Search of ttH production mode in multi lepton signatures in ATLAS and CMS

Djamel BOUMEDIENE – LPC

March 30, 2015

Laboratoire de Physique Corpusculaire

Motivation

~

- Evidence of the Higgs coupling to fermions is a milestone in Higgs studies
- Top Yukawa coupling is the most important one several motivations
- Running of Higgs self coupling (λ) sensitive to Top yukawa coupling (y_t)

$$16\pi^2 \frac{d\lambda}{d\ln\mu} = 24\lambda^2 + 12\lambda y_t^2 - 9\lambda(g^2 + \frac{1}{3}g'^2) - 6y_t^4 + \frac{9}{8}g^4 + \frac{3}{8}g'^4 + \frac{3}{4}g^2g'^2$$

- Existence of a critical y_t above which vacuum is unstable: How does it compare to measured y_t?
- y_t can be determined:
 - From Top mass measurement (requires interpretation of the MC Top mass)
 - From Higgs production and γγ decay (assuming SM decay)
 - From ttH a test at the tree level. It will provide evidence of the coupling existence

m_H=125.7 GeV

F. Bezrukov, M. Shaposhnikov ArXiv 1411.1923v2

ttH signature

- ttH final state combines top pair decay signature and Higgs decay signature → large number of possible final states
- 3 families of signatures: 4b+X (H→bb), 2b+2γ (H→γγ), 2b+leptons (H→WW, ZZ,ττ)
- Leptonic signatures based on flavour (e, μ , τ) and charge can be used to select a ttH enriched sample

Leptonic channels

• 5 (ATLAS)/3(CMS) channels defined by the number of leptons (e,μ,τ)

Leptonic channels

• 5 (ATLAS)/3(CMS) channels defined by the number of leptons (e,μ,τ)

Leptonic channels

• 5 (ATLAS)/3(CMS) channels defined by the number of leptons (e,μ,τ)

4 leptons

Analysis strategy

ttH into lepton channels are sensitive to several Higgs decays: Measurement of several Higgs coupling products

	Higgs boson decay mode							
Category	WW^*	au au	ZZ^*	other				
$2\ell 0\tau_{\rm had}$	80%	15%	3%	2%				
3ℓ	74%	15%	7%	4%				
$2\ell 1 \tau_{\rm had}$	35%	62%	2%	1%				
4ℓ	69%	14%	14%	4%				
$1\ell 2 au_{\rm had}$	4%	93%	0%	3%				

Fractions of Higgs decays/signature ATLAS CONF-2015-006

Two approaches:

A. Assume that Higgs decay branching fractions are known

- Search for inclusive ttH production
- Assume that Higgs decay branching fractions are known (determined at NNLO and applied in MC simulation)
- Consider other processes sensitive to Top Yukawa coupling constant (tH) small impact however
- B. Explicit coupling fit combining all Higgs inputs (including ttH)
 - Cf. ATLAS-CONF-2015-007 / JHEP 1409 (2014) 087 (arXiv: 1412.8662)

• D. BOUMEDIENE

Channel and Object definitions

- Selection of e, μ , τ , jets optimised on MC simulation against main background processes: ttV, ttbar, VV
- Main object properties (ID, *p*T, isolation, d0, ...) scanned in order to maximise sensitivity to the signal

• ATLAS: use of counting experiment

- 2l: >=1 b-tagged jet, =4 jets and >= 5 jets x ($ee,\mu\mu,e\mu$)
- 3l: = 2 b-tagged jets and 3 jets or >= 1 b-tagged jet >=4 jets
- \circ 2l1 τ : >=1 b-tagged jet, >=4 jets
- \circ 2 τ 1l: >= 1-btagged jet, >=3 jets
- 4l: >=1 b-tagged jet, >=2 jets

• CMS: Selection + BDT discriminant

- All: >=2 b-tagged jet (1 medium + 1 loose), >=2 jets
- 2l, 3l: categorised in ++ and - (exploits SM charge symmetry of ttV, single top, W+jets)
- BDT applied to selected events and used as discriminant

Main background processes

• Typical background composition per channel:

Signature	Тор	ttV	VV	V+jets
21	30%	50%	10%	10%
31	15%	65%	10%	7%
2 1τ	43%	45%	10%	< 1%
2τ1Ι	90%	5%	3%	2%
41	<1%	78%	10%	< 1%

approx numbers from MC Full estimate in slides 14/15

- Main expected background processes:
 - o Irreducible: ttV (leads to very similar signature with prompt leptons) → use of MC simulation
 - Reducible: top (non prompt leptons or charge flips) → use of data-driven techniques

Two types of reducible backgrounds

Fake/non-prompt leptons

- Non prompt leptons: any lepton not produced by W/Z/τ decay is source of background
- Strong contribution from top pair decays (mainly due to B decays)

Charge mis-Identification

- Misidentification of the lepton charge
- Concerns electrons mainly
- Affect same-sign channels

Cannot rely on Monte Carlo simulation for their estimate \rightarrow use of data-driven methods

• D. BOUMEDIENE

ttV estimate

- In ATLAS & CMS: ttV estimate based on MC simulation:
 - Data does not allow precise constraint, degenerated with SR (especially ttW)
 - Use of NLO cross-sections

see associated systematic errors slide 29

- LO generator Madgraph+Pythia6
- Final result is also expressed versus ttV cross-section (ATLAS) See slide 22

• Data validation regions:

- o ttZ: 3leptons, Z peak
- o ttW: same-sign, 2b-jets, 2-3 jets

Results: Yields (ATLAS)

• Nominal background predictions compared to observed number of events

Category	q mis-id	Non-prompt	ttW	tīZ	Diboson	Expected Bkg.	$t\bar{t}H(\mu=1)$	Observed
$ee + \ge 5j$	1.1 ± 0.5	2.3 ± 1.2	1.4 ± 0.4	0.98 ± 0.32	0.47 ± 0.42	6.5 ± 2.0	0.73 ± 0.11	10
$e\mu + \ge 5j$	0.85 ± 0.35	6.7 ± 2.4	4.8 ± 1.4	2.1 ± 0.7	0.38 ± 0.32	15 ± 4	2.13 ± 0.31	22
$\mu\mu + \ge 5j$	_	2.9 ± 1.4	3.8 ± 1.1	0.95 ± 0.31	0.69 ± 0.63	8.6 ± 2.5	1.41 ± 0.21	11
ee + 4j	1.8 ± 0.7	3.4 ± 1.7	2.0 ± 0.4	0.75 ± 0.25	0.74 ± 0.58	9.1 ± 2.3	0.44 ± 0.06	9
$e\mu + 4j$	1.4 ± 0.6	12 ± 4	6.2 ± 0.9	1.5 ± 0.2	1.9 ± 1.2	24.0 ± 4.5	1.16 ± 0.14	26
$\mu\mu$ + 4 j	_	6.3 ± 2.6	4.7 ± 0.9	0.80 ± 0.26	0.53 ± 0.30	12.7 ± 3.0	0.74 ± 0.10	20
3ℓ	_	2.6 ± 0.6	2.3 ± 0.9	3.9 ± 0.9	0.86 ± 0.59	11.4 ± 3.1	2.34 ± 0.32	18
$2\ell 1 au_{ m had}$	_	0.4 + 0.6 - 0.4	0.38 ± 0.15	0.37 ± 0.09	0.12 ± 0.15	1.4 ± 0.6	0.47 ± 0.02	1
$1\ell 2 au_{ m had}$	_	15 ± 5	0.17 ± 0.07	0.37 ± 0.10	0.41 ± 0.42	16 ± 6	0.68 ± 0.07	10
4ℓ Z-enr.	_	$\lesssim 10^{-3}$	$\leq 3 \times 10^{-3}$	0.43 ± 0.13	0.05 ± 0.02	0.55 ± 0.17	0.17 ± 0.01	1
4ℓ Z-dep.	_	$\lesssim 10^{-4}$	$\lesssim 10^{-3}$	0.002 ± 0.002	$\lesssim 2 \times 10^{-5}$	0.007 ± 0.005	0.03 ± 0.00	0

ATLAS CONF-2015-006

- Observed data excess w.r.t. background in 7 regions over 11 regions
- 2l0τ:
 - \circ Overall Data excess. Largest excess in $\mu\mu$ 4j
 - 2 leading backgrounds: ttV, Fakes

Results: Yields (CMS)

• Nominal background predictions (pre-fit) compared to observed number of events

	ee	еµ	μμ	3ℓ	4ℓ
$t\bar{t}H, H \rightarrow WW$	1.0 ± 0.1	3.2 ± 0.4	2.4 ± 0.3	3.4 ± 0.5	0.29 ± 0.04
$t\bar{t}H, H \rightarrow ZZ$	_	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.09 ± 0.02
tīH, H $ ightarrow au au$	0.3 ± 0.0	1.0 ± 0.1	0.7 ± 0.1	1.1 ± 0.2	0.15 ± 0.02
tŧW	4.3 ± 0.6	16.5 ± 2.3	10.4 ± 1.5	10.3 ± 1.9	—
$t\bar{t}Z/\gamma^*$	1.8 ± 0.4	4.9 ± 0.9	2.9 ± 0.5	8.4 ± 1.7	1.12 ± 0.62
tŧWW	0.1 ± 0.0	0.4 ± 0.1	0.3 ± 0.0	0.4 ± 0.1	0.04 ± 0.02
tīγ	1.3 ± 0.3	1.9 ± 0.5	—	2.6 ± 0.6	_
WZ	0.6 ± 0.6	1.5 ± 1.7	1.0 ± 1.1	3.9 ± 0.7	—
ZZ		0.1 ± 0.1	0.1 ± 0.0	0.3 ± 0.1	0.47 ± 0.10
Rare SM bkg.	0.4 ± 0.1	1.6 ± 0.4	1.1 ± 0.3	0.8 ± 0.3	0.01 ± 0.00
Non-prompt	7.6 ± 2.5	20.0 ± 4.4	11.9 ± 4.2	33.3 ± 7.5	0.43 ± 0.22
Charge misidentified	1.8 ± 0.5	2.3 ± 0.7	—	_	_
All signals	1.4 ± 0.2	4.3 ± 0.6	3.1 ± 0.4	4.7 ± 0.7	0.54 ± 0.08
All backgrounds	18.0 ± 2.7	49.3 ± 5.4	27.7 ± 4.7	59.8 ± 8.0	2.07 ± 0.67
Data	19	51	41	68	1

• Observed data excess w.r.t. background in 2 regions over 5

Results: distributions

• Jet multiplicity distributions in 21/31

JHEP 1409 (2014) 087 ATLAS CONF-2015-006

BDT discriminant (CMS)

- BDT is applied on selected events in CMS in each channel
- BDT output is used as discriminant to measure signal strength (and put a limit)

Fit procedure

- Maximum likelihood fit of signal strengh
- Floating systematics uncertainties

• 5 Nuisance Parameters with largest impact on signal strengh (ATLAS):

0	Uncertain	ty on Fal	κe μ in 2l
0	ttW accep	tance un	certainty

- ttH cross section uncertainty
- Jet energy scale uncertainty
- Uncertainty on Fake e in 21

Source	Δ	μ
$2\ell 0\tau_{had}$ non-prompt muon transfer factor	+0.38	-0.35
$t\bar{t}W$ acceptance	+0.26	-0.21
$t\bar{t}H$ inclusive cross section	+0.28	-0.15
Jet energy scale	+0.24	-0.18
$2\ell 0\tau_{had}$ non-prompt electron transfer factor	+0.26	-0.16
$t\bar{t}H$ acceptance	+0.22	-0.15
$t\bar{t}Z$ inclusive cross section	+0.19	-0.17
$t\bar{t}W$ inclusive cross section	+0.18	-0.15
Muon isolation efficiency	+0.19	-0.14
Luminosity	+0.18	-0.14

ATLAS CONF-2015-006

Fit result, exclusion limit (ATLAS)

95% CL limits on signal strengh (in SM unit) from CLs method: **4.7**

		Expected Limit					
Channel	Observed Limit	-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	Median ($\mu = 1$)
$2\ell 0 au_{\rm had}$	6.7	2.1	2.8	3.9	5.7	8.4	5.0
3ℓ	6.8	2.0	2.7	3.8	5.7	8.5	5.1
$2\ell 1\tau_{\rm had}$	7.5	4.5	6.1	8.4	13.0	20.8	10.3
4ℓ	18.1	8.0	10.8	14.9	23.3	38.8	17.2
$1\ell 2 au_{had}$	12.9	9.5	12.7	17.6	26.1	40.4	18.9
Combined	4.7	1.3	1.8	2.4	3.6	5.3	3.7
							7

Expected Median in presence of SM signal

Fit result, exclusion limit (CMS)

ttH channel	Best-fit μ	95% CL upper limits on $\mu = \sigma / \sigma_{SM}$ ($m_{H} = 125.6$ GeV)						
			Expected					
	Observed	Observed	Median signal-injected	Median	68% CL range	95% CL range		
41	$-4.7^{+5.0}_{-1.3}$	6.8	11.9	8.8	[5.7, 14.3]	[4.0, 22.5]		
31	$+3.1^{+2.4}_{-2.0}$	7.5	5.0	4.1	[2.8, 6.3]	[2.0, 9.5]		
Same-sign 21	$+5.3^{+2.1}_{-1.8}$	9.0	3.6	3.4	[2.3, 5.0]	[1.7, 7.2]		

Expected Median in presence of SM signal

31/03/15 • 19

JHEP 1409 (2014) 087 is more up to-date however beakdown in flavor not available.

CMS PAS HIG-13-020

SM

 μ (ttH) = 3.7 + 1.6/-1.4 (CMS) Best fit µ: •

 μ (ttH) = 2.1 + 1.4/-1.2 (ATLAS)

best fit $\mu(t\bar{t}H)$ = $\sigma/\sigma_{
m SM}$ for m_{H} = 125 GeV

- Excess w.r.t. background only hypothesis: $2.6 \sigma / 1.8 \sigma$ ۲
- Excess w.r.t. background and SM signal: **1.9** σ / **0.9** σ
- Dependence of best μ to ttV cross-section: $\mu(t\bar{t}H) = 2.1 1.4 \left(\frac{\sigma(t\bar{t}W)}{232 \text{ fb}} 1\right) 1.3 \left(\frac{\sigma(t\bar{t}Z)}{206 \text{ fb}} 1\right)$

• D. BOUMEDIENE

tot (stat)

2.8 +2.1 (+1.5)

2.8 +2.2 (+2.0)

-0.9 ^{+3.1} (+2.9) -2.0 (-1.5)

 $1.8 \begin{array}{c} +6.9 \\ -2.0 \end{array} \begin{array}{c} (+6.8) \\ (-2.0) \end{array}$

-9.6 + 9.6 + 9.6 + 5.2)

2.1 +1.4 (+1.1) -1.2 (-1.0)

12

14

10

Summary

- ATLAS and CMS has used multileptonic signatures to search for ttH in run 1:
 - This signature has good performances (i.e. competitive w.r.t. 4b signature)
 - Estimate of ttH amplitude was estimated:
 - 1.8 σ /2.6 σ excess w.r.t background only hypothesis in ATLAS/CMS
 - 1 to 2σ excess w.r.t. Standard Model signal in ATLAS/CMS
 - A limit was set to 4.7/6.6 in ATLAS/CMS
 - ttH into leptons included in coupling fit
- Promising measurement for run 2:
 - Higher cross-sections
 - More luminosity
 - Many systematics with large statistical components will be reduced
 - It will be possible to constrain ttV with data

Run Number: 205016, Event Number: 24402934 Date: 2012-06-15 02:26:56 UTC

Event display: $2l1\tau$ candidate ATLAS CONF-2015-006

 $\bullet \bullet \bullet$

Backup material

• D. BOUMEDIENE

31/03/15 •25

Charge mis-identification

- Same approach is used in CMS and ATLAS
- Electron mis-identified charge:
 - Due to trident events or large curvature \rightarrow depends on lepton properties and interaction with detector $(pT, |\eta|)$
 - Negligible for muons
- Affects 2l ee/eµ channels
- Likelihood method:
 - Z peak OS and SS events used to compute charge flip probability
 - Probability binned in $|\eta|$ and $p_{\rm T}$
 - ATLAS: Probability extrapolation to high $p_{\rm T}$ based on MC
- Systematic uncertainty:
 - Includes likelihood statistic, Z peak definition, extrapolation, closure test, ...
 - Total systematic ~40% (mainly due to statistics)

Non-prompt leptons

- In-situ Technique:
 - use of a control region enriched in non-prompt leptons (loose lepton region) Ο
 - Reweighted using a probability to predict non-prompt lepton contamination in Ο signal region
 - Probabilities measured in a dedicated fake region: Ο
 - ATLAS: Top enriched region, low jet multiplicity •
 - CMS: QCD enriched region

Measured probability

Ο

 \cap

Uncertainties

• Cross-section: QCD Scale uncertainty:

- Based on NLO generator
- ttH: +4-9%, ttW: 12%, ttZ: 11%
- Cross-section: PDF uncertainty:
 - Varying input parton distribution
 - ttH: 8%, ttW: 8%, ttZ: 9%

• Acceptance uncertainty (channel dependant):

- PS algorithm: Comparison of different generators: ttV 5-23% ttH 1.5-13%
- PDF impact on acceptance: ttV 1.3-6.7%, 0.3-1.4% ttH
- QCD scale impact on acceptance: ttV 0.9-4.8%, ttH 0.1-2.7%

Results: distributions

• D. BOUMEDIENE