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Gauge coupling unification

First motivation for GUT-like models

the present normalization for c, is at least SU(5). Hence the predicted value of Btheory is
independent of the number of generations. However the overall running for the three couplings
is dependent on the number of generations and in Fig. 15 we show the behavior of the three
couplings with Ng = 3.

Figure 15: The running of the three standard model gauge couplings.

5.2 Studying SU(3)⇥SU(2)⇥U(1) Unification in Technicolor

Here we compare a few examples in which the standard model Higgs is replaced by a
technicolor-like theory. A similar analysis was performed in [146]. In this section we press
on phenomenological successful technicolor models with technimatter in higher dimensional
representations and demonstrate that the simplest model helps unifying the SM couplings while
other more traditional approaches are less successful. We also show that by a small modification
of the technicolor dynamics, all of the four couplings can unify 16.

5.2.1 Minimal Walking Technicolor (MWT)

We examine what happens to the running of the SM couplings when the Higgs sector is
replaced by the MWT theory introduced earlier. This model has technicolor group SU(2) with
two techniflavors in the two-index symmetric representation of the technicolor group. As al-
ready mentioned to avoid Witten’s SU(2) anomaly, the minimal solution is to add a new lepton
family. We still assume an SU(5)-type unification leading to c2

= 3/5. The beta function
16Since the technicolor dynamics is strongly coupled at the electroweak scale the last point on the unification of

all of the couplings is meant to be only illustrative.
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Two medications: modifying the particle content (SUSY) or the gauge 
structure (GUT), or both (SUSY-GUT)

Care should be taken concerning the proton decay in GUT models as 
electrons and quarks belong to same multiplets
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Figure 1: RG evolution of the Higgs self coupling, for di↵erent Higgs masses for the central value of mt

and ↵s, as well as for ±2� variations of mt (dashed lines) and ↵s (dotted lines). For negative values

of �, the life-time of the SM vacuum due to quantum tunneling at zero temperature is longer than the

age of the Universe as long as � remains above the region shaded in red, which takes into account the

finite corrections to the e↵ective bounce action renormalised at the same scale as � (see [11] for more

details).

2 Stability and metastability bounds

We first present the analysis on the Higgs instability region at zero temperature. We are

concerned with large field field values and therefore it is adequate to neglect the Higgs mass

term and to approximate the potential of the real field h contained in the Higgs doublet H =

(0, v + h/
p
2) as

V = �(|H|2 � v2)2 ⇡ �

4
h4 . (1)

Here v = 174 GeV and the physical Higgs mass is mh = 2v
p
� at tree level. Our study here

follows previous state-of-the-art analyses (see in particular [9, 11, 12]). We assume negligible

corrections to the Higgs e↵ective potential from physics beyond the SM up to energy scales of

the order of the Planck mass. We include two-loop renormalization-group (RG) equations for all

the SM couplings, and all the known finite one and two-loop corrections in the relations between
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Higgs quartic coupling 
µ ~ 1010 GeV

Nature seems to 
point toward an 

intermediate scale 
around 1010 GeV

Leptogenesis/baryogenesis 
µ ~ 1010 GeV

See-saw mechanism with νR: 
mν=0.1 eV => MR ~ 1010 GeV

« Unification is one thing, and stability 
 [in Northeast Asia] is another thing. »  
Kim Dae Jung, president of South Korea
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where H represents the real part of the SM Higgs field.
Here, we have simply assumed that the right handed neu-
trino has a Majorana mass, MR. We will explore a dy-
namical version of this extension in section IV.

The scalar A is massive and couples to the SM Higgs,
but does not itself get a vacuum expectation value (vev).
While there is no natural value for the mass scaleMR, de-
manding gauge coupling unification in di↵erent schemes
of SO(10) breaking naturally leads to intermediate scales
between 106 � 1014 GeV [14, 15]. It seems then rea-
sonable to expect that MR will lie in this energy range if
one embeds our model in a framework where one imposes
unification of the gauge couplings. However, we will at-
tempt to stay as general as possible1. In the context of
very light scalar A, of order a keV (though not consid-
ered in the present work), some authors have looked at
the e↵ect of a decaying A on the CMB [17] and more
recently the subleading e↵ect of decays to photons [18].

B. The see–saw mechanism

Once symmetry breaking is realized, the mass states in
the neutrino sector are mixed in the current eigenstate
basis. Diagonalization of the mass matrix leads to the
well known see–saw mechanism. We can write the mass
term

L⌫ = �1

2
n̄ M n, with n =

✓
⌫L + ⌫cL
⌫R + ⌫cR

◆
=

✓
n
1

n
2

◆

and

M =

✓
0 mD

mD MR

◆
, (4)

with mD = yLRvH/
p
2 (vH = 246 GeV being the Higgs

vev). M, being a complex symmetric matrix, can be
diagonalized with the help of one unitary matrix U, M =
UmUT with

m =

✓
m

1

0
0 m

2

◆
. (5)

1 We note that a similar framework has been used in [16] to sta-
bilize the Higgs potential up to GUT scale.

From the diagonalization of M
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where2 tan 2✓ = � 2mD

MR implying ✓ ' sin ✓ ' �mD

MR =
�yLRvHp

2MR
. Once the Lagrangian is expressed in terms

of the physical mass eigenstates, one can compute the
couplings generated by the symmetry breaking and their
phenomenological consequences. m

1

corresponds to the
mass of the Standard Model neutrino. We will consider
m

1

. 1 eV from cosmological constraints through the
rest of the paper3.

III. PHENOMENOLOGY

A. Generalities

To study the consequences of the model, we first
rewrite the Lagrangian (2) in terms of the mass eigen-
states, N
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A look at the Lagrangian (8) implies some obvious phe-
nomenological consequences of the coupling of the scalar
to the neutrino sector. First of all, the field N

2

is not
stable through its decay N

2

! HN
1

and cannot be the
dark matter candidate as in the standard see-saw mech-
anism. Secondly, the scalar A is not stable, and its dom-
inant decay mode for MA . 8 TeV is A ! N

1

N
1

, as
MN2 = m

2

is of the order of MR and is for now assumed
to be heavier than A. When we include A as part of a
dynamical mechanism for generating the mass MR, we
will see that the mass of A may be highly suppressed rel-
ative to MR, justifying a posteriori our assumption that
MA < MN1 , Moreover, because the coupling of A to N

1

2 Notice that N1 and N2 are Majorana like particles.
3 We neglect the flavor structure of the SM neutrino sector as it
does not a↵ect our main conclusions.
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Stability of dark matter

A large number of models introduce a Z2 adhoc symmetry to justify the stability 
of their dark matter candidate (Higgs-portal, Z’-portal, Rp SUSY..)

« There is nothing stable in the world; uproar's your only music. »  
John Keats

However, a Z2 symmetry appear naturally once a local U(1) symmetry is 
spontaneously broken by a Higgs-mechanism 

6.3.1 SO(10)

6.4 Discrete ZN symmetries and dark matter satbility

In the vast majority of extensions of the Standard Model, one invokes a Z2 symmetry to
justify the stability of the dark matter candidate. However, it can be proved that a discrete
ZN symmetry can be seen as the residual of a local (gauged) U(1) symmetry.

6.4.1 Introductory example

In order to get a notion of how to break a continuous symmetry down to a discrete symmetry
in a physical theory, the following intuitive simplest example is helpful. Consider two complex
scalar fields  and � of di↵erent charges under a common U(1) gauge symmetry

 7! ei↵(x) (6.3)

� 7! eiq↵(x)�. (6.4)

Besides the standard renormalizable Lagrangian for both of the scalars (and a kinetic term
for the gauge fields), we can write down the following gauge invariant interaction terms with
coupling constant ↵, �, �

���⇤  ⇤, � q�⇤, � ⇤q� (6.5)

and powers of these. Now, assume that the U(1) symmetry is spontaneously broken due to
a vacuum expectation value h�i = v developed by the q charged field �,

�(x)
SSB��! v + �0(x). (6.6)

As a consequence, the Lagrangian of the broken theory contains the term v q and v ⇤q, which
are obviously no more U(1) invariant, though, they still are manifestly invariant under the
transformation

 ! e
2i⇡
q m , m 2 Z (6.7)

which corresponds to the residual discrete Abelian symmetry Zq.
For a low energy observer having no knowledge of the field �, Eq.(6.7) appears to be an
ordinary global discrete symmetry. It is its local origin why it is called discrete gauge
symmetry.

6.4.2 Systematical approach

We will now put this mechanism, which we understood by looking at the explicit coupling
structure so far, on a neat theoretical footing. Let us reconsider the simple case of a single
U(1) local theory from above. We have to imagine that the vev of the field � has indeed
been realized through the breaking of a gauged U(1) symmetry. let’s suppose that the
charge of the � field, which can be identified by a Higgs field in the Standard Model physics,
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toy example

Conclusion: if one wants to include a naturally stable candidate (Z2 symmetry) one needs to extend 
the rank of the Standard Model SU(3) X SU(2)L X U(1) of rank 2+1+1=4 to a group of rank (at 
least) 5. SO(10) is the minimal candidate and not SU(5) which is of rank 4 . 

generalization

is Q� = N ⇥ q (or let say 0 modulo q), q being an integer > 2. Asking for the invariance of
the vev of �, h�i after the breaking of U(1) is in fact equivalent to finding for the specific
angle (parameter ↵) of the U(1) rotation that was leaving the � field invariant at the scale
where U(1) was unbroken. Indeed, the coupling of the other fields  to the vev of � in the
broken phase are the same that the coupling of the  fields to the � in the unbroken phase.
This angle ↵ is easy to find :

h�i U(1)��! h�i ) eiQ�↵h�i = eiNq↵h�i = h�i ) ↵ =
2⇡

q
(6.8)

For this value of ↵, the Higgs field was invariant in the unbroken phase, and then invisible
for the other fields  after this transformation. In other words, for the same angle, the
part of the Lagrangian which was not containing the Higgs was also invariant, as the total
Lagrangian was invariant under any phase transformation of the U(1) gauged group. It
results that, this ”out-of-the-Higgs” part of the Lagrangian, which is the untouched part
(the  fields of charges p) is still invariant under the discrete transformation under this
phase ↵ in the broken phase, where the vev is also, by definition, invisible. The Lagrangian
is then invariant under the operation

 ! ei↵p = ei 2⇡
q p (6.9)

Considering p as integer (we can always redefine the charges of a model invariant under a
U(1) transformation asking all of them to be positif integer) one obtains that the broken

Lagrangian exhibit a ei 2⇡
q ⌘ Zq symmetry. This Zq symmetry is the remnant of the unbroken

U(1) gauge symmetry in the broken phase.
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U(1) Z2

Spontaneous breaking



Looking for a model..

Unification of gauge couplings

Respecting proton lifetime

Intermediate scale giving natural neutrino mass and Higgs stability

Natural stable neutral candidate (dark matter)

Dark matter respecting WMAP/PLANCK constraint

SO(10) seems to do honestly the job



SO(10) in a nutshell
SO(N)  is the group of the (NxN) orthogonal [OTO=1] matrices with determinant = 1 

Orthogonal matrices are generated by antisymmetric tensors.  
There are N(N-1)/2 antisymmetric generators, and 5 commuting Cartan generators  

10(10� 1)

2
= 45

16⌦ 16 = 10� 120� 126

« It is a genius, but one should always check his calculations » 
Gustav Kirchhoff about the numerous mathematical errors of Maxwell

!
!

45 antisymmetric representation  
and 54 symmetric representation

10⌦ 10 = 1� 45� 54

!
!

Clifford algebra (conservation of length)
{�i,�j} = 2�i,j I

!
!
!

Dimension 25 = 32 + « left-right » symmetrization : 16 + 16

�1 = �1 ⌦ �1 ⌦ �1 ⌦ �1 ⌦ �1
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where Ψ is the total spinor. It should be noted that the single fermion entries in ΨL and ΨR are understood to be
left and right handed spinors respectively. The diagonal terms are explicitly
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SO(10) and neutrino physics

The SO(10) spinor in the 16 representation naturally embed a right handed neutrino νR. The 
breaking of SO(10) into an intermediate group, at an intermediate (~1010 GeV) scale provides 

then the best framework for a natural see-saw mechanism (natural means yν ~ 1)

To: professor W. Pauli, Zurich University !
We are happy to inform you that we have 
definitively detected neutrinos from fission 
fragments (..) !
!
F. Reines and C. Cowan, !
Los Alamos, June 14th 1956
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SU(3)c X SU(2)L X U(1)R

SU(4) X SU(2)L X U(1)

SO(10)

Asking for unification imposes the intermediate 
scale (~1010 GeV) and leads to natural see-saw

As a free bonus, one also obtain unification at GUT scale!

(Y. Mambrini, K. Olive, J. Quevillon, B. Zaldivar 2013)

3

Since the production of DM occurs mainly at TRH ≫
mχ, we can neglect mχ in estimating the amplitude for
production. In this case, assuming that both χ and the
initial state, f , are fermions, we obtain

|Mχ|2 ≈
g4Dq2χq

2
fN

f
c

(s−M2
Z′)2

[

s2(1 + cos2 θ)

]

(6)

where θ is the angle between the two outgoing DM par-
ticles, Nf

c is number of colors of the particle f , and qi is
the charge of the particle i under U ′(1) with a gauge cou-
pling gD. Here, q is an effective coupling which will ulti-
mately depend on the specific intermediate gauge group
chosen. With the approximations mχ,mf ≪

√
s and

MZ′ ≫ TRH , and after integration over θ and sum over
all incoming SM fermions in the thermal bath, we obtain

dYχ

dx
=

∑

f

g4Dq2χq
2
fN

f
c

x4

(

45

π

)3/2 1

gs
√
gρ

m3
χMP

M4
Z′

κ2
f

2π7
(7)

Solving Eq.(7) between the reheating temperature and
a temperature T gives

Yχ(T ) =
∑

f

q2χq
2
fN

f
c

(

45

gsπ

)3/2 MP

M4
int

3 κ2
f

1250π7

[

T 3
RH −T 3

]

(8)
where we replaced the mass of the Z ′ by MZ′ =
5√
3
gDMint and made the approximation gρ = gs. We

note that the effect of Z ′ decay on the abundance of χ is
completely negligible due to its Boltzmann suppression
in the Universe: the Z ′ is largely decoupled from the
thermal bath already at the time of reheating.

We note several interesting features from Eq.(8). First
of all, the number density of the dark matter does not de-
pend at all on the strength of the U ′(1) coupling gD but
rather on the intermediate scale (that is determined by
requiring gauge coupling unification as we demonstrated
in the previous section). Second, the production of dark
matter is mainly achieved at reheating. Thirdly, once
the relic abundance is obtained, the number density per
comoving frame (Y ) is fixed, never having reached ther-
mal equilibrium with the bath. And finally, upon apply-
ing the WMAP determination for the DM abundance,
we obtain a tight constraint on TRH once the pattern of
SO(10) breaking is known (and thus Mint fixed).

Thus, given a scheme of SO(10) breaking we can deter-
mine the reheating temperature very precisely from the
relic abundance constraint in the Universe. From

Y0 =
Ω

mχ

ρcrit0

s0
=

(

Ωh2

0.1

)

13.5

16π3

H2
0M

2
P

g0sT
3
0mχ

(9)

where H is the Hubble parameter and the index “0” cor-
responds to present-day values. Combining Eq.(8) and
Eq.(9) we find

T 3
RH =

5625 π4

16q2χ
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FIG. 2. Reheating temperature as function of the SO(10) breaking
scale for different mass of dark matter : 10, 100 and 1000 GeV

TABLE I. Possible breaking schemes of SO(10).

SO(10) → G× [Higgs] Mint(GeV) TRH(GeV)

A 4× 2L × 1R [16] 1012.9 3× 109

A 4× 2L × 1R [126] 1011.8 1× 108

B 4× 2L × 2R [16] 1014.4 3× 1011

B 4× 2L × 2R [126] 1013.8 5× 1010

C 3C × 2L × 2R × 1B−L [16] 1010.6 3× 106

C 3C × 2L × 2R × 1B−L [126] 108.6 6× 103

or

TRH ≃ 2×108GeV

(

Ωh2

0.1

)1/3 (
100GeV

mχ

)1/3 ( Mint

1012GeV

)4/3

(11)
where we took for illustration q2χ

∑

f κ
2
fq

2
fN

f
c = 1. We

show in Fig.(2) the evolution of TRH as function of Mint

for different values of the dark matter mass mχ. We can
thus determine the reheating temperature predicted by
different symmetry breaking patterns1. We summarize
them in Table I, where the values of TRH are given for
mχ = 100GeV.

Finally, we must specify the identity of the NETDM
candidate in the context described above. The DM can
be in the 126 or 144 representations of SO(10). There
are several mechanisms to render the DM mass light [9],
one of which is through a fine-tuning of the SO(10) cou-
plings contributing with different Clebsh-Gordan coeffi-
cients (see for example, [10] and [11]) to the masses of
the various 126 components. For example, for the group

1 We note that the value obtained for the intermediate scale in
different SO(10) breaking schemes is not modified by the pres-
ence of a dark matter particle which is not charged under the
SM gauge group.

of DM spoils the desired unification of the gauge couplings.
In the following, we begin by discussing the origin of a discrete symmetry in a variety

of models with di↵erent intermediate gauge groups and the possible representations for
DM and the splitting of the DM multiplet. In section 3, we first demonstrate gauge
coupling unification in these models (without DM) and show the e↵ect of including the
two-loop functions in the RGE running and one-loop threshold e↵ects. We next consider
the question of gauge coupling unification in the presence of a DM multiplet. In section 4,
we discuss the criteria which select only two possible models in a specific example of the
NETDM scenario [4]. The phenomenological aspects of these models including neutrino
masses, proton decay, the production of DM through reheating after inflation will be
discussed in section 5. We also consider the case where the DM field is a singlet under
the intermediate gauge groups in section 6. Our conclusions will be given in section 7.

2 Candidates

We assume that the SO(10) gauge group is spontaneously broken to an intermediate
subgroup Gint at the GUT scale MGUT, and subsequently broken to the SM gauge group
GSM at an intermediate scale Mint:

SO(10) �! Gint �! GSM ⌦ ZN , (1)

with GSM ⌘ SU(3)C ⌦ SU(2)L ⌦ U(1)Y . The Higgs multiplets which break SO(10) and
Gint are called R1 and R2, respectively. In addition, we require that there is a remnant
discrete symmetry ZN that is capable of rendering a SM singlet field to be stable and
hence account for the DM in the Universe [9,10]. The mechanism for ensuring a remnant
ZN is discussed in detail in Sec. 2.1, and the possible intermediate gauge groups that
accommodate the condition are summarized in Sec. 2.2.

If moreover the DM couplings are such that the candidate is not in thermal equilibrium
at early times, as in the NETDM scenario, we obtain stringent constraints on the model
structure. We will consider this subject in Sec. 2.3.

2.1 Discrete symmetry in SO(10)

SO(10) is a rank-five group and has an extra U(1) symmetry beyond U(1)Y in the SM
gauge group. The U(1) charge assignment for fields in an SO(10) multiplet is determined
uniquely up to an overall factor. We define the normalization factor such that all of the
fields �i in a given model have integer charges Qi with the minimum non-zero value of
|Qi| is equal to +1. Now, let us suppose that a Higgs field �H has a non-zero charge QH .
Then, if QH = 0 (mod. N) with N � 2 an integer, the U(1) symmetry is broken to a
ZN symmetry after the Higgs field obtains a vacuum expectation value (VEV) [6–8]. One
can easily show this by noting that both the Lagrangian and the VEV h�Hi are invariant
under the following transformations:

�i ! exp

✓
iQi

N

◆
�i , h�Hi ! exp

✓
iQH

N

◆
h�Hi = h�Hi . (2)

2

LY =
g

2
16L.16L.10+

h

2
16L.16L.126

MR = hh126i



To do list

Unification

Neutrino Mass  
[+ Higgs stability J. Elias-Miro, J.R. Espinosa, G. Giudice, H.M. Lee, A. Strumia 2012]

Intermediate scale

Dark Matter?

“To Do Today, 
1. Sit and think 
2. Reach enlightenment 
3. Feed the cats”  
!

Jarod Kintz 



What is left?

Y. Mambrini, N. Nagata, K. Olive, J. Quevillon, J. Zheng 2015

From all the possible representations where a neutral candidate can exist, asking for 
!

Natural stability [U(1) broken to Z2 symmetry] 
!

Non degeneracy in the multiplet [to avoid long lived charged particles] 
!

Natural seesaw  [Higgs in 126 representation] 
!

Higgs stability [Intermediate scale ~1010 GeV] 
!

Proton lifetime [> 1034 years] 
!

What is left?    

« Nous partîmes trois mille; mais par un prompt renfort, Nous nous vîmes cinq cent en arrivant au port,» 
Modified quote by Don Rodrigue in « Le Cid », Racine

Table 2: Candidates for the intermediate gauge group Gint.

Gint R1

SU(4)C ⌦ SU(2)L ⌦ SU(2)R 210

SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦D 54

SU(4)C ⌦ SU(2)L ⌦ U(1)R 45

SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦ U(1)B�L 45

SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦ U(1)B�L ⌦D 210

SU(3)C ⌦ SU(2)L ⌦ U(1)R ⌦ U(1)B�L 45, 210

SU(5)⌦ U(1) 45, 210

Flipped SU(5)⌦ U(1) 45, 210

be contained in either a 45, 54, 126, or 210 representation.
Below the GUT scale, components in an SO(10) multiplet can obtain di↵erent masses.

We assume that only a part of an SO(10) multiplet which contains the DM candidate
and forms a representation under Gint has a mass much lighter than the GUT scale. We
denote this representation by RDM. Such a mass splitting can be realized by the Yukawa
coupling of the DM multiplet with the R1 Higgs field. After the R1 Higgs obtains a VEV,
the Yukawa coupling leads to an additional mass term for the SO(10) multiplet, which
gives di↵erent masses among the components. By carefully choosing the parameters in
the Lagrangian, we can make only RDM light. This will be discussed in detail in Sec. 4.

As will be seen in Sec. 3.1, without RDM, SO(10) GUTs often predict either a low value
of MGUT or Mint, which could be problematic for proton decay or the explanation of light
neutrino masses, respectively. In order to a↵ect the RGE running of the gauge couplings
and possibly increase the mass scales for both Mint and MGUT, the DM should be charged
under Gint. In Table 3, we summarize possible candidates for RDM for each intermediate
gauge group. Above the intermediate scale, all of the components have an identical
mass. In fact, it turns out that the degeneracy is not resolved at tree level even after
the intermediate gauge symmetry is broken. This is because the SO(10) multiplets which
contain RDM displayed in the table cannot have Yukawa couplings with the 126 Higgs;
such a coupling is forbidden by the SO(10) symmetry. Thus, the e↵ects of symmetry
breaking by the 126 Higgs VEV cannot be transmitted to the mass of the RDM multiplet
at tree level, and a simple realization of DM in RDM makes its components degenerate in
mass.

Such a degenerate mass spectrum is problematic. Since the degenerate multiplet
contains particles charged under the SU(3)C⌦U(1)EM gauge group, they will be in thermal
equilibrium. In general, these components have quite a long lifetime, and thus their
thermal relic density conflicts with various observations. To see this, let us consider the
(1,1,3) Dirac fermion multiplet ( 0, ±) in the SU(4)C ⌦SU(2)L⌦SU(2)R theory, which

6

of DM spoils the desired unification of the gauge couplings.
In the following, we begin by discussing the origin of a discrete symmetry in a variety

of models with di↵erent intermediate gauge groups and the possible representations for
DM and the splitting of the DM multiplet. In section 3, we first demonstrate gauge
coupling unification in these models (without DM) and show the e↵ect of including the
two-loop functions in the RGE running and one-loop threshold e↵ects. We next consider
the question of gauge coupling unification in the presence of a DM multiplet. In section 4,
we discuss the criteria which select only two possible models in a specific example of the
NETDM scenario [4]. The phenomenological aspects of these models including neutrino
masses, proton decay, the production of DM through reheating after inflation will be
discussed in section 5. We also consider the case where the DM field is a singlet under
the intermediate gauge groups in section 6. Our conclusions will be given in section 7.

2 Candidates

We assume that the SO(10) gauge group is spontaneously broken to an intermediate
subgroup Gint at the GUT scale MGUT, and subsequently broken to the SM gauge group
GSM at an intermediate scale Mint:

SO(10) �! Gint �! GSM ⌦ ZN , (1)

with GSM ⌘ SU(3)C ⌦ SU(2)L ⌦ U(1)Y . The Higgs multiplets which break SO(10) and
Gint are called R1 and R2, respectively. In addition, we require that there is a remnant
discrete symmetry ZN that is capable of rendering a SM singlet field to be stable and
hence account for the DM in the Universe [9,10]. The mechanism for ensuring a remnant
ZN is discussed in detail in Sec. 2.1, and the possible intermediate gauge groups that
accommodate the condition are summarized in Sec. 2.2.

If moreover the DM couplings are such that the candidate is not in thermal equilibrium
at early times, as in the NETDM scenario, we obtain stringent constraints on the model
structure. We will consider this subject in Sec. 2.3.

2.1 Discrete symmetry in SO(10)

SO(10) is a rank-five group and has an extra U(1) symmetry beyond U(1)Y in the SM
gauge group. The U(1) charge assignment for fields in an SO(10) multiplet is determined
uniquely up to an overall factor. We define the normalization factor such that all of the
fields �i in a given model have integer charges Qi with the minimum non-zero value of
|Qi| is equal to +1. Now, let us suppose that a Higgs field �H has a non-zero charge QH .
Then, if QH = 0 (mod. N) with N � 2 an integer, the U(1) symmetry is broken to a
ZN symmetry after the Higgs field obtains a vacuum expectation value (VEV) [6–8]. One
can easily show this by noting that both the Lagrangian and the VEV h�Hi are invariant
under the following transformations:

�i ! exp

✓
iQi

N

◆
�i , h�Hi ! exp

✓
iQH

N

◆
h�Hi = h�Hi . (2)
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Figure 6: Diagram responsible for the DM production in Model II.

is given in Eq. (21). From the dimensional analysis, we estimate the contribution as

X
|M|2 ' c

ŝ� 4M2
DM

M2
int

, (30)

where c is a numerical factor which includes the unknown couplings appearing in the
diagram. By substituting Eqs. (29) and (30) into Eq. (28), we have

dYDM

dx
' c

1024⇡7

✓
45

⇡g⇤

◆ 3
2 MPlMDM

M2
int

1

x2

Z 1

2x

t(t2 � 4x2)
3
2K1(t)dt . (31)

When MDM ⌧ TRH with TRH being the reheating temperature, the above equation is
easily integrated to give

Y
(0)
DM ' c

64⇡7

✓
45

⇡g⇤

◆ 3
2 MPlTRH

M2
int

, (32)

where the superscript “(0)” implies the present-day value. On the other hand, the current

value of Y (0)
DM is given by

Y
(0)
DM =

⌦DM⇢
(0)
crit

MDMs(0)
, (33)

where ⌦DM is the DM density parameter and ⇢
(0)
crit is the critical density of the Universe.

In the following calculation, we use ⌦DMh
2 = 0.12, ⇢(0)crit = 1.05⇥ 10�5h2 GeV · cm�3, and

s(0) = 2.89⇥ 103 cm�3, with h the Hubble parameter. As a result, we obtain

TRH ' 2.7⇥ 104 GeV⇥
✓
⌦DMh

2

0.12

◆✓
g

3
2
⇤ c�1

104

◆✓
MDM

100 GeV

◆�1

, (34)

where we have set the value of Mint = 1013.66 GeV from the result in Table 6. This

approximate formula is valid when MDM ⌧ TRH. Here, g
3
2
⇤ c�1 is an unknown factor and

thus causes an uncertainty in the computation. For instance, if g⇤ = O(100) and the
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ŝ� 4M2
DM

M2
int

, (30)

where c is a numerical factor which includes the unknown couplings appearing in the
diagram. By substituting Eqs. (29) and (30) into Eq. (28), we have

dYDM

dx
' c

1024⇡7

✓
45

⇡g⇤

◆ 3
2 MPlMDM

M2
int

1

x2

Z 1

2x

t(t2 � 4x2)
3
2K1(t)dt . (31)

When MDM ⌧ TRH with TRH being the reheating temperature, the above equation is
easily integrated to give

Y
(0)
DM ' c

64⇡7

✓
45

⇡g⇤

◆ 3
2 MPlTRH

M2
int

, (32)

where the superscript “(0)” implies the present-day value. On the other hand, the current

value of Y (0)
DM is given by

Y
(0)
DM =

⌦DM⇢
(0)
crit

MDMs(0)
, (33)

where ⌦DM is the DM density parameter and ⇢
(0)
crit is the critical density of the Universe.

In the following calculation, we use ⌦DMh
2 = 0.12, ⇢(0)crit = 1.05⇥ 10�5h2 GeV · cm�3, and

s(0) = 2.89⇥ 103 cm�3, with h the Hubble parameter. As a result, we obtain
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where we have set the value of Mint = 1013.66 GeV from the result in Table 6. This

approximate formula is valid when MDM ⌧ TRH. Here, g
3
2
⇤ c�1 is an unknown factor and

thus causes an uncertainty in the computation. For instance, if g⇤ = O(100) and the
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Computation of the relic abundance

2

introduce SU(5) singlets as potential dark matter can-
didates. The simplest extension in which singlets are
automatically incorporated is that of SO(10). There
are, however, many ways to break SO(10) down to
SU(3) × SU(2) × U(1). This may happen in multiple
stages, but here we are mainly concerned with the break-
ing of an additional U(1) (or SU(2)) factor at an inter-
mediate scale Mint. Here, we will not go into the details
of the breaking, but take some specific, well-known ex-
amples when needed. Assuming gauge coupling unifica-
tion, the GUT mass scale, MGUT , and the intermediate
scaleMint can be predicted from the low–energy coupling
constants with the use of the renormalisation group equa-
tion,

µ
dαi

dµ
= −biα

2
i . (1)

The evolution of the three running coupling constants
α1, α2 and α3 from MZ to the intermediate scale Mint is
obtained from Eq.(1) using the β–functions of the Stan-
dard Model: b1,2,3 = (−41/10, 19/6, 7)/2π. We note
that the gauge coupling, gD, associated with U ′(1) is

related at the GUT scale to g1 of U(1)Y by gD =
√

5

3
g1

and αi = g2i /4π. Between Mint and MGUT (both to
be determined) the running coupling constants are again
obtained from Eq.(1), now using β–functions associated
with the intermediate scale gauge group, which we will
label b̃i. The matching condition between the two differ-
ent runnings at Mint can be written:

(α0
i )

−1 + bi(tint − tZ) = α−1 + b̃i(tint − tGUT ) (2)

with tint = lnMint, tZ = lnMZ , tGUT = lnMGUT , α0
i =

αi(MZ) which is measured, and α = αi(MGUT ) is the
unified coupling constant at the GUT scale. This gives
us a system of 3 equations, for 3 unknown parameters:
α, tint, tGUT . Solving the Eq.(2), we obtain

tint =
1

b32 − b21

[

(α0
3)

−1 − (α0
2)

−1

b̃2 − b̃3
−

(α0
2)

−1 − (α0
1)

−1

b̃1 − b̃2

+(b32 − b21)tZ

]

, (3)

where bij ≡ (bi − bj)/(b̃i − b̃j).

To be concrete, we will consider a specific example to
derive numerical results for the case of the breaking of
SO(10): SO(10) → SU(4) × SU(2)L × U(1)R →Mint

SU(3)C × SU(2)L × U(1)Y →MEW
SU(3)C × U(1)em.

When the intermediate symmetry is broken by a 16
of Higgs bosons, the b̃i functions are given by b̃1,2,3 =
(5/2, 19/6, 63/6)/2π [5], where the computation was done
at 1-loop level. For this case, we obtain Mint = 7.8×1012

GeV and MGUT = 1.3 × 1015 GeV using (α0
1,2,3)

−1 ≃
(59.47, 29.81, 8.45). The evolution of the gauge couplings
for this example is shown in Fig. 1.

α3

α2

α1

αι

Log[10,   ]µ
6 10 14 18

20

Log [     ]

40

FIG. 1. Example of the running of the SM gauge couplings for
SO(10) → SU(4)× SU(2)L × U(1)R.

III. HEAVY Z’ AND DARK MATTER

It has been shown in [8] and [9] that a stable dark
matter candidate may arise in SO(10) models from an un-
broken ZB−L

2 symmetry. If the dark matter is a fermion
(scalar) it should belong to a 3(B − L) even (odd) rep-
resentation of SO(10). For example, the 126 or 144
contains a stable component χ which is neutral under
the SM, yet charged under the extra U(1). As we have
seen, to explain the unification of the gauge couplings
in SO(10) one needs an intermediate scale Mint of or-
der 1010 GeV. The dark matter candidate, χ, can be
produced in the early Universe through s-channel Z ′ ex-
change: SM SM → Z ′ → χ χ. Since MZ′ = 5√

3
gD Mint,

the exchanged particle is so heavy (above the reheating
scale, as we show below) that the DM production rate is
very slow, and we can neglect the self annihilation pro-
cess in the Boltzmann equation. Thus while the dark
matter is produced from the thermal bath, we have a
non–equilibrium production mechanism for dark matter,
hence NETDM.

The evolution of the yield of χ, Yχ = nχ/s follows

dYχ

dx
=

√

π

45

gs√
gρ

mχMP
⟨σv⟩
x2

Y 2
eq (4)

where nχ is the number density of χ and s the entropy
of the universe, gρ, gs are the effective degrees of freedom
for energy density and entropy, respectively; x = mχ/T ,
mχ being the dark matter mass, MP the Planck mass
and

⟨σv⟩n2
eq ≈

κ2 T

2048π6

∫ ∞

4m2
χ

dsdΩ
√

s− 4m2
χ|M|2K1(

√
s/T ) .

(5)
Here neq is the equilibrium number density of the initial
state (SM) particles; and K1 is the first order modified
Bessel function and κ the effective degrees of freedom of
incoming particles.
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Boltzman equation for the production rate  
(Y ~0 so no second part in the equation)

with

which gives

Ωh2 = 0.1
TRH is determined 

by the relic 
abundance condition

can have a Yukawa coupling to the R1 = 54R Higgs field, we focus on the case where the
singlet DM fermion is a component of the 210 field. In this case, both Majorana and
Dirac fermions can couple to the R1 Higgs. Then, by fine-tuning the Yukawa coupling, we
can make only the singlet component have a light mass, as done in Sec. 4. Similarly, we
can obtain other models with di↵erent intermediate gauge groups by using appropriate
multiplets for the fields which contain the singlet DM.

The NETDM mechanism again works for this singlet DM through the R1 Higgs ex-
change process at tree level, with a diagram similar to that illustrated in Fig. 6. Following
the discussion given in Sec. 5.3, we can readily evaluate the reheating temperature required
to produce the right amount of DM. When MDM ⌧ TRH, we have

TRH ' 1.3⇥ 109 GeV⇥
✓
⌦DMh

2

0.12

◆✓
g

3
2
⇤ c�1

104

◆✓
MDM

100 GeV

◆�1✓
MGUT

1016 GeV

◆2

. (38)

Compared with Model I and II, the present scenario in general predicts a high reheating
temperature, as the production occurs via the GUT-scale particle exchange. Such a high
reheating temperature may be consistent with thermal leptogenesis [37].

As for proton decay and neutrino masses, the consequence of the singlet DM models
is the same as that without DM. Thus, for Gint = SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦ D and
SU(4)C ⌦ SU(2)L ⌦U(1)R, the proton decay constraints are still problematic, and thus it
may be required that we assume a relatively heavy GUT-scale gauge boson when compared
to the GUT scale. Other intermediate groups are not suitable for the explanation of
neutrino masses. The solution discussed in Sec. 5.1 can again be exploited in these cases.

7 Conclusion and discussion

For over 40 years now, we have wondered whether grand unification is actually realized
in nature. Its simplicity, its capacity for an explanation of charge quantization and the
apparent focusing of the gauge couplings as they run to high energy has kept grand
unification (supersymmetric or not) at the center of most ultra-violet completions of the
SM though experimental verification is still lacking.

On the other hand, we know from the existence of neutrino masses, the baryon asym-
metry of the Universe and the existence of DM that there must be new physics beyond
the SM. The presence of a natural DM candidate in SUSY extensions of the SM (with
conserved R-parity) is often taken to be one of the motivations for low energy SUSY.
The ingredients for the baryon asymmetry are contained in most grand unified theories
(supersymmetric or not) including SU(5) and SO(10), and while a neutrino seesaw can
be accomplished in SU(5) (by including the right-handed neutrino as a SU(5) singlet), it
is more natural in SO(10).

We have, here, examined several breaking schemes of SO(10) which lead to gauge
coupling unification (by altering the SM running of the gauge couplings at an intermediate
scale), and contain a remnant ZN symmetry which can account for the stability of DM.
Having established the possible intermediate scale gauge groups capable of both gauge
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is given in Eq. (21). From the dimensional analysis, we estimate the contribution as
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where c is a numerical factor which includes the unknown couplings appearing in the
diagram. By substituting Eqs. (29) and (30) into Eq. (28), we have
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2 MPlMDM

M2
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x2

Z 1

2x

t(t2 � 4x2)
3
2K1(t)dt . (31)

When MDM ⌧ TRH with TRH being the reheating temperature, the above equation is
easily integrated to give

Y
(0)
DM ' c

64⇡7

✓
45

⇡g⇤

◆ 3
2 MPlTRH

M2
int

, (32)

where the superscript “(0)” implies the present-day value. On the other hand, the current

value of Y (0)
DM is given by

Y
(0)
DM =

⌦DM⇢
(0)
crit

MDMs(0)
, (33)

where ⌦DM is the DM density parameter and ⇢
(0)
crit is the critical density of the Universe.

In the following calculation, we use ⌦DMh
2 = 0.12, ⇢(0)crit = 1.05⇥ 10�5h2 GeV · cm�3, and

s(0) = 2.89⇥ 103 cm�3, with h the Hubble parameter. As a result, we obtain

TRH ' 2.7⇥ 104 GeV⇥
✓
⌦DMh

2

0.12

◆✓
g

3
2
⇤ c�1

104

◆✓
MDM

100 GeV

◆�1

, (34)

where we have set the value of Mint = 1013.66 GeV from the result in Table 6. This

approximate formula is valid when MDM ⌧ TRH. Here, g
3
2
⇤ c�1 is an unknown factor and

thus causes an uncertainty in the computation. For instance, if g⇤ = O(100) and the
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X
|M|2 ' c

ŝ� 4M2
DM

M2
int

, (30)

where c is a numerical factor which includes the unknown couplings appearing in the
diagram. By substituting Eqs. (29) and (30) into Eq. (28), we have

dYDM

dx
' c

1024⇡7

✓
45

⇡g⇤

◆ 3
2 MPlMDM

M2
int

1

x2

Z 1

2x

t(t2 � 4x2)
3
2K1(t)dt . (31)

When MDM ⌧ TRH with TRH being the reheating temperature, the above equation is
easily integrated to give

Y
(0)
DM ' c

64⇡7

✓
45

⇡g⇤

◆ 3
2 MPlTRH

M2
int

, (32)

where the superscript “(0)” implies the present-day value. On the other hand, the current

value of Y (0)
DM is given by

Y
(0)
DM =

⌦DM⇢
(0)
crit

MDMs(0)
, (33)

where ⌦DM is the DM density parameter and ⇢
(0)
crit is the critical density of the Universe.

In the following calculation, we use ⌦DMh
2 = 0.12, ⇢(0)crit = 1.05⇥ 10�5h2 GeV · cm�3, and

s(0) = 2.89⇥ 103 cm�3, with h the Hubble parameter. As a result, we obtain

TRH ' 2.7⇥ 104 GeV⇥
✓
⌦DMh

2

0.12

◆✓
g

3
2
⇤ c�1

104

◆✓
MDM

100 GeV

◆�1

, (34)

where we have set the value of Mint = 1013.66 GeV from the result in Table 6. This

approximate formula is valid when MDM ⌧ TRH. Here, g
3
2
⇤ c�1 is an unknown factor and

thus causes an uncertainty in the computation. For instance, if g⇤ = O(100) and the
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in sea water [20]. The DM multiplets in other cases may also be accompanied by stable
colored particles, whose abundance is severely restricted as well. If the intermediate
scale is relatively low, the charged/colored particle can have a shorter lifetime. Even in
this case, their thermal relic abundance should be extremely small in order not to spoil
the success in the Big-Bang Nucleosynthesis (BBN). Quite generally, a degenerate mass
spectrum leads to disastrous consequences. We refer to this problem as the “degeneracy
problem” in what follows.

To avoid the degeneracy problem, we need to make the charged/colored components
heavy enough so that they are not in thermal equilibrium and have very short lifetimes.
To that end, it is natural to explore a way to give them masses of O(Mint) by using the
e↵ects of the intermediate symmetry breaking. There are several solutions. One of the
simplest ways is to introduce an additional Higgs field that has a VEV of the order of
Mint. For this purpose, we can use a 45, 54, or 210 field, as discussed in Sec. 2.1. The
Yukawa coupling between the Higgs and the DM then yields the desired mass splitting. By
fine-tuning the coupling we can force only the DM to have a mass much below Mint while
the other components remain around the intermediate scale6. Though other mechanisms
are possible, we adopt this approach in this work. Concrete realizations of the mechanism
are illustrated in Sec. 4.

Another solution to the degeneracy problem involves the use of higher-dimensional
operators that include at least two 126 fields. One would expect that such operators
suppressed by the Planck scale, MPl, always exist. These Planck-suppressed operators
can give rise to a mass di↵erence of O(M2

int/MPl). Another mechanism to generate higher-
dimensional operators is to introduce a vector-like fermion which has a Yukawa coupling
with the DM and the 126 Higgs. By integrating out the fermion, we obtain dimension-
five operators which give a O(M2

int/Mfer) mass di↵erence, where Mfer is the mass of the
additional fermion. Moreover, the higher-dimensional operators can be induced at the
loop level, which gives rise to a O(↵GUTM

2
int/(4⇡MGUT)) mass di↵erence, where ↵GUT =

6This fine-tuning is similar (though somewhat less severe) to the fine-tuning associated with the
doublet-triplet separation to insure a weak scale Higgs boson.

8

Our result

Table 6: NETDM models. Mint and MGUT are given in GeV. All of the values are
evaluated with the two-loop RGEs.

Model I Model II

Gint SU(4)⌦ SU(2)L ⌦ SU(2)R SU(4)⌦ SU(2)L ⌦ SU(2)R ⌦D

RDM (1,1,3)D in 45D (15,1,1)W in 45W

R1 210R 54R

R2 (10,1,3)C � (1,1,3)R (10,1,3)C � (10,3,1)C � (15,1,1)R

log10(Mint) 8.08(1) 13.664(5)

log10(MGUT) 15.645(7) 15.87(2)

gGUT 0.53055(3) 0.5675(2)
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(b) Model II

Figure 4: Running of gauge couplings. Solid (dashed) lines show the case with (without)
DM and additional Higgs bosons. Blue, green, and red lines represent the running of the
U(1), SU(2) and SU(3) gauge couplings, respectively.

whether these models can give appropriate masses for light neutrinos. Next, in Sec. 5.2,
we evaluate proton lifetimes in each model and discuss the testability in future proton
decay experiments. Finally, we compute the abundance of DM produced by the NETDM
mechanism in Sec. 5.3, and predict the reheating temperature after inflation.
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the p ! e+⇡0 mode in each theory, and plot it as a function ofMX/MGUT (MX denotes the
mass of the GUT-scale gauge boson) in Fig. 5. Here, the blue and red solid lines represent
Models I and II, while the blue and red dashed lines represent the models without the DM
and extra Higgs multiplets as given in Table 4, namely Gint = SU(4)C ⌦SU(2)L⌦SU(2)R
and Gint = SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦ D, respectively. The shaded region shows the
current experimental bound, ⌧(p ! e+⇡0) > 1.4⇥ 1034 years [34,35]. We have varied the
heavy gauge boson mass between MGUT/2  MX  2MGUT, which reflects our ignorance
of the GUT scale mass spectrum. From this figure, we see that the existence of DM
and Higgs multiplets produces a large e↵ect on the proton decay lifetime. In particular,
in the case of SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦ D, the predicted lifetime is so small that
the present bound has already excluded the possibility. This conclusion can be evaded,
however, once the DM and R2 Higgs multiplets are included in the theory as they raise
the value of MGUT. Moreover, Model I is now being constrained by the proton decay
experiments. In this case, the inclusion of the DM and Higgs multiplets decreases MGUT.
Future proton decay experiments, such as the Hyper-Kamiokande experiment [36], may
o↵er much improved sensitivities (by about an order of magnitude), with which we can
probe a wide range of parameter space in both models.

����

����

����

����

����

����

����

���� �� ��

��
��
���

��
��	
�

��


�������

������������	
��	��������

��	
���
��	
����

Figure 5: Proton lifetimes as functions of MX/MGUT. Blue solid and red solid lines
represent Model I and Model II, respectively. Blue dashed and red dashed lines represent
the cases for Gint = SU(4)C⌦SU(2)L⌦SU(2)R and Gint = SU(4)C⌦SU(2)L⌦SU(2)R⌦D
when the DM and extra Higgs multiplets are not included. The shaded region shows the
current experimental bound, ⌧(p ! e+⇡0) > 1.4⇥ 1034 years [34,35].
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(b) Model II

Figure 8: Reheating temperature as a function of DM mass. Pink band shows the theoret-
ical uncertainty.

around the electroweak scale accounts for the observed DM density with an acceptably
high reheating temperature. For a larger MDM, in both models, the DM relic abundance
can only be explained in the narrow strip region where MDM ' TRH.

6 Lonely Singlet Fermion Dark Matter

In the above discussion, we have assumed that there exists a DM multiplet (as well as
extra Higgs multiplets) above the intermediate scale, and studied how the presence of the
additional fields a↵ect the gauge coupling running in such models. As seen in Sec. 3.2,
these fields can indeed improve the solutions for both the intermediate and GUT scales,
which allow the models to evade the limit from the proton decay experiment and to explain
light neutrino masses via the seesaw mechanism. Before concluding our discussion, we
briefly consider another possibility in this section; that is, we have only a singlet DM
fermion on top of the standard SO(10) setup discussed in Sec. 3.1. In this case, the
DM, of course, cannot a↵ect the gauge coupling running, and thus it does not solve
the problems regarding the low intermediate/GUT scales in the ordinary SO(10) GUT
models. Since there may be another solution to these problems, it is worthwhile studying
this possibility as well.

In fact, we can easily construct such a model by exploiting an appropriate Higgs
field at the GUT scale and fine-tuning its VEV so that only the singlet fermion DM
has a mass much lighter than the GUT scale. For example, let us consider the case of
SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦ D. In this case, the singlet field under the intermediate
gauge interactions, (1,1,1), is contained in a 54 or 210 of SO(10). Since only the 210
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in sea water [20]. The DM multiplets in other cases may also be accompanied by stable
colored particles, whose abundance is severely restricted as well. If the intermediate
scale is relatively low, the charged/colored particle can have a shorter lifetime. Even in
this case, their thermal relic abundance should be extremely small in order not to spoil
the success in the Big-Bang Nucleosynthesis (BBN). Quite generally, a degenerate mass
spectrum leads to disastrous consequences. We refer to this problem as the “degeneracy
problem” in what follows.

To avoid the degeneracy problem, we need to make the charged/colored components
heavy enough so that they are not in thermal equilibrium and have very short lifetimes.
To that end, it is natural to explore a way to give them masses of O(Mint) by using the
e↵ects of the intermediate symmetry breaking. There are several solutions. One of the
simplest ways is to introduce an additional Higgs field that has a VEV of the order of
Mint. For this purpose, we can use a 45, 54, or 210 field, as discussed in Sec. 2.1. The
Yukawa coupling between the Higgs and the DM then yields the desired mass splitting. By
fine-tuning the coupling we can force only the DM to have a mass much below Mint while
the other components remain around the intermediate scale6. Though other mechanisms
are possible, we adopt this approach in this work. Concrete realizations of the mechanism
are illustrated in Sec. 4.

Another solution to the degeneracy problem involves the use of higher-dimensional
operators that include at least two 126 fields. One would expect that such operators
suppressed by the Planck scale, MPl, always exist. These Planck-suppressed operators
can give rise to a mass di↵erence of O(M2

int/MPl). Another mechanism to generate higher-
dimensional operators is to introduce a vector-like fermion which has a Yukawa coupling
with the DM and the 126 Higgs. By integrating out the fermion, we obtain dimension-
five operators which give a O(M2

int/Mfer) mass di↵erence, where Mfer is the mass of the
additional fermion. Moreover, the higher-dimensional operators can be induced at the
loop level, which gives rise to a O(↵GUTM

2
int/(4⇡MGUT)) mass di↵erence, where ↵GUT =

6This fine-tuning is similar (though somewhat less severe) to the fine-tuning associated with the
doublet-triplet separation to insure a weak scale Higgs boson.
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Table 6: NETDM models. Mint and MGUT are given in GeV. All of the values are
evaluated with the two-loop RGEs.

Model I Model II

Gint SU(4)⌦ SU(2)L ⌦ SU(2)R SU(4)⌦ SU(2)L ⌦ SU(2)R ⌦D

RDM (1,1,3)D in 45D (15,1,1)W in 45W

R1 210R 54R

R2 (10,1,3)C � (1,1,3)R (10,1,3)C � (10,3,1)C � (15,1,1)R

log10(Mint) 8.08(1) 13.664(5)

log10(MGUT) 15.645(7) 15.87(2)

gGUT 0.53055(3) 0.5675(2)
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Figure 4: Running of gauge couplings. Solid (dashed) lines show the case with (without)
DM and additional Higgs bosons. Blue, green, and red lines represent the running of the
U(1), SU(2) and SU(3) gauge couplings, respectively.

whether these models can give appropriate masses for light neutrinos. Next, in Sec. 5.2,
we evaluate proton lifetimes in each model and discuss the testability in future proton
decay experiments. Finally, we compute the abundance of DM produced by the NETDM
mechanism in Sec. 5.3, and predict the reheating temperature after inflation.
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the p ! e+⇡0 mode in each theory, and plot it as a function ofMX/MGUT (MX denotes the
mass of the GUT-scale gauge boson) in Fig. 5. Here, the blue and red solid lines represent
Models I and II, while the blue and red dashed lines represent the models without the DM
and extra Higgs multiplets as given in Table 4, namely Gint = SU(4)C ⌦SU(2)L⌦SU(2)R
and Gint = SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦ D, respectively. The shaded region shows the
current experimental bound, ⌧(p ! e+⇡0) > 1.4⇥ 1034 years [34,35]. We have varied the
heavy gauge boson mass between MGUT/2  MX  2MGUT, which reflects our ignorance
of the GUT scale mass spectrum. From this figure, we see that the existence of DM
and Higgs multiplets produces a large e↵ect on the proton decay lifetime. In particular,
in the case of SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦ D, the predicted lifetime is so small that
the present bound has already excluded the possibility. This conclusion can be evaded,
however, once the DM and R2 Higgs multiplets are included in the theory as they raise
the value of MGUT. Moreover, Model I is now being constrained by the proton decay
experiments. In this case, the inclusion of the DM and Higgs multiplets decreases MGUT.
Future proton decay experiments, such as the Hyper-Kamiokande experiment [36], may
o↵er much improved sensitivities (by about an order of magnitude), with which we can
probe a wide range of parameter space in both models.
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Figure 5: Proton lifetimes as functions of MX/MGUT. Blue solid and red solid lines
represent Model I and Model II, respectively. Blue dashed and red dashed lines represent
the cases for Gint = SU(4)C⌦SU(2)L⌦SU(2)R and Gint = SU(4)C⌦SU(2)L⌦SU(2)R⌦D
when the DM and extra Higgs multiplets are not included. The shaded region shows the
current experimental bound, ⌧(p ! e+⇡0) > 1.4⇥ 1034 years [34,35].
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Figure 8: Reheating temperature as a function of DM mass. Pink band shows the theoret-
ical uncertainty.

around the electroweak scale accounts for the observed DM density with an acceptably
high reheating temperature. For a larger MDM, in both models, the DM relic abundance
can only be explained in the narrow strip region where MDM ' TRH.

6 Lonely Singlet Fermion Dark Matter

In the above discussion, we have assumed that there exists a DM multiplet (as well as
extra Higgs multiplets) above the intermediate scale, and studied how the presence of the
additional fields a↵ect the gauge coupling running in such models. As seen in Sec. 3.2,
these fields can indeed improve the solutions for both the intermediate and GUT scales,
which allow the models to evade the limit from the proton decay experiment and to explain
light neutrino masses via the seesaw mechanism. Before concluding our discussion, we
briefly consider another possibility in this section; that is, we have only a singlet DM
fermion on top of the standard SO(10) setup discussed in Sec. 3.1. In this case, the
DM, of course, cannot a↵ect the gauge coupling running, and thus it does not solve
the problems regarding the low intermediate/GUT scales in the ordinary SO(10) GUT
models. Since there may be another solution to these problems, it is worthwhile studying
this possibility as well.

In fact, we can easily construct such a model by exploiting an appropriate Higgs
field at the GUT scale and fine-tuning its VEV so that only the singlet fermion DM
has a mass much lighter than the GUT scale. For example, let us consider the case of
SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦ D. In this case, the singlet field under the intermediate
gauge interactions, (1,1,1), is contained in a 54 or 210 of SO(10). Since only the 210
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Beyond SO(10): phenomenology of E6

4

FIG. 4: Thermally averaged cross-section at freeze-out (left panel) and present times (right panel) for the Z0

scenarios described in the text. The mass of the Z
0
has been set to 550 GeV.

potentially viable regions at masses of the order of 200 GeV where the tt̄ final state is kinematically
allowed and guarantees a cross-section of the order of the thermal value also at present times.

The analysis of two benchmarks, shown in fig.(5), namely a E6, model with V� = 0.2A� and a
LR model, with mZ0 = 550GeV in both cases, evidence that the GC center excess favors the light
DM region, mostly characterized by annihilation into two bb̄ final states. The contours does not
feature anomalous shapes since we are far from resonances. In the E6 case the contours favor higher
cross-sections since the branching ratio into bb̄ final states is lower with respect to the LR case.

FIG. 5: Contours for the best fit region of the GC excess for the two Z
0
scenarios considered, namely E6, (left

panel) and LR (right panel). The Z
0
mass is fixed to 550 GeV.

5

III. DD ANALYSIS FOR CONCRETE Z
0
REALIZATIONS

For our Z
0
analysis we have considered several concrete realizations [3]. We have first of all consid-

ered two GUT inspired scenarios, labelled as � and  , associated to the following breaking patterns:
SO(10) ! SU(5)⇥U(1)� and E6 ! SO(10)⇥U(1) . We notice in particular that the E6 inspired

scenario features only axial couplings between the Z
0
and SM fermions. In addition we have con-

sidered a string inspired scenario labelled as ⌘ defined as: Z⌘ =
q

3
8Z��

q
5
8Z . We have moreover

considered a LR with the Z
0
arising from SU(2)L⇥SU(2)R⇥U(1)B�L ! SU(2)⇥U(1)Y ⇥U(1)LR.

To these we have finally add a B�L model, mainly referring to a scenario with only vector couplings
between the Z

0
and the SM fermions, and the SSM.

For all these scenarios we have employed the following parametrization of the couplings:

g
0
V

0

f = g2

⇣
✏fL + ✏fR

⌘
, g

0
A

0

f = g2

⇣
✏fL � ✏fR

⌘
(4)

where:

g2 =

r
5

3
g tan ✓W ⇠ 0.46

✏fL,R = ✏̂fL,R/D (5)

The values of ✏̂fL,R and D for the models considered are reported in tab.(I).

�  ⌘ LR B-L SSM

D 2
p
10 2

p
6 2

p
15

p
5/3 1 1

✏̂uL -1 1 -2 -0.109 1/6 1
2 � 2

3 sin2 ✓W

✏̂dL -1 1 -2 -0.109 1/6 � 1
2 + 1

3 sin2 ✓W

✏̂uR 1 -1 2 0.656 1/6 � 2
3 sin2 ✓W

✏̂dR -3 -1 -1 -0.874 1/6 1
3 sin2 ✓W

✏̂⌫L 3 1 1 0.327 -1/2 1
2

✏̂lL 3 1 1 0.327 -1/2 � 1
2 + sin2 ✓W

✏̂eR 1 -1 2 -0.438 -1/2 sin2 ✓W

TABLE I: Table of couplings

These model are already sensitively constrained by Tevatron and LEP2 searches of deviations, with
respect to the SM expectations, on the cross-section of, respectively, dijet and dilepton produc-
tions. These processes are sensitive only to contribution from o↵-shell Z

0
and, thus, the limits are

not a↵ected by an eventual presence of an invisible branching fraction of the Z
0
. The limits are

summarized in tab.II.

For these scenarios we can compute the ratio between the SD and SI component of the DM scattering
cross-section on nucleons. It can be schematically expressed as:

�p
SD

�p
SI

= 3↵2↵SD

↵SI
,

�n
SD

�n
SI

= 3↵2↵SD

↵SI
|2V

0

d + V
0

u

2V 0
u + V

0
d

|2|
A

0

u�
p
u +A

0

d (�
p
d +�p

s)

A0
u�

n
u +A

0
d (�

n
d +�n

s )
|2 (6)
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FIG. 6: Ratio of the SD and SI components of the scattering cross-section of the DM with protons (left panel)

and neutrinos (right panel) for some Z
0
models, as reported in the plot.
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Figure 1. Feynman diagrams contributing to the width of the Z0 boson and the scattering cross section

of the dark matter on a nucleon.

in the galactic halo, i.e. ' 300 km/s so that the energy transferred in such collisions is

below the MeV scale for typical dark matter masses. We can thus integrate out the Z 0

from the Lagrangian (2.1) to get the e↵ective Lagrangian describing interactions between

a � and, say, a proton p,

L
e↵

� g2D
M2

Z0

h
V �
D(2V u

D + V d
D) �̄�µ� p̄�µp (2.3)

+ A�
D(�p

uA
u
D + (�p

d + �p
s)A

d
D)�̄�µ�5� p̄�µ�5p

i
,

with a similar expression for the neutron. Here �p
i is the spin content of the quark i in the

proton, which may be extracted from lepton-proton scattering data. The values we use are

taken from the latest determination of the light quark contributions [20], i.e.

�p
u = 0.842, �p

d = �0.427, �p
s = �0.085. (2.4)

From Eq.(2.3), we can deduce the Lagrangian describing the interaction of DM with

a neutron by isospin symmetry2: 2V u
D + V d

D ! V u
D + 2V d

D and �n
u = �p

d, �n
d = �p

u,

�n
s = �p

s. As already discussed above, the combinations gDV f
D and gDAf

D are fixed in

a given fundamental theory. For illustration, we report in Table I their values in some

popular realizations of Z 0 models, while a more exhaustive list can be found e.g. in [2].

For the sake of concreteness, we will mainly in this paper refer to the so-called sequen-

tial model (noted SSM in the sequel) [1], for which the Z 0 has the same couplings to SM

fermions as the SM Z boson. A possible realization of the SSM appears in constructions

with extra dimensions at the weak scale, but in the present work we merely take it as a

benchmark model. Other realizations like (B-L) or E
6

Z 0 do not change drastically our

conclusion. Having set the Z 0 model, the two parameters left free are the ��Z 0 couplings,

namely V �
D and A�

D. We will show in the next section that V �
D is severely constrained by

2Another description of this formalism can be found in [21].

– 3 –

Exceptional group of order 6: one extra Z’
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the neutrino masses in the triplet versions. In some cases, the initial breaking can
leave U(1)

3R ⇥ U(1)BL unbroken. Realistic SO(10) breaking patterns suggest ↵
in the range 0.7�0.9 (20). An important special case is the � model, which occurs
when SO(10) breaks directly to SU(5) ⇥ U(1)�. This corresponds to Eq. 40 for
 = 1 and sin2 ✓W = 3/8 (which is the value predicted by SU(5) at the unification
scale), leading to ↵ =

p
2/3 ⇠ 0.82.

A generalization of this type of model is based on SU(2)⇥U(1)Y ⇥U(1)
2

, where
Q

2

is a linear combination QY BL = aY + bTBL ⌘ b(zY + TBL), where b 6= 0. It
is convenient to normalize b so that the coupling g

2

is given by Eq. 42, or alter-
natively one can choose b = 1 and take g

2

to be arbitrary. The U(1)
3R⇥U(1)BL

limit in Eq. 40 corresponds to choosing b2z(1 + z) = �3/5 with ↵ ⌘ p
5/3bz.

QY BL is anomaly free for the standard model fermions (including ⌫R) (80). Y
and QY BL are non-orthogonal (i.e.,

P
f YfQY BL

f 6= 0 when summed over a family
of the known left-handed fermions and antifermions), except for the special case
of U(1)

3R⇥U(1)BL, but it could come about, e.g., by kinetic mixing, as discussed
in Section 2.3. The pure B�L model (z = 0) is often studied phenomenologically,
and has the property that the ordinary Higgs doublets do not induce Z�Z 0 mix-
ing. The models in this class have been systematically discussed in (81), including
generalizations with an arbitrary number of ⌫R with nonuniversal charges.

This entire class of models based on T
3R and TBL (or Y and TBL) are perhaps

less interesting in a supersymmetric context, because the two supersymmetric
Higgs doublets Hu,d form a vector pair with T

3R = ±1

2

and TBL = 0. Therefore,
an elementary µ term in Eq. 37 is not forbidden by the extra U(1)0. Similar
di�culties apply to the SM singlet supermultiplets that are needed to break the
U(1)0, since they would most likely be introduced as non-chiral vector pairs to
avoid anomalies. (One could instead give large VEVs to the scalar partners of
the ⌫c, but this would break R-parity and would be challenging for neutrino
phenomenology.)
3.1.3 The E

6

models Many Z 0 studies focus on the two extra U(1)0 s which
occur in the decomposition of the E

6

GUT (21,22,23), i.e., E
6

! SO(10)⇥U(1) 
and SO(10) ! SU(5) ⇥ U(1)�. We consider them only as simple examples of
anomaly-free U(1)0 charges and exotic fields, and do not assume a full underlying
grand unified theory. In E

6

, each family of left-handed fermions is promoted to
a fundamental 27-plet, which decomposes under E

6

! SO(10)! SU(5) as

27! 16 + 10 + 1! (10 + 5

⇤ + 1) + (5 + 5

⇤) + 1, (43)

as shown in Table 2. In addition to the standard model fermions, each 27-plet
contains two standard model singlets, ⌫c and S (which may be charged under the
U(1)0). The ⌫c may be interpreted as the conjugate of the right-handed neutrino.
There is also an exotic color-triplet quark D with charge �1/3 and its conjugate
Dc, both of which are SU(2) singlets, and a pair of color-singlet SU(2)-doublet

exotics, Hu =
✓

H+

u

H0

u

◆
and Hd =

✓
H0

d

H�
d

◆
with YHu,d = ±1/2. Hd transforms

the same way as Hc
u ⌘ eHu, the (tilde) conjugate of Hu under the SM. The exotic

fields are all therefore singlets or non-chiral under the standard model, but may
be chiral under the U(1)0.

The E
6

models can be considered in both non-supersymmetric and supersym-
metric versions. In the supersymmetric case, the scalar partners of the S and
⌫c can develop VEVs to break the U(1)0 symmetry, though the latter (as well
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Table 1: Charges of the left-chiral components of the fermions in the models
based on T

3R and TBL = (B � L)/2. The charges are normalized so that g
2

=q
5

3

g tan ✓W . QLR is a special case of QY BL for b2z(1 + z) = �3/5. ↵ and (b, z)
are free parameters, with ↵ = 1.53 for left-right symmetry and ↵ ⇠ 0.7� 0.9 for
most SO(10) models.

T
3R TBL Y

q
5

3

QLR 1

bQ
Y BL

Q 0 1

6

1

6

� 1

6↵
1

6

(z + 1)
uc

L �1

2

�1

6

�2

3

�↵
2

+ 1

6↵ �2

3

z � 1

6

dc
L

1

2

�1

6

1

3

↵
2

+ 1

6↵
1

3

z � 1

6

LL 0 �1

2

�1

2

1

2↵ �1

2

(z + 1)
e+

L
1

2

1

2

1 ↵
2

� 1

2↵ z + 1

2

⌫c
L �1

2

1

2

0 �↵
2

� 1

2↵
1

2

Table 2: Decomposition of the E
6

fundamental representation of left-handed
fermions 27 under SO(10) and SU(5), and their U(1)�, U(1) , U(1)⌘, inert
U(1)I , neutral-N U(1)N , and secluded sector U(1)S charges. A general model in
this class has charge Q

2

= cos ✓E6Q� + sin ✓E6Q � ✏Y , where ✏ can result from

kinetic mixing, and coupling g
2

=
q

5

3

g tan ✓W �1/2

g , where �g is usually of O(1).

SO(10) SU(5) 2
p

10Q� 2
p

6Q 2
p

15Q⌘ 2QI 2
p

10QN 2
p

15QS

16 10 (u, d, uc, e+) �1 1 �2 0 1 �1/2
5⇤ (dc, ⌫, e�) 3 1 1 �1 2 4

⌫c �5 1 �5 1 0 �5
10 5 (D,Hu) 2 �2 4 0 �2 1

5⇤ (Dc, Hd) �2 �2 1 1 �3 �7/2
1 1 S 0 4 �5 �1 5 5/2

Table 3: Examples of supersymmetric models consistent with minimal SM gauge
unification. n55⇤ is the number of pairs of 5 + 5

⇤. QS is taken to be 1. The free
parameters are QHu ⌘ x,QQ ⌘ y, QD ⌘ z (which only a↵ects the exotics), and
the gauge coupling g

2

. Kinetic mixing can be added. The Q
˜ model is a special

case with axial charges and n55⇤ = 2. Additional SM singlets are not displayed.
The ⌫c charge allows a Dirac ⌫ mass term.

Q55⇤ Q
˜ Q55⇤ Q

˜ 

Q y 1/4 Hu x �1/2
uc �x� y 1/4 Hd �1� x �1/2
dc 1 + x� y 1/4 SD 3/n55⇤ 3/2
L 1� 3y 1/4 Di z �3/4
e+ x + 3y 1/4 Dc

i �3/n55⇤ � z �3/4
⌫c �1� x + 3y 1/4 SL 2/n55⇤ 1
S 1 1 Li

5�n55⇤
4n55⇤

+ x + 3y + 3z/2 �1/2
Lc

i �2/n55⇤ �QLi �1/2

If dark matter is charged under U(1)ψ, 
pure axial γµγ5 coupling to the SM 

particles: only spin-dependent 
interaction. Constraints from direct 

detection becomes very weak. 
Opposite to U(1)B-L which gives pure 

vectorial γµ coupling.

(G. Arcadi, Y. Mambrini, M. Tytgat, B. Zaldivar 2014)
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Abstract

In the absence of low energy supersymmetry, we show that (a) the dark matter particle
alone at the TeV scale can improve gauge coupling unification, raising the unification
scale up to the lower bound imposed by proton decay, and (b) the dark matter stability
can automatically follow from the grand unification symmetry. Within reasonably simple
unified models, a unique candidate satisfying these two properties is singled out: a fermion
isotriplet with zero hypercharge, member of a 45 (or larger) representation of SO(10).
We discuss the phenomenological signatures of this TeV scale fermion, which can be
tested in direct and indirect future dark matter searches. The proton decay rate into
e+π0 is predicted close to the present bound.

1 Introduction

Soon the Large Hadron Collider (LHC) will explore the origin of the electroweak
symmetry breaking and possible new physics at the TeV scale. Implications for the
theory at higher energy scales will certainly be profound. While one Higgs doublet
suffices to account for the spontaneous symmetry breaking and for the present elec-
troweak data, the standard model (SM) alone does not answer several questions. In
particular it does not provide a dark matter (DM) candidate, nor the extra “light”
states required to raise the weak-electromagnetic unification scale, in order to suffi-
ciently suppress the proton decay.

While low energy supersymmetry is an attractive completion of the SM that
could address these issues and be discovered at the LHC, so far supersymmetry has
not been observed at scales as low as expected to fully cure the hierarchy problem,
and it requires additional theoretical assumptions to be viable phenomenologically.
Therefore, even if not solving the hierarchy problem, non-supersymmetric comple-
tions of the SM at the TeV scale should be seriously contemplated to address more
phenomenological issues.

One piece of new physics which is highly motivated at the TeV scale is the DM
particle − it is needed if the DM relic density follows from the thermal freeze-out of its
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