

Gamma-ray cosmology & fundamental physics with blazars

EBL photons

m

Jonathan Biteau

Observing the Extreme Universe with Blazars

Jonathan Biteau | CPPM | 2015-03-23 | Page 2/37

→ Observing blazars in the gamma-ray band

Detecting gamma rays - emission from blazars

→ Blazars as cosmological beacons

Gamma-ray absorption - the extragalactic background light

→ Analysis of 20 years of gamma-ray observations

Dataset - Reconstruction method - Results

→ What remains to be done

Fermi-LAT, H.E.S.S., MAGIC, VERITAS, and CTA

→ Conclusion

Summary, CNRS research project

Detecting TeV and GeV gamma rays

Detecting TeV and GeV gamma rays

Jonathan Biteau | CPPM | 2015-03-23 | Page 5/37

H.E.S.S., MAGIC, VERITAS... & CTA

Detecting GeV-TeV blazars

First Author :

- . Flux upper limits for 47 AGN observed with H.E.S.S. in 2004-2011, H.E.S.S., A&A 564, 9 (2014)
- . H.E.S.S. and Fermi-LAT discovery of gamma-rays from the blazar 1ES 1312-423, H.E.S.S., MNRAS 434, 1889 (2013)

Second Author :

- . The high energy gamma-ray emission of AP Librae, H.E.S.S. and Fermi-LAT, A&A 573, 31 (2015)
- . Discovery of high and very high energy emission from the BL Lac object SHBL J001355.9-185406, H.E.S.S., A&A 554, 72 (2013)
- + Referee pour ApJ, MNRAS, referee interne à H.E.S.S. et VERITAS
- Jonathan Biteau | CPPM | 2015-03-23 | Page 7/37

Emission of TeV blazars (HSPs/HBLs in particular)

Jonathan Biteau | CPPM | 2015-03-23 | Page 8/37

The Conundrum: Variability of Electromag. Emission

Blazars, variable sources from radio wavelengths to TeV energies

Numerous observables

Multiwavelength variability (cross correlation, fractional variation vs wavelength)

Intra-band variability (flux distribution, moments of flux correlations, Fourier analysis)

But theoretical framework still open

Magnetic reconnection highly promising

First Author:

. The minijets-in-a-jet statistical model and the RMS-flux correlation, Biteau & Giebels, A&A 548, 123 (2012)

Second Author :

. Active Galactic Nuclei under the scrutiny of CTA, Sol et al. for CTA, Astropart. Phys. 43, 215 (2015)

Jonathan Biteau | CPPM | 2015-03-23 | Page 9/37

→ Observing blazars in the gamma-ray band

Detecting gamma rays - emission from blazars

→ Blazars as cosmological beacons

Gamma-ray absorption - the extragalactic background light

→ Analysis of 20 years of gamma-ray observations

Dataset - Reconstruction method - Results

→ What remains to be done

Fermi-LAT, H.E.S.S., MAGIC, VERITAS, and CTA

→ Conclusion

Summary, CNRS research project

Gamma-rays and the EBL

Jonathan Biteau | CPPM | 2015-03-23 | Page 12/37

Gamma-ray absorption by the EBL: exp(- τ)

with optical depth: $\tau(E,z) = Target density x Distance x Cross section$

On the first order: $\tau(E,z) \sim E / E_0(z)$ where E_0 decreases with redshift + modulations depending on the EBL spectrum

Jonathan Biteau | CPPM | 2015-03-23 | Page 13/37

Local constraints on the EBL: see Dwek & Krennrich (2013)

Direct observations: tend to be contaminated by foregrounds \rightarrow upper limits

Galaxy counts: corrected for the lack of completeness but do not include unresolved populations or truly diffuse components \rightarrow lower limits

Gamma-ray constraints on the EBL:

Difficulty so far had been **disentangling intrinsic curvature from absorption by the EBL**

By means of **hypothesis testing** and accounting for intrinsic curvature, model-dependent detections by Fermi-LAT (6σ) and **H.E.S.S. (9\sigma)**

First Author :

. Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S., H.E.S.S., A&A 550, 4 (2013)

Jonathan Biteau | CPPM | 2015-03-23 | Page 14/37

→ Observing blazars in the gamma-ray band

Detecting gamma rays - emission from blazars

→ Blazars as cosmological beacons

Gamma-ray absorption - the extragalactic background light

→ Analysis of 20 years of gamma-ray observations

Dataset - Reconstruction method - Results

→ What remains to be done

Fermi-LAT, H.E.S.S., MAGIC, VERITAS, and CTA

→ Conclusion

Summary, CNRS research project

Dataset and Hypotheses

Dataset

- . 106 TeV spectra from 38 sources, i.e. ~80% of published data
- . GeV spectral index when contemporaneous **GeV-TeV** observations

Going public

. Interest from MWL community (P. Giommi, ASDC SED builder)

[TeV]

nge . Most data out in Apr.-May Energy

Hypotheses

- . TeV softer than GeV
- . TeV emission at the source
- = smooth concave spectrum (PWL, LP, EPWL, ELP)

Jonathan Biteau | CPPM | 2015-03-23 | Page 16/37

Computing the optical depth

Optical depth: $\tau(E_0, z_0) =$ Target density x Distance x Cross section

→ 3D integral over: energy of target photons, redshift, gamma-to-target angle

 \rightarrow 2D integral after analytical reduction of the integral over the angle

If Target density(ε_0, z_0) = Target density(ε_0, z_0 =0) x Evolution(z_0), then

Jonathan Biteau | CPPM | 2015-03-23 | Page 17/37

Some Scientific Topics of Gamma-ray Cosmology

+ (partly) unaddressed topics: UHECR cascades, IGMF, heating of the IGM...

Jonathan Biteau | CPPM | 2015-03-23 | Page 18/37

Model-dependent approach:

As for the H.E.S.S. and Fermi-LAT measurements, a free normalization factor for each model tested (Franceschini+08, Gilmore+12, Dominguez+11...)

Model-independent approach:

Sum of Gaussians of fixed widths and means, with free amplitudes

→ In both cases, optical depth linearly depends on the free parameters

Fitting algo. accounting for gamma-ray data and local EBL constraints:

Minimization over EBL parameters (SIMPLEX, MIGRAD, HESSE) ~ 10-20 sec

Hypothesis:

. Parametrization of EBL evolution up to $z{\sim}0.8$

Method: χ^2 minimization

. TeV points, GeV-TeV hardness, (local EBL constraints)

Results

- . 11 σ detection both for model-dependent & independent methods
- . Study of 7 models, 4 ruled out, 3 ~as good as model-independent
- . EBL (0.1 1000 μm): 62±12 nW m-2 sr-1 6.5±1.2% of the CMB
- . No significant tension with galaxy counts

Gamma-ray inferred EBL is NOT too low wrt expectations from UV-IR observations!

Jonathan Biteau | CPPM | 2015-03-23 | Page 21/37

Unresolved Sources & Reionization

The Hubble Constant

Hypothesis: No unresolved population

. EBL from gamma-rays only = EBL from galaxy counts

Method: gamma-ray inferred EBL $\propto I_{EBI}/H_0$

. Marginalized likelihood accounting for correlations

Method: Marginalized likelihood accounting for correlations between gamma-ray inferred EBL points

. Combining all the spectra from sources with underconstrained distance

Results

1ES 1215+303 0.8 Normalized likelihood PKS 0447-439 S5 0716+714 3C 66A 0.6 PG 1553+113 PKS 1424+240 0.4 0.2 JB & Williams 15 0.2 0.3 0.1 0.4 0.5 0.8 0.6 0.7

Redshift

- . Only the spectra from PG 1553+113 show significant absorption. 3.4σ effect with z = 0.41-0.11+0.08
- . Most constraining gamma-ray upper limits (99%) for 1ES1215+303 (<0.35) PKS0447-439 (<0.45) 3C66A (<0.58) PKS1424+240 (<0.64)

. 1-2σ tensions with spectroscopic lower limits for these last two srcs. **Need data!**

Jonathan Biteau | CPPM | 2015-03-23 | Page 24/37

Gamma-ray Absorption + Axion-Like Particles

Method: Flux residuals as a function of optical depth

- . Horns & Meyer 2012, Meyer et al. 2013 found a 3-4 σ flux enhancement above τ =2, interpreted as a coupling of gamma rays with hypothetical ALPs
- . Flux enhancement computation in $\tau\text{-}bins$, accounting for flux uncertainties

Lorentz Invariance - Principle

Principle:

- . Modified dispersion relation around $E_{_{QG}} \thicksim E_{_{Planck}} \thicksim 10^{_{28}}\,eV$
- . Modified threshold of pair creation (Jacob & Piran 08)
- . Probe of the > 15-20 TeV energy range

1
$$E^2 = p^2 + m^2 - E^2 \times \frac{E}{E_{\text{QG}}}$$
 2a: 4-P conservation
2b: speed of light
2a $\epsilon_{thr} = \frac{m_e^2}{E_{\gamma}} \times \left[1 + \left(\frac{E_{\gamma}}{E_{\gamma,\text{LIV}}}\right)^3\right]$ 2b $v = \frac{\partial E}{\partial p} = 1 - \frac{E_{\gamma}}{E_{\text{QG}}}$
3a $E_{\gamma,\text{LIV}} = \left(8m_e^2 E_{\text{QG}}\right)^{1/3} = 29.4 \text{ TeV} \times \left(\frac{E_{\text{QG}}}{E_{\text{Planck}}}\right)^{1/3}$

Lorentz Invariance - Results

→ "Gamma-ray constraints on the EBL are below galaxy counts"

WRONG! model-independent approach even shows a slight excess from gamma rays

→ "TeV intrinsic spectra are too hard"

WRONG! no tension with Fermi-LAT hardness for contemporaneous observations no tension with photon index > 1.5 (\leftrightarrow electron index of 2), minimum at 1.3±0.3

→ "GeV extrapolation does not match TeV flux"

PARTLY WRONG!

Good match for 25/31 quasicontemporaneous spectra. 2 (4) spectra have a larger (smaller) VHE flux than GeV extrapolated. Easily explained: blazars are variable and their GeV and TeV flux are not recorded simultaneously...

→ "Flux excess correlated with optical depth" WRONG!

Jonathan Biteau | CPPM | 2015-03-23 | Page 29/37

Refined EBL spectrum between 0.2 and 90 µm

Sources with 0.05<z<0.3, signature of polycyclic aromatic hydrocarbons?

Probing further the EBL in the FUV and FIR regions

FIR: z<0.05, high stats above 10 TeV – FUV: distant sources, underconstrained region

Evolution of the EBL

Current study does up to z=0.3 – need more lever arm to probe the evolution

Hubble constant

Improved gamma-ray constraints in 0.5-50 µm. Improved direct observations, JWST...

Anomalies

Upper-limit on UHECRs & coupling with ALPs still to be determined.

Fate of the electron-positron pairs

Probe of the intergalactic magnetic field? Heating of the intergalactic medium?

Intrinsic emission

Characterization of the GeV-TeV gamma-ray bumps (blazar sequence)

Jonathan Biteau | CPPM | 2015-03-23 | Page 30/37

Absorption starts to be significant above z=0.5

Lots of potential with Pass 8 and 7 years of data (wrt Pass 7 / 4 years for the Fermi paper)

Need of a new evolution parametrization above z=0.8

Current parametrization fails for large redshifts, where most of the Fermi sources are

Fermi GI proposal submitted

Work with David Williams – parametrization and testing 1st year, full analysis 2nd year

Jonathan Biteau | CPPM | 2015-03-23 | Page 31/37

What we can do with VERITAS, H.E.S.S., and MAGIC

Upgrade of the three instruments in 2012/2013

First MAGIC camera / 5th telescope for H.E.S.S. / High QE photomultipliers for VERITAS

Aim: as low an energy threshold as possible

Better handle on the intrinsic spectra – bridge the gap between 0.3 < z < 0.5

Ongoing work within VERITAS

Reconstruction of the EBL with long-term spectra, constraints on LIV with Mrk 421

Nice potential of joint analyses at the event level

Tools such as 3ML (HAWC) or GammaLib (CTA) could open such possibilies

Jonathan Biteau | CPPM | 2015-03-23 | Page 32/37

2020 perspective: the Cherenkov Telescope Array

Ten fold increased sensitivity + extensions < 100 GeV and > 10 TeV

Northern and Southern Arrays (4 large, 25+24(US) medium, >20 small covering 3km²)

Vast Key Science Program

(Extra)Galactic surveys, AGN, GRBs, Pulsars, PWN, SNRs, Dark Matter, Fundamental physics...

Including gamma-ray cosmo.

EBL, IGMF, ALPs, LIV...

Jonathan Biteau | CPPM | 2015-03-23 | Page 33/37

SCT contribution to CTA

SiPMs vs PMTs

Impact of SCT contribution

- . Addition results in $\sim 2x$ better sensitivity in the core energy range of CTA (0.1-10 TeV)
- \rightarrow Crucial for EBL studies in 0.1-10µm (PAH) in conjunction with the JWST
- . > 0.3 TeV: 30-40% better angular resolution
- → Crucial studies of the intergalactic magnetic fields and galactic science

Single-Mirror Telescope (EU)

Jonathan Biteau | CPPM | 2015-03-23 | Page 35/37

from Bouvier

Computation of gamma-ray absorption becomes easier!

Reduction of 3D integral to a mere convolution production of the EBL intensity with a kernel. Negligible impact of underlying assumptions up to $z\sim0.6-0.8$.

Joint fit of gamma-ray spectra and local EBL constraints

 11σ preference for best-fit EBL spectrum (0.26-105 μm). Few room left for unresolved populations or truly diffuse components above 1 μm .

Model-indep. measurement of the Hubble constant, promising for JWST/CTA.

Pair-production anomaly as obtained by Horns & Meyer 2012 ruled out

Motiavations for ALPs and reprocessed CR signal strongly undermined

Vast science case to be addressed with current and upcoming instruments

Fermi-LAT: FUV spectrum and evolution of the EBL, IGMF VERITAS, H.E.S.S. II, MAGIC: improved O-NIR spectrum of the EBL, LIV CTA, the ultimate tool: blazar sequence, MUV-FIR EBL, EBL evolution, H₀, IGMF, LIV, UHECR

Jonathan Biteau | CPPM | 2015-03-23 | Page 36/37

EBL (*extragalactic background light*) : fond diffus cosmologique optique et infrarouge IGMF (intergalactic magnetic field) : champ magnétique sub nG peuplant les vides cosmiques ALP (*axion like particles*) : particules de faible masse, candidates matière/énergie noire LIV (*Lorentz invariance violation*) : vitesse de la lumière variant avec l'énergie des photons

Jonathan Biteau | CPPM | 2015-03-23 | Page 37/37

Backup

Evolution $d\epsilon \frac{\partial n}{\partial \epsilon}(\epsilon, z) = d\epsilon_0 \frac{\partial n}{\partial \epsilon_0}(\epsilon_0, 0) \times (1+z)^{3-f_{evol}}$

Spectral parametrization

Model-independent approach:

. Sum of Gaussians of fixed widths and means, with free amplitudes

 \rightarrow optical depth linearly depends on the free parameters

A word about CIBER

Other means of detection: 2nd moment (fluctuations) instead of 1st moment (brightness)

A fluctuation excess in NIR ?

Science publication in November 2014

Attributed to IHL

- Diffuse galactic light below l<500
- Low-z galaxies above l>2000
- Unknown excess in between to which intra-halo light from stars stripped from their parent galaxies could contribute.

Excess fluctuations → **EBL intensity**

Table 1. Contributions to near-infrared EBL anisotropy and intensity. At each wavelength, we list the measured fluctuation amplitude at large angular scales; the model-dependent ratio of EBL intensity to EBL anisotropy; the IGL determined by previous measurements; the ratio of the IHL and IGL intensities; and finally, the inferred total background intensity from both components. We also list the background intensity that would arise assuming the measured fluctuations are entirely due to high-redshift EOR galaxies.

λ (μm)	Measured δλ/ _λ * (nW m ⁻² sr ⁻¹)	$rac{\lambda I_{\lambda,IHL}}{\delta\lambda I_{\lambda}}$	^{λ/_{λ,IHL}‡ (nW m⁻² sr⁻¹)}	$\lambda J_{\lambda,IGL}$ § (nW m ⁻² sr ⁻¹)	$rac{\lambda I_{\lambda, IHL}}{\lambda I_{\lambda, IGL}}$	$\lambda I_{\lambda,\text{IHL}} + \lambda I_{\lambda,\text{IGL}}$ (nW m ⁻² sr ⁻¹)	λ/ _{λ,EOR} (nW m ^{−2} sr ^{−1})
1.1	$1.4^{+0.8}_{-0.7}$	5	7.0+4.0	$9.7^{+3.0}_{-1.9}$	0.7	$16.7^{+5.0}_{-4.0}$	28
1.6	$1.9_{-0.8}^{+0.9}$	6	$11.4_{-4.8}^{+5.4}$	$9.0^{+2.6}_{-1.7}$	1.3	20.4-5.1	38
2.4	$0.32 \pm 0.05 \pm$	7	2.2 ± 0.4	7.8 ^{+2.0} ¶	0.3	$10.0^{+2.0}_{-1.3}$	6.4
3.6	$0.072^{+0.019}_{-0.021}$	9	$0.65_{-0.19}^{+0.17}$	5.2 ± 1.0	0.1	5.9 ± 1.0	1.4
3.6#	0.049+0.021	9	$0.44_{-0.06}^{+0.19}$	5.2 ± 1.0	0.1	5.6 ± 1.0	1.0
4.5	$0.053 \pm 0.023 \dagger$	7	0.37 ± 0.16	3.9 ± 0.8	0.1	4.3 ± 0.8	1.0

*RMS fluctuation amplitude computed as averages of measured data over 500 < l < 2000, except for those marked \dagger , which are determined at l = 3000 using fainter mask cuts due to restricted field size (see also note ^{II}). \ddagger The IHL background from the product of columns 2 and 3. \$The IGL background as compiled by (28). ||Computed EOR background assuming EOR fluctuations with $\lambda_{l_c}/\delta\lambda_{l_c} = 20$. \$Determined at *K* band corresponding to 2.2 μ m. #Computed using the measurements of (6) averaged over 500 < l < 5000.

Axion-like particles

If "anomaly" due to ALP

→ Complex shaped dark pink "TeV transparency" region

Meyer and Horns 2013

Caveats

→ no anomaly seen by more complete studies

Biteau & Williams 2015

→ large fraction of the ALP param. space excluded from H.E.S.S. observations of PKS 2155-304

Brun et al. 2013 (H.E.S.S. Collab.)

- \rightarrow Uncertainties in EBL > 5 μ m
- → Treatment of uncertainties and correlation between points See e.g. discussion in Biteau 2013

IGMF constraints

- → First constraints B > 10⁻¹⁶ G Neronov and Vovk 2010
- → Releasing steady assumption B > $10^{-17} - 10^{-18}$ G

Taylor et al. 2011, Dermer 2011

 → Studying the hypotheses on the intrinsic emission, B=0 rejected at the 3σ level

Arlen et al. 2012

og(B [G])

 \rightarrow Caveats from plasma physics? ⁻

Broderick et al. 2012, Schlickeiser et al. 2012 vs Miniati & Elyiv 2013

Not confirmed by PIC simu.

Sironi & Gianios 2014

Blazars' variability

→ Statistical observables during the ~week of high-flux « state »

Skewed flux distribution - Log-normal?
The brighter, the more variable - Linear RMS-flux relation
Power-law Fourier spectrum - Red noise behavior

→ Fractal behaviors?

Noah effect – Rare-events domination. Tailed distribution?
Joseph effect – Long-term memory. Fractional Fourier index?

→ Signature of the disk modulation?

Disk fluctuations might modulate jet emission suggested e.g. in McHardy 2010

Red noise from inward-going outward disk fluctuations cellular automaton Mineshige et al. 94, alpha disk Lyubarski 1997

Log-normal behavior from multiplicative process Disk avalanche-like process ⇒ multiplicative flux ⇒ additive log flux ⇒ log flux is normal (Central Limit Theorem)

→ Long-term variability originated from the disk? Would explain long-term statistical properties, but...

→ Fast variability must originate from the jet!

Minute variations vs hour black-hole light crossing time : *a) engine and emitting region move towards the observer b) emitting region alone moves rapidly and variability*

b) emitting region alone moves rapidly and variability caused by some local instability

c) supermassive BH 50 times less massive than estimated

Narayan & Piran 2012

→ Minijets-in-a-jet models

Reconnection-powered plasmoids reproduce timescales and luminosity

→ Problem with additive scenarios...

Sum of plasmoids emission \Rightarrow normal flux (Central Limit Th.) \Rightarrow no more-variable-when-brighter behavior (gaussian prop.)

→ From spherical cow to herd of ovoidal cows

Plasmoids (or reconnection layers) modeled as boosted regions within a boosted medium

Analytic computation of the Doppler factor

Power-law flux distribution for each minijet assuming isotropy IN the jet frame

→ Fractal behavior!

Noah effect – Pareto flux distribution Central Limit Theorem does not hold!

My kinematic minijet model

→ When the CLT goes nuts!

Sum of Pareto variables NOT asymptotically gaussian

Tend to alpha (or Levy) stable distribution, highly skewed, looking similar to lognormal

→ The brigther, the more variable

Linear RMS-flux for Pareto distribution ... and also for alpha-stable distributions

→ **Pros and cons of SiPMs :**

Pros : High efficiency, low cost, low V operation, high luminosity operation Cons : Optical cross talk and afterpulse, need of temperature monitoring

Dark rate

