Fishing for new physics decaying to boosted objects The "why" and "how" of boosted jets

Grégory Soyez

IPhT, CEA Saclay

GDR Terascale April 1st 2015

- <u>What</u> do we mean by "boosted jets" Facing a change of paradigm
- Why worry about boosted jets No boost, no future!
- How do we identify boosted objects
 - Run I: an army of tools
 - Run II: Towards surgical tools

What do we mean by a "boosted jet"

concept, importance, main ideas

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 3 / 29

Boosted jets

Object X decaying to hadrons

Object X decaying to hadrons

If $p_t \gg m$, reconstructed as a single jet How to disentangle that from a QCD jet?

What jet do we have here? • a quark?

- a quark?
- a gluon?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

Paradigm shift: a jet can be more than a quark or gluon

Why worry?

what importance, which objects?

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 6 / 29

= 990

Boosted jets

Many applications: (examples)

- 2-pronged decay: $W
 ightarrow q ar{q}, \ H
 ightarrow b ar{b}$
- 3-pronged decay: $t \rightarrow qqb$, $\tilde{\chi} \rightarrow qqq$
- busier combinations: $t\bar{t}H$
- new physics: e.g. R-parity violating $\chi \rightarrow qqq$, boosted tops in SUSY

Boosted jets

Many applications: (examples)

- 2-pronged decay: $W
 ightarrow q ar{q}, \ H
 ightarrow b ar{b}$
- 3-pronged decay: $t \rightarrow qqb$, $\tilde{\chi} \rightarrow qqq$
- busier combinations: $t\bar{t}H$
- new physics: e.g. R-parity violating $\chi \rightarrow qqq$, boosted tops in SUSY

Increasingly important:

- Increasing LHC energy
- Increasing bounds/scales
- More-and-more discussions about yet higher-energy colliders

More and more boosted jets Needs to be under control

How to proceed?

looking at jet substructure

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 8 / 29

ъ

Naive ideas do not work!

Looking at the jet mass is not enough

A lot of activity since 2008

Jet substructure as a new Higgs search channel at the LHC

Jon Butterworth, Adam Davison, Mathieu Rubin, Gavin Salam, 0802.2470

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 10 / 29

ъ.

A lot of activity since 2008

Many tools:

mass drop; filtering, trimming, pruning; soft drop, Y-splitter; N-subjettiness, planar flow, energy correlations, pull; Q-jets, ScJets; shower deconstruction; template methods; Johns Hopkins top tagger, HEPTopTagger, CASubjet tagging; ...

Implementation: Mostly in FastJet, fastjet-contrib and 3rd-party codes See www.fastjet.fr and http://fastjet.hepforge.org/contrib

Two major ideas

Idea 1: Find N = 2, 3, ... hard cores

Works because different splitting

QCD jets: $P(z) \propto 1/z$

- \Rightarrow dominated by soft emissions
- \Rightarrow "single" hard core

Two major ideas

Idea 1:

Works because different splitting

QCD jets: $P(z) \propto 1/z$

- \Rightarrow dominated by soft emissions
- \Rightarrow "single" hard core

Idea 2: Find N = 2, 3, ... hard cores Constrain radiation patterns

Works because different colours

Radiation pattern is different for

- colourless $W \to q\bar{q}$
- coloured $g \rightarrow q\bar{q}$

Two major ideas

Idea 1:

Works because different splitting

QCD jets: $P(z) \propto 1/z$

- \Rightarrow dominated by soft emissions
- \Rightarrow "single" hard core

Idea 2: Find N = 2, 3, ... hard cores Constrain radiation patterns

Works because different colours

Radiation pattern is different for

- colourless $W \rightarrow q\bar{q}$
- coloured $g \rightarrow q\bar{q}$

A few key approaches:

- uncluster the jet into subjets/investigate the clustering history
- use jet shapes (functions of jet constituents),...

Grooming

Fat Jets

One usually work with large-*R* jets ($R \sim 0.8 - 1.5$) \Rightarrow large sensitivity to UE (and pileup)

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 13 / 29

Grooming

Fat Jets

One usually work with large-R jets ($R \sim 0.8 - 1.5$) \Rightarrow large sensitivity to UE (and pileup)

"grooming" techniques reduce sensitivity to soft-and-large-angle

Example 1: Filtering/trimming

- ullet re-cluster the jet with the k_t algorithm, $R=R_{
 m sub}$
- Filtering: keep the n_{filt} hardest subjets

[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08]

• Trimming: keep subjets with $p_t > f_{trim} p_{t,jet}$ [D.Krohn,J.Thaler,L-T.Wang,10]

Methods for finding hard cores

Example 2: (modified) mass-drop tagger ((m)MDT)

- start with a jet clustered with Cambridge/Aachen
- undo the last splitting $j \rightarrow j_1 + j_2$
- if $\max(p_{t1}, p_{t2}) > z_{cut}p_t$, j_1 and j_2 are the 2 hard cores otherwise, continue with the hardest subjet
- Original version also imposed a mass-drop: $\max(m_1, m_2) < \mu m$

[J. Buterworth, A. Davison, M. Rubin, G. Salam, 08; M. Dasgupta, A. Fregoso, S. Marzani, G. Salam, 13]

Methods for finding hard cores

Example 2: (modified) mass-drop tagger ((m)MDT)

- start with a jet clustered with Cambridge/Aachen
- undo the last splitting $j \rightarrow j_1 + j_2$
- if $\max(p_{t1}, p_{t2}) > z_{cut}p_t$, j_1 and j_2 are the 2 hard cores otherwise, continue with the hardest subjet
- Original version also imposed a mass-drop: $\max(m_1, m_2) < \mu m$

[J. Buterworth, A. Davison, M. Rubin, G. Salam, 08; M. Dasgupta, A. Fregoso, S. Marzani, G. Salam, 13]

SoftDrop

Same de-clustering procedure as the mMDT but angular-dependent cut $\max(p_{t1}, p_{t2}) > z_{\rm cut} p_t (\theta_{12}/R)^\beta$

[A.Larkoski,S.Marzani,J.Thaler,GS,14]

Start with the jets in an event

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 15 / 29

This is what they look like with their area

Take the hardest, apply a step of mass-drop

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 15 / 29

Failed... iterate the mass drop

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 15 / 29

Good... Now recluster what is left with a smaller R

And keep only the 3 hardest

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 15 / 29

[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08]

This is the kind of Higgs reconstruction one would get

Example 3: *N*-subjettiness

Given N directions in a jet (axes) [\neq options, e.g. k_t subjets or minimal]

$$\tau_{N}^{(\beta)} = \frac{1}{p_{T} R^{\beta}} \sum_{i \in jet} p_{t,i} \min(\theta_{i,a_{1}}^{\beta}, \dots, \theta_{i,a_{n}}^{\beta})$$

- Measure of the radiation from N prongs
- $\tau_{N,N-1} = \tau_N / \tau_{N-1}$ is a good variable for *N*-prong v. QCD

Example 3: N-subjettiness

Given N directions in a jet (axes) [\neq options, e.g. k_t subjets or minimal]

$$\tau_{N}^{(\beta)} = \frac{1}{\rho_{T} R^{\beta}} \sum_{i \in jet} \rho_{t,i} \min(\theta_{i,a_{1}}^{\beta}, \dots, \theta_{i,a_{n}}^{\beta})$$

- Measure of the radiation from N prongs
- $\tau_{N,N-1} = \tau_N / \tau_{N-1}$ is a good variable for N-prong v. QCD

In practice

Tools are

- developed/tested on Monte-Carlo simulations
- validated at the LHC (QCD backgrounds)

Example 1: Monte Carlo v. data

Trimming

Mass-drop+filtering

Ldt = 4.7 fb⁻¹, (s = 7 Te)

250 300

Jet mass [GeV]

350
("Groomed" mass)/(plain mass)

Example 1: Monte Carlo v. data

N-subjettiness τ_{32}

trimming+ τ_{32}

= 900

Example 1: Monte Carlo v. data

N-subjettiness τ_{32}

trimming+ τ_{32}

= 900

In a nutshell

- decent agreement between data and Monte-Carlo
- but some differences are observed

Example 2: top tagging MC study

[Boost 2011 proceedings]

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 21 / 29

Finding *N* prongs works

Constraining radiation works

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 22 / 29,

Finding *N* prongs works

Constraining radiation works

Why not combining the two?

... or not?

[Boost 2013 WG]

ъ.

W v. q jets: combination of "2-core finder" + "radiation constraint"

... or not?

[Boost 2013 WG]

W v. q jets: combination of "2-core finder" + "radiation constraint"

- Combination largely helps
- details not so obvious

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 23 / 29

STOP and think

can we stop blindly running Monte-Carlo and understand things better (from first-principle QCD)?

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Idea

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Analytic/first-principle tools have a larege potential

- Understand the underlying physics
- Infer how to improve things further
- provide robust theory uncertainties (competition with performance?)

Idea

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Analytic/first-principle tools have a larege potential

- Understand the underlying physics
- Infer how to improve things further
- provide robust theory uncertainties (competition with performance?)

Requires QCD techniques

•
$$\rho = m/(p_t R) \ll 1 \Rightarrow$$
 we get $\alpha_S \log^{(2)}(1/\rho)$
 \Rightarrow need resummation

- matching with fixed-order for precision
- some nice QCD structures around the corner

Example 1:: the jet mass

Can reach high precision

Z+jet, R=0.6, p_{TJ} > 200 GeV

ъ

Monte-Carlo v. analytic

[M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

First analytic understanding of jet substructure:

Similar behaviour at large mass/small boost (region tested so far)
Significant differences at larger boost

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 27 / 29

• Boosted jets is an emerging field

- more and more important with higher energy/bounds/scales
- relevant for Higgs and new physics searches

• Many tools validated at Run I

- Many methods and tools
- Based on a few physics ideas
- MC/Run-I data validation

• Exciting future for Run II and beyond

- Existing tools will be used for searches in Run II
- First-principle understanding has a large potential for more surprises

Tools: who? where?

Tool	Who ¹	Where
Mass-Drop	†Butterworth, Davison, Rubin, Salam	fj::MassDropTagger
	†Dasgupta, Fregoso, Marzani, Salam	fj::contrib::ModifiedMassDropTagger
Filtering	†Butterworth, Davison, Rubin, Salam	fj::Filter
Trimming	†Krohn, Thaler, Wang	fj::Filter
Pruning	†Ellis, Vermilion, Walsh	fj::Pruner
SoftDrop	†Larkoski, Marzani, Soyez, Thaler	fj::contrib::SoftDrop
N-subjettiness	†Thaler, Van Tilburg, Vermilion, Wilkinson	fj::contrib::Nsubjettiness
	†Jihun Kim	fj::RestFrameNSubjettinessTagger
Energy correlations	†Larkoski,Salam,Thaler	fj::contrib::EnergyCorrelator
Variable <i>R</i>	†Krohn, Thaler, Wang	fj::contrib::VariableR
ScJets	†Tseng, Evans	fj::contrib::VariableR
Johns Hopkins top tag	†Kaplan, Rehermann, Schwartz, Tweedie	fj::JHTopTagger
Jets without jets	†Bertolini, Chan, Thaler	fj::contrib::
CASubjet tagging	†Salam	fj::CASubJetTagger
Y-splitter	†Butterworth, Cox, Forshaw	fj::ClusterSequence::exclusive_subdmerge()
Planar flow	†Almeida, Lee, Perez, Sterman, Sung, Virzi	3 rd party
Pull	†Gallicchio, Schwartz	3 rd party
Q-jets	†Ellis, Hornig, Krohn, Roy and Schwartz	3 rd party
HEPTopTagger	†Plehn, Salam, Spannowsky, Takeuchi	3 rd party
TemplateTagger	†Backovic, Juknevic, Perez	3 rd party
shower deconstruction	†Soper, Spannowsky	3 rd party

¹References are incomplete

= 900

Backup slides

= 990

$$\frac{1}{\sigma}\frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$

• We focus on small-R, $p_t R \gg m$

$$\frac{1}{\sigma}\frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \, \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2) \\ \approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \, \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$

• We focus on small-R,
$$p_t R \gg m$$

•
$$P(z) = 2C_R/z$$
 up to subleading (log) corrections

• (1-z) only need to power (of $m/(p_t R)$) corrections

$$\frac{1}{\sigma} \frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$
$$\approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$
$$\approx \frac{\alpha_s C_R}{\pi} \frac{1}{m^2} \log(p_t^2 R^2 / m^2)$$

• We focus on small-R, $p_t R \gg m$

- $P(z) = 2C_R/z$ up to subleading (log) corrections
- (1-z) only need to power (of $m/(p_t R)$) corrections
- we get a logarithmic enhancement

$$\frac{1}{\sigma} \frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$
$$\approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$
$$\approx \frac{\alpha_s C_R}{\pi} \frac{1}{m^2} \log(p_t^2 R^2 / m^2)$$

- We focus on small-R, $p_t R \gg m$
- $P(z) = 2C_R/z$ up to subleading (log) corrections
- (1-z) only need to power (of $m/(p_t R)$) corrections
- we get a logarithmic enhancement
- Or, for the integrated distribution, using $ho = m^2/(p_t^2 R^2)$

$$P_1(>\rho) = \int_{\rho}^{1} dx \frac{1}{\sigma} \frac{d\sigma}{dx} = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

$$P_1(>
ho)=lpha_s C_R\pi \,rac{1}{2}\log^2(1/
ho)$$

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2 R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative!

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2 R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2 R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \left[\Theta(m_{12...n}^2 < \rho) + \text{virtual}\right]$$

• "virtual" includes any number of the *n* gluons being virtual

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2 R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \left[\Theta(m_{12...n}^2 < \rho) + \text{virtual}\right]$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \prod_{i=1}^{n} \left[\Theta(z_i\theta_i^2 < \rho R^2) - 1\right]$$

• "virtual" includes any number of the *n* gluons being virtual

Leading term: independent emissions

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2 R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \left[\Theta(m_{12...n}^2 < \rho) + \text{virtual}\right]$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \prod_{i=1}^{n} \left[\Theta(z_i\theta_i^2 < \rho R^2) - 1\right]$$
$$= \exp\left[-P_1(>\rho)\right]$$

- "virtual" includes any number of the *n* gluons being virtual
- Leading term: independent emissions
- Sudakov exponentiation

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 3 / 13

Resummation in QCD

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

Leading log (LL)

Resums double logs
$$(\alpha_s \log^2(1/\nu))^n = (\alpha_s L^2)^n$$
:

$$P(\rho)\right]$$

Note: including running-coupling corrections: $P_1 = \sum_{k=1}^{n} (\alpha_s L)^k L$

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

Leading log (LL)

Resums double logs $(\alpha_s \log^2(1/\nu))^n = (\alpha_s L^2)^n$:

 $P(<v) = \exp\left[-P_1(>\rho)\right]$

Note: including running-coupling corrections: $P_1 = \sum_{k=1}^{n} (\alpha_s L)^k L$

Physics idea

- Remember: (i) independent emissions, (ii) real and virtual emissions
- emissions "smaller" than v: do not contribute: real and virtual cancel
- emissions "larger" than v: real are vetoed

 \Rightarrow we are left with virtuals(=-real)

Next-to-leading log (NLL)

$$P(< v) = \exp\left[-g_1(\alpha_s L)L - g_2(\alpha_s L)\right]$$

• g1 includes double logs (with running coupling)

- g₂ includes single logs
 - Finite piece in P(z)
 - Multiple (not independent) emissions contributing to v
 - 2-loop running coupling (+ scheme dependence)
 - Nasty non-global logs (out-of-jet emissions emitting back in)
- Can be matched to a fixed-order calculation

A few plots to illustrate what is going on

matching LO fixed-order with NLL resummation

Z+jet, R=1.0, p_{T,J} > 200 GeV

A few plots to illustrate what is going on

Comparison with parton shower

Z+jet, R=0.6, p_{TJ} > 200 GeV

A few plots to illustrate what is going on

Including hadronisation

Z+jet, R=0.6, p_{TJ} > 200 GeV

same approach for jet-substructure tools

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 9 / 13

Monte-Carlo v. analytic

[M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

First analytic understanding of jet substructure:

Similar behaviour at large mass/small boost (region tested so far)
Significant differences at larger boost

Grégory Soyez (IPhT, CEA Saclay) Fishing for new physics decaying to boosted c GDR TerascaleApril 1st 2015 10 / 13
- Boosted limit: $p_t \gg m$ or $ho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_{1}(>\rho) = \frac{\alpha_{s}C_{F}}{\pi} \int \frac{d\theta^{2}}{\theta^{2}} dz P_{gq}(z) \underbrace{\Theta(z > z_{cut})}_{sym. cut} \underbrace{\Theta(z(1-z)\theta^{2} > \rho R^{2})}_{mass}$$

= 900

- Boosted limit: $p_t \gg m$ or $ho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_{1}(>\rho) = \frac{\alpha_{s}C_{F}}{\pi} \int \frac{d\theta^{2}}{\theta^{2}} dz P_{gq}(z) \underbrace{\Theta(z > z_{cut})}_{sym. cut} \underbrace{\Theta(z(1-z)\theta^{2} > \rho R^{2})}_{mass}$$

• Focus on logarithmically enhanced terms

$${\cal P}_1(>
ho) = rac{lpha_{s} {\cal C}_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

- Boosted limit: $p_t \gg m$ or $ho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_{1}(>\rho) = \frac{\alpha_{s}C_{F}}{\pi} \int \frac{d\theta^{2}}{\theta^{2}} dz P_{gq}(z) \underbrace{\Theta(z > z_{cut})}_{sym. cut} \underbrace{\Theta(z(1-z)\theta^{2} > \rho R^{2})}_{mass}$$

• Focus on logarithmically enhanced terms

$$P_1(>
ho) = rac{lpha_s \mathcal{C}_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

• All-order resummation: exponentiation!

$${\sf P}_{\sf all \ orders}(<
ho) = \exp\left[-{\sf P}_1(>
ho)
ight]$$

- Boosted limit: $p_t \gg m$ or $ho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_{1}(>\rho) = \frac{\alpha_{s}C_{F}}{\pi} \int \frac{d\theta^{2}}{\theta^{2}} dz P_{gq}(z) \underbrace{\Theta(z > z_{cut})}_{sym. cut} \underbrace{\Theta(z(1-z)\theta^{2} > \rho R^{2})}_{mass}$$

• Focus on logarithmically enhanced terms

$$P_1(>
ho) = rac{lpha_s C_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

• All-order resummation: exponentiation!

$$P_{\text{all orders}}(<
ho) = \exp\left[-P_1(>
ho)
ight]$$

• single log in ρ !

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!
- Absence of problematic non-global logs

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!
- Absence of problematic non-global logs
- Non-perturbative corrections using similar techniques than previously

Analytic example: extra notes

• Trimming:

- Same as mass-drop for $ho \geq f_{
 m filt}(R_{
 m filt}/R)^2$
- double log behaviour (log $^2(1/
 ho)$ of plain jet mass for $ho < f_{
 m filt}(R_{
 m filt}/R)^2$

Analytic example: extra notes

• Trimming:

- Same as mass-drop for $\rho \geq f_{\rm filt} (R_{\rm filt}/R)^2$
- double log behaviour (log $^2(1/
 ho)$ of plain jet mass for $ho < f_{
 m filt}(R_{
 m filt}/R)^2$
- SoftDrop: essentially the same as mMDT but with double logs

Analytic example: extra notes

• Trimming:

- Same as mass-drop for $\rho \geq f_{\rm filt} (R_{\rm filt}/R)^2$
- double log behaviour (log $^2(1/
 ho)$ of plain jet mass for $ho < f_{
 m filt}(R_{
 m filt}/R)^2$
- SoftDrop: essentially the same as mMDT but with double logs

Stay tuned

First-principle understanding of jet substructure

- is still a young field but looks promising
- allows to understand what is going on
- allows control over th. uncertainties
- allows to introduce new, better, tools