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III. Solar System & Detection  
solar modulation,  

geomagnetic cut-off
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Diffusion Model

• Semi-analytical approach  
e.g. USINE @ lpsc.in2p3.fr/usine  
✅ fast computation 
⛔️ simplified description of the 
interstellar medium  

• Numerical approach 
e.g. GALPROP @ galprop.stanford.edu 
✅ data based description of the 
interstellar medium  
⛔️ very slow
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Diffusion equation becomes solvable assuming a cylindrical geometry of the 
Galaxy with 2 zones: the galactic disc & the diffusive halo

http://lpsc.in2p3.fr/usine
http://galprop.stanford.edu


Parameters and observables

The most important parameters 
are linked to 

• the acceleration mechanisms  
injection spectrum: 

• the propagation mechanisms 
diffusion: 
convection: 
re-acceleration: 

• the geometry of the Galaxy 
diffusive halo size:
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p, He, …

B/C, …

10Be/ 9Be, …
lpsc.in2p3.fr/cosmic-rays-db

http://lpsc.in2p3.fr/cosmic-rays-db
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Constraining propagation 
models

sophisticated propagation models precise experimental data

sophisticated statistical tools

parameters

USINE
AMS

MCMC

observables

6 publications [Putze, Coste, Derome, Donato, Maurin, Perotto, Taillet (2009 - 2014)]

PDF
GreAT @ lpsc.in2p3.fr/greatUSINE @ lpsc.in2p3.fr/usine

http://lpsc.in2p3.fr/usine
http://lpsc.in2p3.fr/great


A. Putze et al.: An MCMC technique to sample transport and source parameters of Galactic cosmic rays. II.
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Fig. 10. Shown are the envelopes of 68% CL (shaded areas) and best-fit (thick lines) ratios for the standard DM II
(rh = 0, red) and for model III (standard and modified DM, blue) in the 1D geometry (based on the B/C + 10Be/9Be
+ 26Al/27Al + 36Cl/Cl constraint). All quantities are IS. The data are demodulated using the approximate procedure
EIS

k = ETOA
k + Φ.

sion/convection/reacceleration). For model II, the size of
rh suddenly jumps to ∼ 100 pc. But for δ ! 0.3, it returns
to the pure diffusion regime, rh decreasing abruptly (to
a non-vanishing value) and L becoming vanishingly small.
In this regime, the thin-disc approximation is no longer
valid and nothing can be said about it. For model III, the
plateau rh ∼ 100 pc is stable for all δ ! 0.2. The under-
dense bubble also stabilises the value of the halo size L.
The way of understanding this trend is as for the stan-
dard DM, but now the flux of the radioactive species reads
N rad

rh (0) ∝ exp(−rh/
√
Kγτ0)/

√
Kγτ0. The weaker depen-

dence of L with δ must be represented by this formula.
We underline that for all best-fit configurations leading to
rh ̸= 0, the improvement is statistically meaningful com-
pared to the case rh = 0.

5.2. Isotopic versus elemental measurements

A similar analysis can be carried out using elemental ra-
tios instead of isotopic ones. As before, the best-fit values
of well-chosen combinations of the transport parameters
{K0, δ, Vc, Va} are left unchanged when radioactive species
are added to the fit (same values as in Fig. 11).
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Fig. 12. Best-fit value of the halo size L as a function of δ
in standard DM, based on a fit on B/C plus a ratio where
a radioactive species is present: B/C+Be/B (black small
symbols), B/C+Al/Mg (blue medium-size symbols), and
B/C+Cl/Ar (pink large symbols). The dashed lines (square
symbols) refer to model II, and the solid lines (circles) refer
to model III.

5.2.1. General dependence of L with δ

For the standard DM (rh = 0), the dependence of the diffu-
sive halo size L on the diffusion slope δ is shown in Fig. 12,
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Which model is the best?

Same results for 

• B/C 
✅ abundant 
✅ elemental separation needed  
[Putze, Derome, Maurin, A&A (2010)] 

• 3He/4He 
✅ very abundant 
⛔️ isotopic separation needed  
[Coste, Derome, Maurin, Putze, A&A (2012)]
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How big is the diffusive halo?
Radioactive secondaries: 

first PDF of L from an MCMC 
analysis  
⛔️ too few precise data  
⛔️ very sensitive to the LISM 
[Putze, Derome, Maurin, A&A (2010)] 

Secondary positrons: 

first direct exclusion of small 
values of L 
✅ precise data available  
⛔️ sensitive to solar modulation  
[Lavalle, Maurin, Putze, PRD (2014)]
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What the primaries tell us…

source slope 2.25 ⩽ ⍺ ⩽ 2.5 for 
diverse propagation models 

source slope ⍺ similar for all 
primaries Z = 1, …, 26 

➞ universality of the injection 
mechanism

8

different propagation 
models

[Putze, Maurin, Donato, A&A (2011)]



What about theoretical 
uncertainties?
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Precise cosmic-ray measurements give small statistical uncertainties, and 
theoretical uncertainties from model ingredients and hypotheses are 

dominating!

Parameter estimation already very tricky in a simple configuration…
[Génolini, Putze, Salati, Serpico, in preparation
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primaries

secondaries

WIMPs

“exotic” 
primaries

Indirect dark matter 
searches
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charged cosmic-ray channels: e+, p̄, …
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Positrons — difficult probes 
for dark matter searches

Well modelled with 

• secondaries: 
✅ diffusion models  
⛔️ uncertainties on propagation 
parameters 

• primaries: 
✅ pulsars, dark matter 
annihilation/decay, acceleration of 
secondaries in sources, …  
⛔️ very large uncertainties  
⛔️ large boost factor needed for 
dark matter interpretation 

but no unique interpretation…
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[Boudaud et al., A&A (2015)]
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Scan over propagation parameters compatible with the B/C ratio

Systematic uncertainties from propagation parameters are dominating!

[Boudaud et al., A&A (2015)]
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Antiprotons — strong 
constraints for dark matter

13 [Adriani et al., PRL (2010)]
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FIG. 1: The antiproton energy spectrum at the top of the payload obtained in this work compared

with contemporary measurements [21–25] and theoretical calculations for a pure secondary pro-

duction of antiprotons during the propagation of cosmic rays in the galaxy. The dotted and dashed

lines indicate the upper and lower limits calculated by Donato et al. [26] for different diffusion mod-

els, including uncertainties on propagation parameters and antiproton production cross-sections,

respectively. The solid line shows the calculation by Ptuskin et al. [27] for the case of a Plain

Diffusion model.

measurements. Figure 3 shows the PAMELA antiproton-to-proton flux ratio compared with

a calculation [14] (dashed line) including both a primary antiproton component from the

annihilation of 180 GeV wino-like neutralinos and secondary antiprotons. This model, based

on the non-thermal production of dark matter in the early universe, was proposed to ex-

plain the high-energy rise in the PAMELA positron fraction [8]. As shown by the dashed

line in Figure 3, a reasonable choice of GALPROP [31] propagation parameters (dashed-

dotted line) allows a good description of PAMELA antiproton data with the inclusion of

the wino-annihilation signal. Given current uncertainties on propagation parameters, this

primary component cannot be ruled out. It has also been suggested that the PAMELA

positron data can be explained without invoking a primary component. This is possible if
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Recent antiproton measurements in very good agreement with a  
 pure secondary origin

But production cross sections are not known at high energies!



Conclusion
• Current propagation models 

suffer from large uncertainties 
on ingredients 
What you get out depends on what 
you put in… 

• More and more precise 
cosmic-ray data will be 
available soon 
Need for better models/ingredients 

• Cosmic rays are 
complementary and  
competitive with collider and 
direct dark matter searches
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Are you hunting for dark matter? 

• Your dark matter candidate 
should reproduce all the 
available data  
➞ global fits  
➞ GAMBIT 2015


