Precision flavor physics:

Recent measurements of the CKM angle γ at LHCb

Moritz Karbach moritz.karbach@cern.ch

Particle Physics Seminar LPNHE 28.01.2015

Moritz Karbach

german, Geneva

• studied in Dortmund and Hamburg (DESY), Germany

- 2009 PhD at the Babar experiment (SLAC, California, USA)
- joined LHCb as Postdoc
- since 2012 CERN research fellow

Responsibilities

CV

- LHCb Physics Convener of working group studying CKM angle γ
- Dep. Project Leader for the LHCb Outer Tracker
- Organizer of the LHCb Masterclasses

Topics

- LHCb γ programme (including the final combination)
- The measurement of γ in $B_s \rightarrow D_s K$ decays

LHC, CERN, Geneva

CMS

pp collisions at 7-8 TeV Long Shutdown 1: 2013-2015 then: 13-14 TeV

ALICE

ATLA

CERN Prévessin

The LHCb Detector

1 Miles

6

THE A

23 sep 2010 Run 79646

19:49:24 Event 143858637

Outer Tracker

1

Part +

4

N. Tuning (10)

LHCb

- one arm forward spectrometer
- b pair production angles strongly correlated
- covers $1.9 < \eta < 4.9$
- 100'000 bb pairs produced per second (10⁴ x B factories)

 $\sigma(bar{b}) = 284 \pm 53\mu \mathrm{b}$ [PLB 694 (2010) 209] $\sigma(car{c}) pprox 20 imes \sigma(bar{b})$ [LHCb-CONF-2010-013]

• particle identification by two RICH detectors

LPNHE Paris, January 2015

CP violation

- Matter/Antimatter, baryon genesis
- CP violation is one crucial ingredient (Sacharov)
- The CKM matrix is the one place in the SM where there is CPV

CP violation

- Matter/Antimatter, baryon genesis
- CP violation is one crucial ingredient (Sacharov)
- The CKM matrix is the one place in the SM where there is CPV

CP violation

- Matter/Antimatter, baryon genesis
- CP violation is one crucial ingredient (Sacharov)
- The CKM matrix is the one place in the SM where there is CPV

CP asymmetry in B \rightarrow KK π in **selected kinematic** range [LHCb-CONF-2012-028]

CP Violation in the SM: CKM matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

flavor eigenstates

mass eigenstates

Cabibbo Kobayashi Maskawa

matrix elements determine transition probabilities:

CKM matrix

Unitarity condition: $V^{\dagger}V = 1$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Can be represented as a triangle in the complex plane.

Area of the triangle corresponds to the **size of CP violation** in the Standard Model (Jarlskog-Parameter).

CKM angle γ

This is the *least well known* angle of the unitarity triangle.

"combined y measurements"

$$\gamma = (73.2^{+6.3}_{-7.0})^{\circ}$$

CKMfitter CKM2014

"γ meas. not in triangle fit"

$$\gamma = (66.4^{+1.3}_{-3.3})^{\circ}$$

CKMfitter Moriond 2014

LPNHE Paris, January 2015

- B_s mesons, neutral
- can transition into its own anti-particle (mixing)

- this introduces a weak mixing phase $2\beta_s$
- the mixing phase could (have been...) easily affected by new physics!

LPNHE Paris, January 2015

Phys. Rev. D89 (2014) 033016, arXiv:1309.2293.

New Physics in B mixing?

• Example: model independent analysis of the room for new physics in meson mixing (Ligeti et al. 2013):

Phys. Rev. D89 (2014) 033016, arXiv:1309.2293.

New Physics in B mixing?

• Example: model independent analysis of the room for new physics in meson mixing (Ligeti et al. 2013):

the ultimate test

"the nightmare"

"the dream"

the ultimate test

LPNHE Paris, January 2015

γ is known very well

- γ can be determined entirely from **tree decays**.
 - this is a unique property among all CP violation parameters
 - hadronic parameters can all be determined from the data
 - negligible theoretical uncertainty (Zupan and Brod 2013):

$$\delta \gamma / \gamma \approx \mathcal{O}(10^{-7})$$
 JHEP 1401 (2014) 051,
arXiv:1308.5663.

- γ can probe for new physics at extremely **high energy scales** (Zupan)
 - (N)MFV new physics scenarios: ~O(10² TeV)
 - gen. FV new physics scenarios: $\sim O(10^3 \text{ TeV})$

γ is **not** known very well

it is quite challenging to measure!

• The decay rates are small.

 ${\rm BR}(B^- \to DK^-, D \to \pi K) \approx 2 \times 10^{-7}$

- Low interference effects of typically 10%.
- Fully hadronic decays hard to trigger on.
- Many channels contain a K_s in the final state low efficiency.
- Many channels contain a π^0 in the final state very challenging at LHCb.
- Many decay channels involved.
- Many observables statistically challenging.

First^(*) method to measure γ

^(*) of this talk

first method to measure γ

We need to reconstruct the D/\overline{D} meson in a final state accessible to both to achieve interference.

LPNHE Paris, January 2015

first method to measure γ

Depending on the final state f_{D} the method is called:

"GLW"

Gronau, London, Wyler (1991)

Phys. Lett. B253 (1991) 483 Phys. Lett. B265 (1991) 172

"ADS"

Atwood, Dunietz, Soni (1997, 2001)

Phys. Rev. D63 (2001) 036005 Phys. Rev. Lett. 78 (1997) 3257

LPNHE Paris, January 2015

 $B \rightarrow D(K\pi)h$: ADS favored mode

Phys. Lett. B712 (2012) 203, arXiv:1203.3662.

$B \rightarrow D(\pi K)K$: ADS suppressed mode

$$\mathcal{B}(B^{\pm} \to D_{ADS}K^{\pm}) \approx 2 \cdot 10^{-7} \qquad (!!)$$

 $A_{CP} = -0.520 \pm 0.150 \pm 0.021$

Phys. Lett. B712 (2012) 203, arXiv:1203.3662.

first method to measure γ

- Define observables as **yield ratios** (many systematics cancel).
- Charge **asymmetries**:

$$A_{h}^{f} = \frac{\Gamma(B^{-} \to [f]_{D}h^{-}) - \Gamma(B^{+} \to [f]_{D}h^{+})}{\Gamma(B^{-} \to [f]_{D}h^{-}) + \Gamma(B^{+} \to [f]_{D}h^{+})}$$

• **Kaon/pion** ratio:

$$R^f_{K/\pi} = \frac{\Gamma(B^{\pm} \to [f]_D K^{\pm})}{\Gamma(B^{\pm} \to [f]_D \pi^{\pm})}$$

Form a system of equations. Need more observables than parameters!

- \rightarrow many different D decays
- **Suppressed/favored** decay ratio (2-body example):

$$R_{h}^{\pm} = \frac{\Gamma(B^{\pm} \to [\pi^{\pm}K^{\mp}]_{D}h^{\pm})}{\Gamma(B^{\pm} \to [K^{\pm}\pi^{\mp}]_{D}h^{\pm})}$$
$$= r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\pm\gamma + \delta_{B} + \delta_{D})$$
strong phase diff

LPNHE Paris, January 2015

first method to measure γ

Second method to measure γ

Giri, Grossman, Soffer, Zupan, hep-ph/0303187; Bondar 2002 (unpublished)

second method: "GGSZ"

- Idea: perform an GLW/ADS type analysis in every bin of the D decay phase space
- GGSZ uses $B \rightarrow DK$ followed by self-conjugate three-body final states

$$D^0 \to K^0_S \pi^- \pi^+ \qquad D^0 \to K^0_S K^- K^+$$

- Most precise at B-factories.
- Observables: the unbiased "cartesian coordinates" $x_{\pm} = r_B \cos(\delta_B \pm \gamma) \qquad y_{\pm} = r_B \sin(\delta_B \pm \gamma)$
- Resonance-Model-independent analysis:

$$N_{\pm i}^{+} = h_{B^{+}} \begin{bmatrix} K_{\mp i} + (x_{+}^{2} + y_{+}^{2})K_{\pm i} + 2\sqrt{K_{i}K_{-i}}(x_{+}c_{\pm i} \mp y_{+}s_{\pm i}) \end{bmatrix}$$

$$N_{\pm i}^{-} = h_{B^{-}} \begin{bmatrix} K_{\pm i} + (x_{-}^{2} + y_{-}^{2})K_{\mp i} + 2\sqrt{K_{i}K_{-i}}(x_{-}c_{\pm i} \pm y_{-}s_{\pm i}) \end{bmatrix}$$

LPNHE Paris, January 2015

second method: "GGSZ"

JHEP 1410 (2014) 97, arXiv:1408.2748.

K_s reconstruction

K_s reconstruction

K_s reconstruction

K_s reconstruction

second method: "GGSZ"

 $K_{\rm S}^0\pi^+\pi^-$ data (~ 2600 candidates):

 $m_{\pm}^2 \equiv m^2 (K_S^0 \pi^{\pm})$

JHEP 1410 (2014) 97, arXiv:1408.2748.

second method: "GGSZ"

 $K_{\rm S}^0\pi^+\pi^-$ data (~ 2600 candidates):

JHEP 1410 (2014) 97, arXiv:1408.2748.

second method: "GGSZ"

Third method to measure $\boldsymbol{\gamma}$

Using charged-particle final states, interference is achieved through **mixing**.

Phys. Lett. B387 (1996) 361, arXiv:hep-ph/9605221.

B-factories performed such measurements with $B^0 \rightarrow D^+ \pi^-$, constraining sin(2 β + γ)

- B_{d} is much better suited than B_{d} !
- expected large interference effects of $\sim 40\%$
- finite decay width difference adds sensitivity: $\Delta \Gamma_{s} = 0.091 \pm 0.011 \text{ ps}^{-1} \text{ (HFAG fall 2012)}$
- It is still a pure, clean tree decay. ullet
- **Only possible at LHCb:**
 - B_s statistics:
 - fully hadronic:
 - time resolution:
 - flavor tagging:

- large b-quark production cross section
 - full real-time reconstruction on trigger level
- $\sigma(t) \sim 50 \mathrm{fs}$
 - distinguish B_s from anti-B_s (tagging power $\sim 5\%$)

flavor tagging

 $\varepsilon_{\text{eff}} = 5.07\% \text{ (for } B_s \to D_s K)$

 $\sigma \propto 1/\sqrt{\varepsilon_{\rm eff}}$

LPNHE Paris, January 2015

each has their own time dependence ...

$$\frac{d\Gamma_{B_{s}^{0} \to f}(t)}{dt \, e^{-\Gamma_{s}t}} = \frac{1}{2} |A_{f}|^{2} (1 + |\lambda_{f}|^{2}) \begin{bmatrix} \cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{f} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \\ + C_{f} \cos\left(\Delta m_{s}t\right) + S_{f} \sin\left(\Delta m_{s}t\right) \end{bmatrix}$$

$$(1)$$

$$\frac{d\Gamma_{\bar{B}_{s}^{0} \to f}(t)}{dt \, e^{-\Gamma_{s}t}} = \frac{1}{2} |A_{f}|^{2} \left|\frac{p}{q}\right|^{2} (1 + |\lambda_{f}|^{2}) \begin{bmatrix} \cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{f} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \\ - C_{f} \cos\left(\Delta m_{s}t\right) + S_{f} \sin\left(\Delta m_{s}t\right) \end{bmatrix}$$

$$(2)$$

$$\frac{d\Gamma_{\bar{B}_{s}^{0} \to \bar{f}}(t)}{dt \, e^{-\Gamma_{s}t}} = \frac{1}{2} |\bar{A}_{\bar{f}}|^{2} (1 + |\bar{\lambda}_{\bar{f}}|^{2}) \begin{bmatrix} \cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{\bar{f}} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \\ + C_{\bar{f}} \cos\left(\Delta m_{s}t\right) + S_{\bar{f}} \sin\left(\Delta m_{s}t\right) \end{bmatrix}$$

$$(3)$$

$$\frac{d\Gamma_{B_{s}^{0} \to \bar{f}}(t)}{dt \, e^{-\Gamma_{s}t}} = \frac{1}{2} |\bar{A}_{\bar{f}}|^{2} \left|\frac{q}{p}\right|^{2} (1 + |\bar{\lambda}_{\bar{f}}|^{2}) \\ - C_{\bar{f}} \cos\left(\Delta m_{s}t\right) + S_{\bar{f}} \sin\left(\Delta m_{s}t\right) \end{bmatrix}$$

$$(3)$$

$$(4)$$

LPNHE Paris, January 2015

Assuming the Bs mixing phase to be (LHCb, arXiv:1304.2600) $\phi_s = 0.01 \pm 0.07 \text{ (stat)} \pm 0.01 \text{ (syst)} \text{ rad}$

we constrain γ (arXiv:1407.6127):

Combining all LHCb tree-level γ measurements

γ combination

Two combinations:

 $\begin{array}{ll} \mbox{robust} & B \rightarrow DK\mbox{-like} \\ \mbox{full} & B \rightarrow DK\mbox{-like and } B \rightarrow D\pi \end{array}$

Inputs:

►
$$B^+ \rightarrow Dh^+$$
, $D \rightarrow hh$, GLW/ADS, 1 fb⁻¹ 1203.3662

► $B^+ \to Dh^+$, $D \to K\pi\pi\pi$, ADS, 1 fb⁻¹ 1303.4646

▶ updated: $B^+ \rightarrow DK^+$, $D \rightarrow K_s^0 hh$, model-ind. GGSZ, 3 fb⁻¹ 1408.2748

▶ new:
$$B^+ \to DK^+$$
, $D \to K^0_{\rm s} K \pi$, GLS, 3 fb⁻¹ 1402.2982

▶ new:
$$B^0 \to D^0 K^{*0}$$
, $D \to hh$, GLW/ADS, 3 fb⁻¹ 1407.8136

▶ new:
$$B_s^0 \to D_s^{\mp} K^{\pm}$$
, 1 fb⁻¹ | 1407.6127

γ combination

on the way to the degree precision

- We add another channel: $B \rightarrow D^0 \pi$, "full combination"
- Less sensitivity to γ , but larger statistics
- A fluctuation causes much increased apparent sensitivity, and highly non Gaussian behavior to be interpreted with care!

LPNHE Paris, January 2

on the way to the degree precision

- The effect of D^0 mixing does affect the determination of γ .
- Already accounted for in the LHCb combination!
- Next up: also K⁰ mix ...

$$\Delta\approx \sqrt{x_D^2+y_D^2}/r_B$$

Figure: LHCb D^0 decay time acceptance for $B^+ \rightarrow DK^+$, $D \rightarrow hh$.

0.2

0.3

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

γ combination

Table: Summary of results for γ from the *B* factories BaBar and Belle, and from LHCb, and combiners. Errors correspond to 68% confidence or credibility.

experiment	result	date
BaBar	$(69^{+17}_{-16})^{\circ}$	Jan 2013
Belle	$(68^{+15}_{-14})^{\circ}$	Jan 2013
LHCb 3 fb ^{-1} prelim.	$(67 \pm 12)^{\circ}$	Apr 2013
LHCb 1fb^{-1}	$(72.6^{+9.7}_{-17.2})^{\circ}$	Aug 2013
LHCb 3 fb ^{-1} prelim.	$(72.9^{+9.2}_{-9.9})^{\circ}$	Sep 2014
UTfit	$(68.3 \pm 7.5)^{\circ}$	post Moriond 2014
CKMfitter	$(70.0^{+7.7}_{-9.0})^{\circ}$	Moriond / Jun 2014
CKMfitter	$(73.2^{+6.3}_{-7.0})^{\circ}$	Sep 2014

Outlook

Updates of the existing

Many inputs yet to be updated to 3 fb⁻¹:

B⁺ → Dh⁺, D → hh, GLW/ADS 1 fb⁻¹ 1203.3662
B⁺ → Dh⁺, D → Kπππ, ADS 1 fb⁻¹ 1303.4646
updated: B⁺ → DK⁺, D → K⁰_shh, model-ind. GGSZ, 3 fb⁻¹ 1408.2748
new: B⁺ → DK⁺, D → K⁰_sKπ, GLS, 3 fb⁻¹ 1402.2982
new: B⁰ → D⁰K^{*0}, D → hh, GLW/ADS, 3 fb⁻¹ 1407.8136
new: B⁰_s → D[∓]_sK[±], 1 fb⁻¹ 1407.6127

More channels to be added

There are many more possibilities:

$B^+ \to Dh^+, D \to K\pi\pi^0$	ADS
$B^+ \to Dh^+, D \to \pi\pi\pi^0$	GLW
$B^+ \to Dh^+, D \to KK\pi\pi$	GGSZ
$B^0 \to DK^{*0}, D \to Khh$	GGSZ
$B^+ \to DK\pi\pi, D \to hh, Khh$	GLW/ADS/GGSZ

. . .

A new method

- Idea: analyze the B⁰ Dalitz plot in $B^0 \rightarrow D^0 K \pi$
- Gershon, Williams [arXiv:0909.1495]
- This resolves ambiguities!
- A 10deg error on γ seems not unreasonable! (Dalitz model unknown).

 $B^0 \rightarrow D^0 K^{*0} \rightarrow D^0 K \pi$ already contributes now!

A new method

- Idea: analyze the B⁰ Dalitz plot in $B^0 \rightarrow D^0 K \pi$
- Gershon, Williams [arXiv:0909.1495]
- This resolves ambiguities!
- A 10deg error on γ seems not unreasonable! (Dalitz model unknown).

 $B^0 \rightarrow D^0 K^{*0} \rightarrow D^0 K \pi$ already contributes now!

LPNHE Paris, January 2015

LHCb Run2 expectations

Table 28: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the expected sensitivity is given for the integrated luminosity accumulated by the end of LHC Run 1, by 2018 (assuming 5 fb^{-1} recorded during Run 2) and for the LHCb Upgrade (50 fb^{-1}). An estimate of the theoretical uncertainty is also given – this and the potential sources of systematic uncertainty are discussed in the text.

	Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
🙂 🙂 (🙂	B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.050	0.025	0.009	~ 0.003
© Ò		$\phi_s(B^0_s \to J/\psi f_0(980)) \text{ (rad)}$	0.068	0.035	0.012	~ 0.01
\odot		$A_{\rm sl}(B_s^0)$ (10 ⁻³)	2.8	1.4	0.5	0.03
\odot \odot	Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.023	0.02
\odot	penguin	$\phi_s^{\text{eff}}(B^0_s \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.029	< 0.02
\odot		$2\beta^{\text{eff}}(B^0 \to \phi K^0_S) \text{ (rad)}$	0.30	0.20	0.04	0.02
	Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	0.20	0.13	0.030	< 0.01
	currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	5%	3.2%	0.8%	0.2~%
	Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.04	0.020	0.007	0.02
	penguin	$q_0^2 A_{FB}(B^0 \rightarrow K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
		$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
		$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)/\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
	Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) (10^{-9})$	1.0	0.5	0.19	0.3
	penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
⊙ (⊙ ⊙	Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	1.1°	negligible
) 😳	triangle	$\gamma(B_s^0 \rightarrow D_s^{\mp} K^{\pm})$	17°	11°	2.4°	negligible
○ (○ ○)	angles	$\beta(B^0 \to J/\psi K_S^0)$	1.7°	0.8°	0.31°	negligible
	Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.5	-
	$C\!P$ violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.12	-

Smileys indicate "on trackness", added by Tim Gershon (LHCb Implications Workshop Oct 2014)

LHCb Run2 expectations

Table 28: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the expected sensitivity is given for the integrated luminosity accumulated by the end of LHC Run 1, by 2018 (assuming 5 fb^{-1} recorded during Run 2) and for the LHCb Upgrade (50 fb^{-1}). An estimate of the theoretical uncertainty is also given – this and the potential sources of systematic uncertainty are discussed in the text.

	Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
🙂 🙂 (😳	B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.050	0.025	0.009	~ 0.003
😳 😳		$\phi_s(B_s^0 \to J/\psi \ f_0(980))$ (rad)	0.068	0.035	0.012	~ 0.01
\odot		$A_{\rm sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
\odot \odot	Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.023	0.02
\odot	penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.029	< 0.02
\odot		$2\beta^{\text{eff}}(B^0 \to \phi K^0_S) \text{ (rad)}$	0.30	0.20	0.04	0.02
	Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	0.20	0.13	0.030	< 0.01
	currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	5%	3.2%	0.8%	0.2~%
	Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.04	0.020	0.007	0.02
	penguin	$q_0^2 A_{FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
		$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
		$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)/\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
	Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
	penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0 \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
🙂 (😳 😳	Unitarity	$\gamma(B \rightarrow D^{(*)}K^{(*)})$	7°	4°		. 10
` 😳	triangle	$\gamma(B_s^0 \rightarrow D_s^{\mp} K^{\pm})$	17°	11°	$\sigma(\gamma)$	≈ 4
⊙ (⊙ ⊙	angles	$\beta(B^0 \to J/\psi K_S^0)$	1.7°	0.8°	\circ (1)	
	Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.5	-
	$C\!P$ violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.12	-

Smileys indicate "on trackness", added by Tim Gershon (LHCb Implications Workshop Oct 2014)

LPNHE Paris, January 2015

current systematic effects

Tree-level measurements of γ will **not be limited** by systematics for a long time (not at 100 times the current dataset).

- **first** method (B \rightarrow DK GLW/ADS)
 - instrumental charge asymmetries (known to the per-mille level, $B \rightarrow J/\psi$ K asymmetry needed as input, magnet polarity flip)
 - calibration of particle identification
- second method (B \rightarrow DK GGSZ)
 - efficiency corrections over the Dalitz plot
- third method ($B_s \rightarrow D_s K$ time dependent)
 - decay time resolution
 - decay time acceptance
 - knowledge of Δms , $\Delta \Gamma s$, Γs

Conclusion

Conclusion

LHCb is getting closer to a tree-level precision measurement of the CKM triangle! (Might need a little help with |Vub| though!)

Backup

GGSZ or the "Dalitz" method

illustration:

Karim Trabelsi, CKM2014

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma) \quad y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

LPNHE Paris, January 2015

Combination

Table 2: Observables used in the robust combination.

LHCb Analysis	Observables
$B^+ \to DK^+, D \to hh, \text{GLW/ADS}$	$A_{CP}^{DK,KK}, A_{CP}^{DK,\pi\pi}, R_{K/\pi}^{KK}, R_{K/\pi}^{\pi\pi}, R_{K/\pi}^{K\pi}, A_{fav}^{DK,K\pi},$
	$R^{DK,K\pi}_+, R^{DK,K\pi}$
$B^+ \to DK^+, D \to K\pi\pi\pi, ADS$	$R^{DK,K3\pi}_{+}, R^{DK,K3\pi}_{-}, A^{DK,K3\pi}_{\text{fav}}$
$B^+ \rightarrow DK^+, D \rightarrow K^0_{\rm s}hh,$ model-	$x_{-}, x_{+}, y_{-}, y_{+}$
independent GGSZ	
$B^+ \to DK^+, \ D \to K^0_{\rm s} K \pi, \ {\rm GLS}$	$R_{DK, \text{fav/sup}}^{K_S K \pi}, A_{\text{fav}}^{DK, K_S K \pi}, A_{\text{sup}}^{DK, K_S K \pi}$
$B^0 \to DK^{*0} \text{ GLW/ADS}$	$A_{CP}^{DK^{*0}, KK}, A_{fav}^{DK^{*0}, K\pi}, R_{CP}^{DK^{*0}, KK}, A_{CP}^{DK^{*0}, \pi\pi},$
	$R_{CP}^{DK^{*0}, \pi\pi}, R_{+}^{DK^{*0}, K\pi}, R_{-}^{DK^{*0}, K\pi}$
$B_s^0 \to D_s^{\mp} K^{\pm}$	$C_f, A_f^{\Delta\Gamma}, A_{\bar{f}}^{\Delta\Gamma}, S_f, S_{\bar{f}}$

Auxiliary Input	Observables
CLEO-c	$\kappa_D^{K3\pi},\delta_D^{K3\pi}$
Belle, CLEO	$R_{WS}(D \to K\pi\pi\pi)$
CLEO	$R_D^{K_SK\pi}, \kappa_D^{K_SK\pi}, \delta_D^{K_SK\pi}$
LHCb toy	$\kappa_B^{DK^{*0}}$
LHCb	ϕ_s
HFAG	$x_D, y_D, \delta_D^{K\pi}, R_D^{K\pi}, A_{CP}^{dir}(KK), A_{CP}^{dir}(\pi\pi)$

Combination

Table 4: Observables used in the full combination in addition to those of the robust combination given in Table 2.

$B^+ \to DK^+, D \to hh, {\rm GLW/ADS}$	$A_{CP}^{D\pi,KK}, A_{CP}^{D\pi,\pi\pi}, A_{fav}^{D\pi,K\pi}, R_{+}^{D\pi,K\pi}, R_{-}^{D\pi,K\pi}$
$B^+ \to DK^+, D \to K\pi\pi\pi, ADS$	$R^{D\pi,K3\pi}_+, R^{D\pi,K3\pi}, A^{D\pi,K3\pi}_{\text{fav}}, R^{K3\pi}_{K/\pi}$
Combination

Coverage test

- We test the frequentist coverage at the minima of the combinations.
- We find that the profile likelihood construction undercovers quite a bit.
- The robust plugin method has good coverage.
- The coverage of the full combination is worse than of the robust. Expected due to the low value of r^{Dπ}_B.

$\eta = 0.683$	α (prof. LH.)	lpha (plugin)
robust	0.6158	0.6494
full (1), $r_B^{D\pi} = 0.027$	0.5593	0.6154
full (2), $r_B^{D\pi} = 0.006$	0.5454	0.6120

CKM2014 γ from LHCb

Auxiliary input from HFAG

comparing old and new

Figure: Profile likelihood contours: The "old" contour corresponds to what was used in the previous (2013) combination (the 2009 CLEO input [25] together with the 2013 LHCb charm mixing measurement [26]). The "new" contour is what is used in this combination (HFAG 2014). The contours are two-dimensional $1-4\sigma$ contours.

Auxiliary input from HFAG

The parameter $R_D^{K\pi}$ is the squared ratio of the doubly-Cabibbo-suppressed amplitude $D^0 \rightarrow \pi^- K^+$ to the favored one $D^0 \rightarrow K^- \pi^+$. It is not the ratio of branching ratios. It gets often measured in time-dependent wrong-sign D^0 mixing measurements:

$$R_{WS} = R_D^{K\pi} + \sqrt{R_D^{K\pi}} \left(x \cos(\delta_D^{K\pi}) \pm y \sin(\delta_D^{K\pi}) \right) \frac{t}{\tau} + \frac{x_D^2 + y_D^2}{4} \left(\frac{t}{\tau} \right)^2$$

Figure: Evolution of HFAG results on $R_D^{K\pi}$.

T.M. Karbach (CERN)

CKM2014 γ from LHCb