}}{\mathbf{M_{Z}^{2}} \mathbf{c}_{\beta}^{2} + \mathbf{M_{A}^{2}} \mathbf{s}_{\beta}^{2} - \mathbf{M_{h}^{2}}} \\ \alpha &= -\arctan\left(\frac{(\mathbf{M_{Z}^{2}} + \mathbf{M_{A}^{2}}) \mathbf{c}_{\beta} \mathbf{s}_{\beta}}{\mathbf{M_{Z}^{2}} \mathbf{c}_{\beta}^{2} + \mathbf{M_{A}^{2}} \mathbf{s}_{\beta}^{2} - \mathbf{M_{h}^{2}}}\right) \\ \end{split}$$

Effective and model 'independent approach' approach of the MSSM Higgs sector :

- opens the low tanβ region in a very simple and economical and accurate way
- requires large M_S at low tanβ; not defined at very low M_A
- needs large fine-tuning (but theory already fined-tuned anyway..)

1. The definition of the hMSSM

The CP-even Higgs sector is usually described by the 2×2 mass matrix :

$$\mathbf{M}_{\mathbf{\Phi}}^{\mathbf{2}} = \mathbf{M}_{\mathbf{Z}}^{\mathbf{2}} \begin{pmatrix} c_{eta}^2 & -s_{eta}c_{eta} \\ -s_{eta}c_{eta} & s_{eta}^2 \end{pmatrix} + \mathbf{M}_{\mathbf{A}}^{\mathbf{2}} \begin{pmatrix} s_{eta}^2 & -s_{eta}c_{eta} \\ -s_{eta}c_{eta} & c_{eta}^2 \end{pmatrix} + \begin{pmatrix} \Delta \mathcal{M}_{11}^2 & \Delta \mathcal{M}_{12}^2 \\ \Delta \mathcal{M}_{12}^2 & \Delta \mathcal{M}_{22}^2 \end{pmatrix}$$

It is by diagonalizing this matrix that one obtains M_H , M_h and α :

- \bullet tree–level masses are given in terms of M_A and M_Z plus the angle $\beta;$
- radiative corrections (with the SUSY parameters) appear only in ΔM^2_{ij} . Assumption clearly valid at scales M_S not far for 1 TeV (common wisdom...)

In the hMSSM, we assume that this picture is valid at much higher scales. This is the main 'problem' and subject of discussion: Question 1): how far can we go in M_S while retaining this simple form?

Question 2): when RGE improving, the matrix has still a convenient form?

The complete approach: effective THDM with heavy SUSY

$$\lambda_4 = -\frac{1}{2}g^2 = -2m_W^2$$

$$\lambda_5=\lambda_6=\lambda_7=0$$
 .

ii) Evolve (RGEs) all seven lambdas from M_S to the weak scale.

iii) CP-even Higgs mass matrix in terms of lambdas at the weak-scale:

$$m_A^2 \begin{pmatrix} s_\beta^2 & -s_\beta c_\beta \\ -s_\beta c_\beta & c_\beta^2 \end{pmatrix} + v^2 \begin{pmatrix} L_{11} & L_{12} \\ L_{12} & L_{22} \end{pmatrix}$$

i)

$$L_{11} = \lambda_1 c_\beta^2 + 2\lambda_6 s_\beta c_\beta + \lambda_5 s_\beta^2 ,$$

$$L_{12} = (\lambda_3 + \lambda_4) s_\beta c_\beta + \lambda_6 c_\beta^2 + \lambda_7 s_\beta^2 ,$$

$$L_{22} = \lambda_2 s_\beta^2 + 2\lambda_7 s_\beta c_\beta + \lambda_5 c_\beta^2 .$$

SM

SM(+EWkino)

 m_A

 M_t

Comparison: hMSSM vs effective THDM with heavy SUSY at low tanß

Comparison: hMSSM vs effective THDM with heavy SUSY at low tanß

2. Assumptions: dominance of main correction

Dominant correction to ΔM^2 due to top/stop sector and approximately:

$$\Delta \mathcal{M}^2_{22} \propto rac{3ar{\mathbf{m}}^4_{\mathbf{t}}}{2\pi^2 \mathbf{v}^2 \sin^2 eta} \left[\log rac{\mathbf{M}^2_{\mathbf{S}}}{ar{\mathbf{m}}^2_{\mathbf{t}}} + rac{ar{\mathbf{X}}^2_{\mathbf{t}}}{\mathbf{M}^2_{\mathbf{S}}}
ight] + \cdots \gg \Delta \mathcal{M}^2_{11}, \Delta \mathcal{M}^2_{12}$$

We have checked the approximation in two different configurations: Include subleading terms in ΔM^2 Scan of the MSSM parameters (Carena,Wagner,Haber,Hempfling...) with all Higgs rad. corrections

 $\lambda_t, \lambda_b, X_t = X_b$ and varying μ with some choice of M_S , tan β .

scan of the MSSM parameters with all Higgs rad. corrections (we use Suspect with BDSZ RC) and impact of M_S , A_t , μ , A_b

Djouadi, Maiani, Moreau, Polosa, J.Q, Riquer, arXiv: 1307.5205

Very good approximation (\leq few percent) for M_H , α for not too large μ .

2. Assumptions: dominance of main correction

Comparing hMSSM and FeynHiggs

Agreement at the level of 0.1% - 1% except for very low *tanß*

2. Assumptions: dominance of main correction

hMSSM vs FeynHiggs : charged Higgs mass

2. Assumptions: no direct corrections

11

Higgs couplings given by α and β : no large direct corrections

Higgs couplings to u,d and V:

$$egin{array}{lll} \Phi & \mathbf{g}_{\Phiar{\mathbf{u}}\mathbf{u}} & \mathbf{g}_{\Phiar{\mathbf{d}}\mathbf{d}} & \mathbf{g}_{\Phioldsymbol{V}} \mathbf{h} & \mathbf{c}_lpha/\mathbf{s}_eta & \mathbf{s}_lpha/\mathbf{c}_eta & \mathbf{s}_{eta-lpha} & \mathbf{H} & \mathbf{s}_lpha/\mathbf{c}_eta & \mathbf{c}_lpha/\mathbf{c}_eta & \mathbf{c}_{eta-lpha} & \mathbf{H} & \mathbf{s}_lpha/\mathbf{c}_eta & \mathbf{c}_lpha/\mathbf{c}_eta & \mathbf{c}_{eta-lpha} & \mathbf{A} & \mathbf{1}/\mathbf{t}_eta & \mathbf{t}_eta & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array}$$

OK, but with one exception: the $\Delta_b \propto \mu tan\beta/M_S$ correction to $g_{\Phi bb}$

 $\begin{array}{l} g_{Hbb} \approx g_{Abb} = 1/(1 + \Delta_b) \text{ important in one} \\ \text{case: } pp \longrightarrow H/A \longrightarrow \tau\tau \end{array}$

$$\sigma(pp \rightarrow \Phi) \propto (1 + \Delta_b)^{-2}$$

BR($\tau\tau$) $\propto \Gamma_{\tau}/(\Gamma_{\tau} + \Gamma_b)$
 $\Rightarrow \sigma \times BR \propto 1 - \Delta_b/5$
Need very large $\Delta_b > 100\%$

to have impact $\Delta^{th} \sigma \approx 25\%$ \Rightarrow Not so bad! **Higgs self-couplings: Hhh+hhh**

$$\begin{split} \lambda_{\mathbf{h}\mathbf{h}\mathbf{h}} &= \mathbf{3}\mathbf{c_{2\alpha}}\mathbf{s_{\beta+\alpha}} + \mathbf{3}\mathbf{d}\mathbf{c_{\alpha}^3}/\mathbf{s_{\beta}} \\ \lambda_{\mathbf{H}\mathbf{h}\mathbf{h}} &= \mathbf{3}\mathbf{s_{2\alpha}}\mathbf{s_{\beta+\alpha}} - \mathbf{c_{2\alpha}}\mathbf{c_{\beta+\alpha}} \\ &+ \mathbf{3}\mathbf{d}\mathbf{s_{\alpha}}\mathbf{c_{\alpha}^2}/\mathbf{s_{\beta}} \\ &\mathbf{d} \simeq \mathbf{\Delta}\mathcal{M}_{\mathbf{22}}^2/\mathbf{M}_{\mathbf{Z}}^2 \end{split}$$

3. Consequences Combine ATLAS+CMS pp $\rightarrow H^{\pm} \rightarrow \tau v$ and pp $\rightarrow A/H \rightarrow \tau^{+}\tau^{-}$

•From $t \rightarrow bH^+ \rightarrow b\tau v$ search: $M_A \simeq 140$ GeV is now excluded;

tanß

MSSM m^{max} scenario M_{ex}

200

400

300

•pp $\rightarrow \tau\tau$ sensitive at high tan β : - weaker at low M_A (no h events) - stronger at high M_A (no SUSY).

• low $tan\beta$ can now be considered. (A excludes small part of low $tan\beta$) \Rightarrow forbidden area excluded!

3. Consequences

Extend search for heavy SM Higgs for MSSM and consider new channels:

 $pp \rightarrow H \rightarrow ZZ ; pp \rightarrow H \rightarrow WW ; pp \rightarrow H \rightarrow hh ; pp \rightarrow A \rightarrow hZ$

Fully covering the MSSM Higgs sector at the LHC

4. Covering the MSSM stop sector at the LHC **Matching between the MSSM and the dim6-EFT**

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} C_{i} \frac{\mathcal{O}_{i}}{\Lambda^{2}} \int_{\mathbb{R}^{2}} C_{i} \frac{\mathcal{O}_{i}}{\Lambda^{2}}} \int_{\mathbb{R}^{2}} C_{i} \frac{\mathcal{O}_{i}}}{\Omega^{2}} \int_{\mathbb{R}^{2$$

arXiv:1404.1058 Wilson coefficients for degenerate stop soft SUSY breaking masses

A. Drozd, J. Ellis, J.Q. and T. You appear soon...

general expression of the Wilson coefficients : non-degenerate stop masses

$$\begin{aligned} c_{3G} &= \frac{g_s^2}{(4\pi)^2} \frac{1}{20} \\ c_{3W} &= \frac{g^2}{(4\pi)^2} \frac{1}{20} \\ c_{2G} &= \frac{g_s^2}{(4\pi)^2} \frac{1}{20} \\ c_{2G} &= \frac{g_s^2}{(4\pi)^2} \frac{1}{20} \\ c_{2W} &= \frac{g^2}{(4\pi)^2} \frac{1}{20} \\ c_{2B} &= \frac{g'^2}{(4\pi)^2} \frac{1}{20} \end{aligned}$$

$$\begin{aligned} & = \frac{h_t^4}{(4\pi)^2} \frac{1}{4} \begin{bmatrix} \left(1 + \frac{1}{3} \frac{g'^2 c_{2\beta}}{h_t^2} + \frac{1}{12} \frac{g'^4 c_{2\beta}^2}{h_t^4}\right) - \frac{7}{6} \frac{X_t^2}{m_t^2} \left(1 + \frac{1}{14} \frac{(g^2 + 2g'^2) c_{2\beta}}{h_t^2}\right) + \frac{7}{30} \frac{X_t^4}{m_t^2} \end{bmatrix} \\ & = \frac{h_t^4}{(4\pi)^2} \frac{1}{4} \begin{bmatrix} \left(1 + \frac{1}{3} \frac{g'^2 c_{2\beta}}{h_t^2}\right)^2 - \frac{1}{2} \frac{X_t^2}{m_t^2} \left(1 + \frac{1}{2} \frac{g^2 c_{2\beta}}{h_t^2}\right) + \frac{1}{10} \frac{X_t^4}{m_t^4} \end{bmatrix} \\ & = \frac{h_t^4}{(4\pi)^2} \frac{1}{2} \begin{bmatrix} \left(1 + \frac{1}{2} \frac{g^2 c_{2\beta}}{h_t^2}\right)^2 - \frac{1}{2} \frac{X_t^2}{m_t^2} \left(1 + \frac{1}{12} \frac{(3g^2 + g'^2) c_{2\beta}}{h_t^2}\right) + \frac{3}{10} \frac{X_t^4}{m_t^4} \end{bmatrix} \\ & = \frac{h_t^4}{(4\pi)^2} \frac{1}{2} \begin{bmatrix} \left(1 + \frac{1}{2} \frac{g^2 c_{2\beta}}{h_t^2}\right)^2 - \frac{3}{2} \frac{X_t^2}{m_t^2} \left(1 + \frac{1}{12} \frac{(3g^2 + g'^2) c_{2\beta}}{h_t^2}\right) + \frac{3}{10} \frac{X_t^4}{m_t^4} \end{bmatrix} \\ & = \frac{h_t^2}{(4\pi)^2} \frac{1}{20} \frac{X_t^2}{m_t^2} \end{bmatrix} \end{aligned}$$

4. Covering the MSSM stop sector at the LHC

- •EFT calculation simplified by Covariant Derivative Expansion method Henning, Lu & Murayama [arXiv:1412.1837]
- •Systematic way of integrating out UV degrees of freedom in manifestly gaugeinvariant way
- Work in progress...

4. Covering the MSSM stop sector at the LHC General case: non-degenerate stops

A. Drozd, J. Ellis, J.Q. and T. You

•The current sensitivity is already comparable to that of direct LHC searches

4. Covering the MSSM stop sector at the LHC General case: non-degenerate stops

•Future FCC-ee measurements could be sensitive to stop masses above a TeV

5. Conclusion

If you "buy" these three basic assumptions:

- Conventional mass matrix for CP Higgses
- Dominance of leading radiative correction
- No impact of direct corrections to couplings

a very simple description of the MSSM space; easy to implement:

- again only two inputs, so no scan, no grid, no set of benchmarks...
- it allows the possibility to address low tan^β "model-independently",
- allows more action: plenty of channels to be investigated/interpreted.

Matching between EFT-MSSM

•The universal 1-loop EFT facilitates extending constraints to any UV model.

•The current sensitivity is already comparable to that of direct LHC searches.

•Future FCC-ee measurements could be sensitive to stop masses above a TeV.

Appendix

Leading top/stop sector radiative correction:

(difficult to have tan $\beta \lesssim 4$; talk by Luciano at CERN, 15 May 2013) $\Delta \mathcal{M}_{22}^2 = \frac{3}{2\pi^2} \frac{m_t^4}{v^2 s_\beta^2} \left[\frac{1}{2} \tilde{X}_t + \ell_S + \frac{1}{16\pi^2} \left(\frac{3}{2} \frac{m_t^2}{v^2} - 32\pi \alpha_s \right) \left(\tilde{X}_t \ell_S + \ell_S^2 \right) \right]$ $\ell_S = \log(M_S^2/m_t^2), x_t = X_t/M_S, \tilde{X}_t = 2x_t^2(1 - x_t^2/12)$

Including subleading radiative corrections involving μ and sbottoms: (used to have the "blue line" with tan β =2.5 mentioned by Carlos)

$$\begin{split} \Delta \mathcal{M}_{11}^2 = & -\frac{\mathbf{v}^2 \sin^2 \beta}{32\pi^2} \bar{\mu}^2 \big[\mathbf{x}_t^2 \lambda_t^4 (1 + \mathbf{c_{11}} \ell_S) + \mathbf{a}_b^2 \lambda_b^4 (1 + \mathbf{c_{12}} \ell_S) \big] \\ \Delta \mathcal{M}_{12}^2 = & -\frac{\mathbf{v}^2 \sin^2 \beta}{32\pi^2} \bar{\mu} \big[\mathbf{x}_t \lambda_t^4 (6 - \mathbf{x}_t \mathbf{a}_t) (1 + \mathbf{c_{31}} \ell_S) - \bar{\mu}^2 \mathbf{a}_b \lambda_b^4 (1 + \mathbf{c_{32}} \ell_S) \big] \\ \Delta \mathcal{M}_{22}^2 = & \frac{\mathbf{v}^2 \sin^2 \beta}{32\pi^2} \big[6 \lambda_t^4 \ell_S (2 + \mathbf{c_{21}} \ell_S) + \mathbf{x}_t \mathbf{a}_t \lambda_t^4 (12 - \mathbf{x}_t \mathbf{a}_t) (1 + \mathbf{c_{21}} \ell_S) - \bar{\mu}^4 \lambda_b^4 (1 + \mathbf{c_{22}} \ell_S) \big] \end{split}$$

with $\bar{\mu}=\mu/M_{\bf S}, a_{t,b}=A_{t,b}/M_{\bf S}$ and for two loops factors $c_{ij}.$

Carena, Espinosa, Quiros and Wagner, Phys. Lett. B355 (1995) 209; Haber, Hempfling and Hoang, Z. Phys. C75 (1997) 539; Carena and Haber, Prog. Part. Nucl. Phys. 50 (2003) 63.

From P. Slavich

Does the full calculation show significant deviations from (2,2) dominance?

In other words: are there significant corrections to any lambdas other than λ_2 ?

$$\begin{split} \lambda_{1} &= \frac{1}{4} (g^{2} + g'^{2}) + \frac{2N_{c}}{(4\pi)^{2}} \Big(y_{b}^{4} \frac{A_{b}^{2}}{M_{S}^{2}} (1 - \frac{A_{b}^{2}}{12M_{S}^{2}}) - y_{t}^{4} \frac{\mu^{4}}{12M_{S}^{4}} \Big) & \text{Cheng et al.,} \\ \lambda_{2} &= \frac{1}{4} (g^{2} + g'^{2}) + \frac{2N_{c}}{(4\pi)^{2}} \Big(y_{t}^{4} \frac{A_{t}^{2}}{M_{S}^{2}} (1 - \frac{A_{t}^{2}}{12M_{S}^{2}}) - y_{b}^{4} \frac{\mu^{4}}{12M_{S}^{4}} \Big) & \text{Cheng et al.,} \\ \lambda_{3} &= \frac{1}{4} (g^{2} - g'^{2}) + \frac{2N_{c}}{(4\pi)^{2}} \Big(y_{b}^{2} y_{t}^{2} \frac{A_{tb}}{2} + y_{t}^{4} (\frac{\mu^{2}}{4M_{S}^{2}} - \frac{\mu^{2}A_{t}^{2}}{12M_{S}^{4}}) + y_{b}^{4} (\frac{\mu^{2}}{4M_{S}^{2}} - \frac{\mu^{2}A_{b}^{2}}{12M_{S}^{4}}) \Big) \\ \lambda_{4} &= -\frac{1}{2} g^{2} + \frac{2N_{c}}{(4\pi)^{2}} \Big(-y_{b}^{2} y_{t}^{2} \frac{A_{tb}}{2} + y_{t}^{4} (\frac{\mu^{2}}{4M_{S}^{2}} - \frac{\mu^{2}A_{t}^{2}}{12M_{S}^{4}}) + y_{b}^{4} (\frac{\mu^{2}}{4M_{S}^{2}} - \frac{\mu^{2}A_{b}^{2}}{12M_{S}^{4}}) \Big) \\ \lambda_{5} &= -\frac{2N_{c}}{(4\pi)^{2}} \Big(y_{t}^{4} \frac{\mu^{2}A_{t}^{2}}{12M_{S}^{4}} + y_{b}^{4} \frac{\mu^{2}A_{b}^{2}}{12M_{S}^{4}} \Big), \\ \lambda_{6} &= \frac{2N_{c}}{(4\pi)^{2}} \Big(y_{b}^{4} \frac{\mu^{A}}{M_{S}^{2}} (-\frac{1}{2} + \frac{A_{b}^{2}}{12M_{S}^{2}}) + y_{b}^{4} \frac{\mu^{3}A_{t}}{12M_{S}^{4}} \Big), \\ \lambda_{7} &= \frac{2N_{c}}{(4\pi)^{2}} \Big(y_{t}^{4} \frac{\mu^{A}}{M_{S}^{2}} (-\frac{1}{2} + \frac{A_{t}^{2}}{12M_{S}^{2}}) + y_{b}^{4} \frac{\mu^{3}A_{b}}{12M_{S}^{4}} \Big), \end{aligned}$$

Threshold corrections from squark loops mess things up:

NOTE: stop corrections relevant only when μ , $A_t \approx M_s$

Then the RG evolution mixes the lambdas

From P. Slavich

More comparisons: zero-mixing points from Sven's "low-tb-high"

$$m_{\tilde{f}} = M_3 = 17 \text{ TeV}, \ X_t = 0, \ M_2 = 2M_1 = 2 \text{ TeV}, \ \mu = 1.5 \text{ TeV}, \ \tan \beta = 9$$

<i>m</i> _A = 175 GeV	FeynHiggs:	m h =	127.03,	<i>m</i> _H = 177.95,	<i>alpha</i> = -0.2938
	Lee-Wagner: (yt NLO)	m h =	127.18,	<i>m</i> _H = 177.84,	<i>alpha</i> = -0.2902
	hMSSM: (<i>m_h</i> from FH)	<i>m</i> _h =	127.03,	<i>m_H</i> = 177.87,	<i>alpha</i> = -0.2920
<i>m</i> _A = 150 GeV	FeynHiggs:	<i>m</i> _h =	124.88,	$m_{H} = 155.31,$	<i>alpha</i> = -0.4673
	Lee-Wagner: (yt NLO)	<i>m</i> _h =	124.71,	<i>m</i> _H = 153.96,	<i>alpha</i> = -0.4776
	hMSSM: (<i>m</i> _h from FH)	<i>m</i> _{<i>h</i>} =	124.88,	<i>m</i> _{<i>H</i>} = 155.00,	<i>alpha</i> = -0.4656

From P. Slavich

However...

- For $tan\beta = 1$, Sven obtains $m_h \approx 125$ GeV with $M_S = 2x10^5$ GeV (suspiciously low)
- The resummation procedure in FH does not account for low μ, M_{1,2} and m_A

The resummed logs (computed in the decoupling limit and divided by sinß²) are crammed in the (2,2) element of the mass matrix:

$$\mathcal{M}^2 = \begin{pmatrix} m_Z^2 c_\beta^2 + m_A^2 s_\beta^2 & -s_\beta c_\beta (m_Z^2 + m_A^2) \\ \\ -s_\beta c_\beta (m_Z^2 + m_A^2) & m_Z^2 s_\beta^2 + m_A^2 c_\beta^2 \end{pmatrix} + \begin{pmatrix} \Delta_{11}^{2\ell} & \Delta_{12}^{2\ell} \\ \\ \Delta_{21}^{2\ell} & \Delta_{22}^{2\ell} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ \\ 0 & -\Delta^{\text{NLL}} + \Delta^{\text{res}} \end{pmatrix}$$

Is this a valid approximation at low (m_A, tanß)?

NOTE: the hMSSM relies on a more extreme version of this approximation

(then one trades Δ for m_h and obtains m_H and α)

EWPTs constraints on dim-6 operators

> χ^2 fit of theory predictions with experimental measurements

$$\chi^2(p_{\rm SM}, p_{\alpha}) = \sum_{i,j} (\hat{\mathcal{O}}_i^{\rm th} - \hat{\mathcal{O}}_i^{\rm exp}) (\sigma^2)_{ij}^{-1} (\hat{\mathcal{O}}_j^{\rm th} - \hat{\mathcal{O}}_j^{\rm exp}) \quad , \quad (\sigma^2)_{ij} = \Delta \hat{\mathcal{O}}_i^{\rm exp} \rho_{ij} \Delta \hat{\mathcal{O}}_j^{\rm exp}$$

 Marginalized constraints on a complete non-redundant basis of dim-6 operators affecting EWPTs

Operator	Coefficient	LEP Constraints		
Operator	Coemcient	Individual	Marginalized	
$\mathcal{O}_W = \frac{ig}{2} \left(H^{\dagger} \sigma^a \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^a_{\mu\nu}$	$\frac{m_W^2}{\Lambda^2}(c_W + c_B)$	(-0.00055, 0.0005)	(-0.0033, 0.0018)	
$O_B = \frac{1}{2} \left(H^* D^* H \right) \sigma^* B_{\mu\nu}$				
$O_T = \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^2$	$\frac{v^2}{\Lambda^2}C_T$	(0, 0.001)	(-0.0043, 0.0033)	
$\mathcal{O}_{LL}^{(3)l} = (\bar{L}_L \sigma^a \gamma^\mu L_L) \left(\bar{L}_L \sigma^a \gamma_\mu L_L \right)$	$\frac{v^2}{\Lambda^2} c_{LL}^{(3)l}$	(0, 0.001)	(-0.0013, 0.00075)	
$\mathcal{O}_R^e = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R)$	$\frac{v^2}{\Lambda^2}c_R^e$	(-0.0015, 0.0005)	(-0.0018, 0.00025)	
$\mathcal{O}_R^u = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{u}_R \gamma^{\mu} u_R)$	$\frac{v^2}{\Lambda^2}c_R^u$	(-0.0035, 0.005)	(-0.011, 0.011)	
$\mathcal{O}_R^d = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{d}_R \gamma^{\mu} d_R)$	$\frac{v^2}{\Lambda^2}c_R^d$	(-0.0075, 0.0035)	(-0.042, 0.0044)	
$\mathcal{O}_L^{(3) q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L \sigma^a \gamma^{\mu} Q_L)$	$\frac{v^2}{\Lambda^2}c_L^{(3)q}$	(-0.0005, 0.001)	(-0.0044, 0.0044)	
$\mathcal{O}_L^q = (iH^{\dagger} \overleftrightarrow{D_{\mu}} H)(\overline{Q}_L \gamma^{\mu} Q_L)$	$\frac{v^2}{\Lambda^2}c_L^q$	(-0.0015, 0.003)	(-0.0019, 0.0069)	

See Wells & Zhang expansion formalism [arXiv:1406.6070 [hepph]