Light Higgs bosons in Two-Higgs-Doublet Models

Jérémy Bernon LPSC Grenoble

Based on [arXiv:1412.3385]

In collaboration with John F. Gunion (UC Davis), Yun Jiang (UC Davis) and Sabine Kraml (LPSC Grenoble)

GDR Terascale Saclay, 30 March 2015

Laboratoire de Physique Subatomique et de Cosmologie

Motivations

The 2012 discovery of a **Standard Model (SM)-like Higgs boson** is the **major achievement** of the LHC Run I

It is important to asses all possibilities regarding the **existence** of **other Higgs states**

Two-Higgs-doublet models (THDM) are a simple and appealing framework to study such considerations

The **decoupling limit** is often considered to obtain a Higgs state with SM properties

Here, we consider scenarios in which some of the Higgs states can be **very light**: with **mass <125/2**

Two-Higgs-doublet models

General presentation Constraints imposed Presence of light states

Two-Higgs-doublet models

 Two-Higgs-doublet model (2HDM): minimal extension of the SM, include a second Y=+1 Higgs doublet

$$\begin{split} \mathcal{V} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \left[\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} \cdot \\ &\Phi_1 \to \Phi_1, \Phi_2 \to -\Phi_2 \end{split}$$

- Hypotheses: Softly broken Z2 symmetry, no CP-violation, no tree-level flavor changing neutral current (FCNC)
- Five physical degrees of freedom: 2 CP-even (h, H) (m_h≤m_H), 1 CP-odd (A), 2 charged (H⁺,H⁻) states
- Both h and H can be identified with the SM-like state, we will consider both h125 and H125 scenarios
- Free parameters: $m_h, m_H, m_A, m_{H^{\pm}}, m_{12}^2, \tan \beta \ [0.5, 60], \alpha \ [-\pi/2, \pi/2]$ $\tan \beta$: ratio of the 2 Higgs vevs, α : mixing angle of the CP-even mass matrix

Flavor structure & couplings

Most general renormalizable Yukawa sector:

$$-\mathcal{L}_{\text{Yuk}} = \mathcal{Y}_1^U \bar{U} \Phi_1 Q + \mathcal{Y}_2^U \bar{U} \Phi_2 Q + \mathcal{Y}_1^D \bar{D} \Phi_1^* Q + \mathcal{Y}_2^D \bar{D} \Phi_2^* Q + \mathcal{Y}_1^E \bar{E} \Phi_1^* L + \mathcal{Y}_2^E \bar{E} \Phi_2^* L + \text{h.c.}$$

⇒ Generic tree-level FCNC

Four discrete choices, to insure absence of tree-level FCNC [Paschos 77', Glashow & Weinberg 77']

We consider two of them, the so-called Type I and Type II models

- **Type I:** $\Phi_1 \leftrightarrow up$, down-type fermions
- **Type II:** $\Phi_1 \leftrightarrow \text{down-type fermions}$ $\Phi_2 \leftrightarrow \text{up-type fermions}$

	Type I and II	Type I		Type II	
Higgs	C_V	C_U	C_D	C_U	C_D
h	$\sin(eta-lpha)$	$\mathrm{c}_{lpha}/\mathrm{s}_{eta}$	$\mathrm{c}_{lpha}/\mathrm{s}_{eta}$	$\mathrm{c}_{lpha}/\mathrm{s}_{eta}$	$-{ m s}_lpha/{ m c}_eta$
H	$\cos(eta-lpha)$	$\mathrm{s}_{lpha}/\mathrm{s}_{eta}$	$\mathrm{s}_{lpha}/\mathrm{s}_{eta}$	$\mathrm{s}_{lpha}/\mathrm{s}_{eta}$	$\mathrm{c}_{lpha}/\mathrm{c}_{eta}$
A	0	$\cot eta$	$-\cot\beta$	\coteta	aneta

$$C_i = C_i^{\rm 2HDM} / C_i^{\rm SM}$$

Numerical setup & Constraints

Numerical setup:

- Branching ratio and theoretical constraints from 2HDMC [Eriksson, Rathsman, Stål] [arXiv:0902.0851]
- Cross sections from SusHi [Herlander, Liebler, Mantler] [arXiv:1212.3942]

Theoretical:

- Stability of the scalar potential
- Perturbativity of the self-couplings
- Tree-level **unitarity** of the Higgs-Higgs scattering matrices

Experimental:

- S, T, U Peskin-Takeuchi parameters (→Higgs mass splitting)
- **B-physics** constraints (→lower bound on charged Higgs mass)
- LHC heavy Higgs searches ($H \rightarrow ZZ$, $A \rightarrow \tau\tau$, $gg \rightarrow bbA \rightarrow bb\tau\tau$...)
- LEP Higgs searches ($e^+e^- \rightarrow Zh$, $e^+e^- \rightarrow Z^* \rightarrow Ah$, $e^+e^- \rightarrow H^+H^-$)
- 125 GeV Higgs signal strengths

Combined signal strengths

Combining signal strength measurements from LHC and Tevatron, one obtains an approximation to the **Higgs likelihood**

We **require** 95% C.L. agreement with the combined signal strengths for **all individual decay modes** ($\gamma\gamma$, WW^* , ZZ^* , $b\bar{b}$, $\tau\tau$)

Lilith

Light Likelihood fit for the Higgs

[JB, B. Dumont] [arXiv:1502.04138]

Information, Download: http://lpsc.in2p3.fr/projects-th/lilith/ (Google: lilith higgs)

[JB, B. Dumont, S. Kraml] [arXiv:1409.1588]

[JB, B. Dumont, S. Kraml] [arXiv:1409.1588]

[JB, B. Dumont, S. Kraml] [arXiv:1409.1588]

GDR Terascale Saclay, 30 March 2015

Jérémy Bernon

Light states

We consider the presence of light states m<125/2 in both the h125 and H125 scenarios:

Severe constraints on the **tri-Higgs couplings** from the observed signal strengths: (rough estimation assuming fermionic SM-like couplings for Y and mY=125)

$$R(XX) \equiv \frac{\Gamma(Y \to XX)}{\Gamma(Y \to bb)_{\text{tree}}} = \frac{1}{12} \left(\frac{g_{YXX}v}{m_Y m_b}\right)^2 \frac{\beta(m_X)}{\beta^3(m_b)}$$
$$BR(Y \to XX) \lesssim 0.3 \Leftrightarrow R(XX) \lesssim \frac{5}{6} \Leftrightarrow |g_{YXX}| \lesssim \mathcal{O}(10 \text{ GeV})$$

while $|g_{YXX}| \sim \mathcal{O}(\text{TeV})$ naturally

h125 scenarios

Setup Results

hAA tri-Higgs coupling

$$\sum_{A} \sum_{A} \sum_{A} g_{hAA} = \frac{1}{2v} \left[\left(2m_A^2 - m_h^2 \right) \frac{\cos(\alpha - 3\beta)}{\sin 2\beta} + \left(8m_{12}^2 - \sin 2\beta \left(2m_A^2 + 3m_h^2 \right) \right) \frac{\cos(\beta + \alpha)}{\sin^2 2\beta} \right]$$

• In the SM-limit
$$\sin(\beta - \alpha) = 1$$
: $g_{hAA} =$

Solid+dashed lines: BR(h→AA)≤0.3 as a function of m_A

Filled regions : allowed by perturbativity as a function of m_H

Simultaneous requirement of small $h \rightarrow AA$ branching ratio and perturbativity \implies Moderate t_{β} & small m_{12}

→ Blue points

• Away from the SM-limit, a region with $\sin(\beta + \alpha) \sim 1$, larger m_{12} and $\tan \beta$ also leads to small hAA coupling \rightarrow Orange points

Λ

Parameters overview: h125

Signal strengths: h125

Cross sections: h125

HI25 scenarios

Setup Results

Light states in HI25 scenarios

• **Type I**: Both A and h can be lighter than m_H/2 but **not simultaneously**

Both the HVV and ZhA vertices are proportional to $\cos(\beta - \alpha)$ which is close to maximal by virtue of H being SM-like

LEP limits on $e^+e^- \rightarrow Z^* \rightarrow Ah$ are evaded via kinematic suppression of the cross section

m_A<m_H/2: red points m_h<m_H/2: blue points

• **Type II**: B-physics + STU constraints: $m_{H^{\pm}} \gtrsim 300 \text{ GeV} \Rightarrow m_A \gtrsim 200 \text{ GeV}$

 \Rightarrow only h can be light

m_h<m_H/2: blue points

HAA and Hhh tri-Higgs couplings $A \qquad g_{Hhh} = -\frac{1}{v}\cos(\beta - \alpha) \left[\frac{2m_{12}^2}{\sin 2\beta} + \left(2m_h^2 + m_H^2 - \frac{6m_{12}^2}{\sin 2\beta}\right)\frac{\sin 2\alpha}{\sin 2\beta}\right] \qquad \underbrace{H}_{---}^{125}$

• In the SM-limit $\cos(\beta - \alpha) = 1$:

• Away from the SM-limit, in a region with $\cos(\beta + \alpha) \sim 1$ larger t_B can be achieved, at small m₁₂

Signal strengths: HI25

Cross sections: H125

Conclusions

Conclusions

- In the context of the 2HDM of Type I and Type II, the presence of light Higgs states is still a possibility in both the h125 and H125 scenarios
- Precise measurements of signal strengths during LHC Run II could largely test these scenarios
- Should the yy and VV rates converge to the SM value within ~10% or better, these scenarios would be excluded
- Large cross sections in the gluon fusion and bb associated production modes are generally possible
- Looking for these light states in the *ττ* and μμ channels in the existing LHC Run I dataset could already be a crucial test of these scenarios

Constraints

B-physics constraints

Lower bound on charged Higgs mass

LEP constraints

h125 scenarios

H125 scenarios

Parameters overview: HI25

Validation of the Lilith likelihood against ATLAS results

• Trying to reproduce the official ATLAS and CMS coupling fits (profile likelihood ratio to derive the confidence intervals)

Validation of the Lilith likelihood against CMS results

• Trying to reproduce the official ATLAS and CMS coupling fits (profile likelihood ratio to derive the confidence intervals)

