

Combination of couplings and mass in ATLAS and CMS

Giacomo Ortona LLR-École Polytechnique

Introduction

- Higgs couplings and mass are important SM parameters
 - The mass was the last missing ingredient to the EWK fit
- Both ATLAS and CMS released updated results with the full run1 statistics
- The LHC-HCG is taking care of combining the results of the 2 experiments
 - The combined results for the mass are ready \checkmark
 - Couplings combination is to be released soon (it also depends on the mass!)
- The full SM Higgs picture will be completed by the results on spin/parity (K. Liu) and width (M. Calandri)

Higgs mass measurement

ß

ai

Events

- 4 and YY
- All other channels have v or • hadrons in final state

Comparable results among the experiments

Lot of work to properly assess/ correlate/quantify all the systematics in the 2 experiment in order to combine properly the likelihoods.

Individual results:

- ATLAS: Phys. Rev. D. 90, 052004 (2014)
- CMS: arXiv: 1412.8662

Combination results available at arXiv:1503.07589

Results from the experiments

Compatibility checks

- m_{YY} and m_{41} almost on top of each other
- Small difference between the experiments, well below 1 σ
 - ATLAS: I25.36±0.37(stat)±0.I8(syst) CMS: I25.02±0.27(stat)±0.I5(syst)

Combined results

Systematic uncertainties

m_H=125.09±0.21(stat)±0.11(scale)±0.02(other)±0.01(th) GeV

- Measurement dominated by statistical uncertainties
- Systematics dominated by energy/momentum scale corrections (dominated by the available statistics)

Measure of the signal strength

- Measure of the ratio µ between the observed/predicted event rate
- SM kinematics for production and decay
- Disentangle for production mechanism and decay mode in different channels

	Н→үү	H→ZZ	H→WW	Н→тт	H→bb	H→Zγ	H→µµ
ggH	ATLAS CMS	ATLAS CMS	ATLAS CMS	ATLAS CMS		ATLAS CMS	ATLAS CMS
VBF	ATLAS CMS	ATLAS CMS	ATLAS CMS	ATLAS CMS		ATLAS CMS	ATLAS CMS
VH	ATLAS CMS	ATLAS CMS	ATLAS CMS	CMS	ATLAS CMS	ATLAS CMS	CMS
ttH	ATLAS CMS	ATLAS CMS	ATLAS CMS	ATLAS CMS	ATLAS CMS		

Signal strength by decay channel

Signal strength by production

- Assume SM values for ratios between different branching fractions
- Small 1-2 σ excess in ttH, consistent among the 2 experiments
 - Compatible with SM

Comparison between ggH and VBF

Giacomo Ortona

Couplings to fermions and gauge

- For each coupling, introduce a scale factor k that accounts for deviations from SM (by definition k_i=1 is SM)
- Explore differences between Yukawa and gauge couplings by introducing 2 k factors k_f and k_V
- Assume SM H width and no additional effects in the loops
- Sign ambiguity resolved by interference in γγ,tH decays
- Good agreement with the SM

ЧЧ

Absolute couplings

Higgs coupling ratios

Fit ratio of couplings $\lambda_{ij} = k_i/k_j$ in order to avoid assumptions on ratios of production mechanisms and branching fractions

- Most general measurement possible within the k framework
 - We will do better in run2
- No assumptions on particle content in loops
 - No assumptions on BSM decay modes or $\Gamma_{\rm H}$

Custodial symmetry

• No assumptions on other couplings

disfavoured thanks to tH and ZH productions

-2 In $\Lambda(\lambda_{WZ})$

Conclusions

- ATLAS and CMS combined results produced an amazingly precise Higgs mass measurement $m_H=125.09\pm0.24$ GeV
 - Result dominated by statistical uncertainties, will improve in run2
- Measurement of the Higgs boson coupling to the SM particles show very good agreement with SM expectations within the current uncertainties
 - Only deviation observed so far in ttH production, between 1 and 2σ
 - Combination of couplings (ongoing) will provide a better picture
 - No more room for large deviations from the SM. The study of the couplings in "rare" production/decays channel is a priority for run2

BACKUP

Absolute couplings

- Relaxing the asssumptions, e.g. allowing for the BR to invisible to float and for the presence of non-SM particles in loops or only keeping the total Higgs width unmodified does not have a huge impact on the measured couplings
 - Couplings values are quite stable (within these uncertainties)

 $\sqrt{s} = 8 \,\mathrm{TeV}, 20.3 \,\mathrm{fb}^{-1}$

TLAS Preliminary

 $\sqrt{s} = 7 \,\text{TeV}.4.5 - 4.7 \,\text{fb}^{-1}$

68% CL: