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Perturbation Theory

see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]
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where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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Perturbation Theory

see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation
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T
=
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4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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Perturbation Theory

see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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Perturbation Theory

see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
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g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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with temperature perturbation
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]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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with temperature perturbation
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∫ η0
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(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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For adiabatic perturbations:



see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
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For adiabatic perturbations:



see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]
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Figure 4.2: Adiabatic scalar and tensor CMB anisotropy spectra are shown (top
panels). The bottom panels show the corresponding polarization spectra (see Sec-
tion 4.4). (from [21]).

4.3.1 Elements of the derivation

When particles are not very tightly coupled, the fluid approximation breaks down
and they have to be described by a Boltzmann equation,

pµ∂µf − Γi
αβpαpβ ∂f

∂pi
= C[f ] . (4.40)

C[f ] is a collision integral which describes the interactions with other matter compo-
nents. The left hand side of (4.40) just requires the particles to move along geodesics
in the absence of collisions.

Let us first consider the situation where collisions are negligible, C[f ] = 0. The
unperturbed Boltzmann equation implies that f be a function of v = ap only. Setting
f = f̄(v) + F (η,x, v,n), where n denotes the momentum directions, leads then to
the perturbation equation

∂ηF − ni∂iF − Γ(S) i
jk njnk ∂F

∂ni
= v

df̄

dv

[
niA,i − ninj

(
Bi|j − Ḣij

)
+ HL

]
. (4.41)

Here Γ(S) i
jk are the Christoffel symbols of the space of constant curvature κ.

To derive (4.41), we have used p2 = 0. The Liouville equation for particles with
non–vanishing mass can be found in Ref. [6].

The ansatz

f(x,p) = f̄

(
g(3)(p,p)

1
2

T (x,n)

)

= f̄

(
Tv

T (x,n)

)
(4.42)
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Every photon has an orientation



• Unpolarized light:  
individual photons random orientation 

• Polarized light:  
individual photons same orientation
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Polarization by reflection

Image by Waynu Hu [http://background.uchicago.edu/~whu/]



Polarization by reflection

Image by Waynu Hu [http://background.uchicago.edu/~whu/]



Polarization by Thomson 
scattering

Image by Waynu Hu [http://background.uchicago.edu/~whu/]



Polarization by Thomson 
scattering
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No polarization by Thomson 
scattering for isotropic influx

Image by Waynu Hu [http://background.uchicago.edu/~whu/]



No polarization by Thomson 
scattering for isotropic influx
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Polarization by Thomson scattering of 
influx with quadrupolar anisotropy

Image by Waynu Hu [http://background.uchicago.edu/~whu/]



Polarization by Thomson scattering of 
influx with quadrupolar anisotropy

Image by Waynu Hu [http://background.uchicago.edu/~whu/]



3.5 CMB Polarization: A Unique Probe of the Early Universe

CMB polarization will soon become one of the most important tools to probe the physics governing
the early universe. Because the anisotropies in the CMB temperature are indeed sourced by primor-
dial fluctuations, we expect the CMB anisotropies to become polarized via Thomson scattering (for a
pedagogical review see Ref. [52]; for technical details and pioneering work see [53, 54, 55, 56]). Since
the polarization of CMB anisotropies is generated only by scattering, the polarization signal tracks
free electrons and hence isolates the recombination (last-scattering) and reionization epochs. The
polarization signal and its cross-correlation with the temperature anisotropies provide an important
consistency check for the standard cosmological paradigm. In addition, measurements of CMB po-
larization help to break degeneracies among some cosmological parameters and hence increase the
precision with which these parameters can be measured. Finally, and most importantly for this re-
port, di↵erent sources of the temperature anisotropies (scalar, vector and tensor; see §3.3.1) predict
subtle di↵erences in the polarization patterns. One can therefore use polarization information to
distinguish the di↵erent types of primordial perturbations. It is this distinguishing feature of CMB
polarization that we wish to elucidate in this section.

Quadrupole
Anisotropy

Thomson 
Scattering

e–

Linear 
Polarization

COLD

HOT

Figure 3: Thomson scattering of radiation with a quadrupole anisotropy generates linear polariza-
tion [52]. Red colors (thick lines) represent hot radiation, and blue colors (thin lines)
cold radiation.
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Decompose the vector 
field

E < 0 E > 0

B < 0 B > 0

Figure 4: Examples of E-mode and B-mode patterns of polarization. Note that if reflected across
a line going through the center the E-patterns are unchanged, while the positive and
negative B-patterns get interchanged.

patterns. Although E and B are both invariant under rotations, they behave di↵erently under parity
transformations. Note that when reflected about a line going through the center, the E-patterns
remain unchanged, while the B-patterns change sign.

TE correlation and superhorizon fluctuations
The symmetries of temperature and polarization (E- and B-mode) anisotropies allow four types

of correlations: the autocorrelations of temperature fluctuations and of E- and B-modes denoted
by TT , EE, and BB, respectively, as well as the cross-correlation between temperature fluctuations
and E-modes: TE. All other correlations (TB and EB) vanish for symmetry reasons.18

The angular power spectra are defined as rotationally invariant quantities

CXY
` ⌘ 1

2` + 1

X

m

haX
`maY

`mi , X, Y = T,E,B . (40)

In Fig. 5 we show the latest measurement of the TE cross-correlation [14]. The EE spectrum has
now begun to be measured, but the errors are still large. So far there are only upper limits on the
BB spectrum, but no detection.

The dependence on cosmological parameters of each of these spectra di↵ers, and hence a com-
bined measurement of all of them greatly improves the constraints on cosmological parameters by
giving increased statistical power, removing degeneracies between fitted parameters, and aiding in
discriminating between cosmological models.

18This assumes no parity-violating processes in the early universe. Conversely, non-zero TB and EB

correlations would be a distinctive signature of such physics.
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Local quadrupole leads 
to polarized radiation
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Fig. 1.— Thomson scattering of radiation with a quad-
rupole anisotropy generates linear polarization. Blue
colors (thick lines) represent hot and red colors (thin
lines) cold radiation.

dent radiation field possesses a quadrupolar variation in
intensity or temperature (which possess intensity peaks
at 90◦ = π/2 separations), the result is a linear polar-
ization of the scattered radiation (see Fig. 1). A reversal
in sign of the temperature fluctuation corresponds to a
90◦ rotation of the polarization, which reflects the spin-
2 nature of polarization.

In terms of a multipole decomposition of the ra-
diation field into spherical harmonics, Y m

ℓ (θ, φ), the
five quadrupole moments are represented by ℓ = 2,
m = 0,±1,±2. The orthogonality of the spherical har-
monics guarantees that no other moment can generate
polarization from Thomson scattering. In these spheri-
cal coordinates, with the north pole at θ = 0, we call a
N-S (E-W) polarization component Q > 0 (Q < 0) and
a NE-SW (NW-SE) component U > 0 (U < 0). The
polarization amplitude and angle clockwise from north
are

P =
√

Q2 + U2, α =
1

2
tan−1(U/Q) . (2)

Alternatively, the Stokes parameters Q and U repre-
sent the diagonal and off diagonal components of the
symmetric, traceless, 2 × 2 intensity matrix in the po-

larization plane spanned by (êθ, êφ),

E∗
i Ej −

1

2
δijE

2 ∝ Qσ3 + Uσ1 , (3)

where σi are the Pauli matrices and circular polarization
is assumed absent.

If Thomson scattering is rapid, then the randomiza-
tion of photon directions that results destroys any quad-
rupole anisotropy and polarization. The problem of un-
derstanding the polarization pattern of the CMB thus
reduces to understanding the quadrupolar temperature
fluctuations at last scattering.

Temperature perturbations have 3 geometrically dis-
tinct sources: the scalar (compressional), vector (vorti-
cal) and tensor (gravitational wave) perturbations. For-
mally, they form the irreducible basis of the symmetric
metric tensor. We shall consider each of these below
and show that the scalar, vector, and tensor quadru-
pole anisotropy correspond to m = 0,±1,±2 respec-
tively. This leads to different patterns of polarization
for the three sources as we shall discuss in §3.

m=0

v

Scalars�
(Compression)

hot

hot

cold

Fig. 2.— The scalar quadrupole moment (ℓ = 2, m =
0). Flows from hot (blue) regions into cold (red), v ∥ k,
produce the azimuthally symmetric pattern Y 0

2 depicted
here.

2.2. Scalar Perturbations

The most commonly considered and familiar types of
perturbations are scalar modes. These modes represent

3
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N-S (E-W) polarization component Q > 0 (Q < 0) and
a NE-SW (NW-SE) component U > 0 (U < 0). The
polarization amplitude and angle clockwise from north
are

P =
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Alternatively, the Stokes parameters Q and U repre-
sent the diagonal and off diagonal components of the
symmetric, traceless, 2 × 2 intensity matrix in the po-

larization plane spanned by (êθ, êφ),

E∗
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2 ∝ Qσ3 + Uσ1 , (3)

where σi are the Pauli matrices and circular polarization
is assumed absent.

If Thomson scattering is rapid, then the randomiza-
tion of photon directions that results destroys any quad-
rupole anisotropy and polarization. The problem of un-
derstanding the polarization pattern of the CMB thus
reduces to understanding the quadrupolar temperature
fluctuations at last scattering.

Temperature perturbations have 3 geometrically dis-
tinct sources: the scalar (compressional), vector (vorti-
cal) and tensor (gravitational wave) perturbations. For-
mally, they form the irreducible basis of the symmetric
metric tensor. We shall consider each of these below
and show that the scalar, vector, and tensor quadru-
pole anisotropy correspond to m = 0,±1,±2 respec-
tively. This leads to different patterns of polarization
for the three sources as we shall discuss in §3.
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Fig. 7.— The tensor quadrupole moment (m = 2).
Since gravity waves distort space in the plane of the
perturbation, changing a circle of test particles into an
ellipse, the radiation acquires an m = 2 quadrupole
moment.

passes or its amplitude changes, a circle of test par-
ticles in the plane is distorted into an ellipse whose
semi-major axis → semi-minor axis as the spatial phase
changes from crest → trough (see Fig. 7, yellow ellipses).
Heuristically, the accompanying stretching of the wave-
length of photons produces a quadrupolar temperature
variation with an m = ±2 pattern

Y ±2
2 ∝ sin2 θe±2iφ (9)

in the coordinates defined by k̂.

Thomson scattering again produces a polarization
pattern from the quadrupole anisotropy. At the equa-
tor, the quadrupole pattern intersects the tangent (êθ⊗
êφ) plane with hot and cold lobes rotating in and out
of the êφ direction with the azimuthal angle φ. The po-
larization pattern is therefore purely Q with a cos(2φ)
dependence. At the pole, the quadrupole lobes lie com-
pletely in the polarization plane and produces the maxi-
mal polarization unlike the scalar and vector cases. The
full pattern,

Q = (1 + cos2 θ)e2iφ, U = −2i cos θe2iφ, (10)

is shown in Fig. 8 (real part). Note that Q and U are
present in nearly equal amounts for the tensors.

3. Polarization Patterns

The considerations of §2 imply that scalars, vec-
tors, and tensors generate distinct patterns in the polar-
ization of the CMB. However, although they separate
cleanly into m = 0,±1,±2 polarization patterns for a
single plane wave perturbation in the coordinate sys-
tem referenced to k, in general there will exist a spec-
trum of fluctuations each with a different k. Therefore
the polarization pattern on the sky does not separate
into m = 0,±1,±2 modes. In fact, assuming statistical
isotropy, one expects the ensemble averaged power for
each multipole ℓ to be independent of m. Nonetheless,
certain properties of the polarization patterns discussed
in the last section do survive superposition of the per-
turbations: in particular, its parity and its correlation
with the temperature fluctuations. We now discuss how
one can describe polarization patterns on the sky arising
from a spectrum of k modes.

3.1. Electric and Magnetic Modes

Any polarization pattern on the sky can be separated
into “electric” (E) and “magnetic” (B) components2.
This decomposition is useful both observationally and
theoretically, as we will discuss below. There are two
equivalent ways of viewing the modes that reflect their
global and local properties respectively. The nomencla-
ture reflects the global property. Like multipole radi-
ation, the harmonics of an E-mode have (−1)ℓ parity
on the sphere, whereas those of a B-mode have (−1)ℓ+1

parity. Under n̂ → −n̂, the E-mode thus remains un-
changed for even ℓ, whereas the B-mode changes sign as
illustrated for the simplest case ℓ = 2, m = 0 in Fig. 9
(recall that a rotation by 90◦ represents a change in
sign). Note that the E and B multipole patterns are
45◦ rotations of each other, i.e. Q → U and U → −Q.
Since this parity property is obviously rotationally in-
variant, it will survive integration over k̂.

The local view of E and B-modes involves the sec-
ond derivatives of the polarization amplitude (second
derivatives because polarization is a tensor or spin-2
object). In much the same way that the distinction be-
tween electric and magnetic fields in electromagnetism
involves vanishing of gradients or curls (i.e. first deriva-
tives) for the polarization there are conditions on the
second (covariant) derivatives of Q and U . For an E-
mode, the difference in second (covariant) derivatives

2These components are called the “grad” (G) and “curl” (C) com-
ponents by Kamionkowski et al. (1997).
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moment.
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Fig. 11.— The E and B components of a plane wave perturbation. (a) Modulation of the local E-quadrupole
pattern (yellow) from scattering by a plane wave. Modulation in the direction of (or orthogonal to) the polarization
generates an E-mode with higher ℓ; modulation in the crossed (45◦) direction generates a B-mode with higher ℓ.
Scalars generate only E-modes, vectors mainly B-modes, and tensors comparable amounts of both. (b) Distribution
of power in a single plane wave with kr = 100 in multipole ℓ from the addition of spin and orbital angular momentum.
Features in the power spectrum can be read directly off the pattern in (a).

dynamics of their evolution up to last scattering. Sharp
features in the k-power spectrum will be preserved in
the multipole power spectrum to the extent that the
projectors in Fig. 11b approximate delta functions. For
scalar E-modes, the sharpness of the projection is en-
hanced due to strong Q-contributions near θ = π/2
(ℓ ∼ kr) that then diminish as θ → 0 (ℓ ≪ kr). The
same enhancement occurs to a lesser extent for vector
B-modes due to U near π/2 and tensor E-modes due
to Q there. On the other hand, a supression occurs for
vector E and tensor B-modes due to the absence of Q
and U at π/2 respectively. These considerations have
consequences for the sharpness of features in the polar-
ization power spectrum, and the generation of asymp-
totic “tails” to the polarization spectrum at low-ℓ (see
§4.4 and Hu & White 1997) .

3.3. Temperature-Polarization Correlation

As we have seen in §2, the polarization pattern re-
flects the local quadrupole anisotropy at last scattering.

Hence the temperature and polarization anisotropy pat-
terns are correlated in a way that can distinguish be-
tween the scalar, vector and tensor sources.

There are two subtleties involved in establishing the
correlation. First, the quadrupole moment of the tem-
perature anisotropy at last scattering is not generally
the dominant source of anisotropies on the sky, so the
correlation is neither 100% nor necessarily directly vis-
ible as patterns in the map.

The second subtlety is that the correlation occurs
through the E-mode unless the polarization has been
Faraday or otherwise rotated between the last scatter-
ing surface and the present. As we have seen an E-
mode is modulated in the direction of, or perpendicular
to, its polarization axis. To be correlated with the tem-
perature, this modulation must also correspond to the
modulation of the temperature perturbation. The two
options are that E is parallel or perpendicular to crests
in the temperature perturbation. As modes of different
direction k̂ are superimposed, this translates into a ra-
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dial or tangential polarization pattern around hot spots
(see Fig. 12a).

On the other hand B-modes do not correlate with the
temperature. In other words, the rotation of the pat-
tern in Fig. 12a by 45◦ into those of Fig. 12b (solid and
dashed lines) cannot be generated by Thomson scatter-
ing. The temperature field that generates the polariza-
tion has no way to distinguish between points reflected
across the symmetric hot spot and so has no way to
choose between the ±45◦ rotations. This does not how-
ever imply that B vanishes. For example, for a single
plane wave fluctuation B can change signs across a hot
spot and hence preserve reflection symmetry (e.g. Fig. 6
around the hot spot θ = π/4, φ = 0). However superpo-
sition of oppositely directed waves as in Fig. 12b would
destroy the correlation with the hot spot.

The problem of understanding the correlation thus
breaks down into two steps: (1) determine how the
quadrupole moment of the temperature at last scatter-
ing correlates with the dominant source of anisotropies;
(2) isolate the E-component (Q-component in k̂ coordi-
nates) and determine whether it represents polarization
parallel or perpendicular to crests and so radial or tan-
gential to hot spots.

E (anti) correlation B no correlation

Fig. 12.— Temperature-polarization cross correlation.
E-parity polarization perpendicular (parallel) to crests
generates a tangential (radial) polarization field around
hot spots. B-parity polarization does not correlate with
temperature since the ±45◦ rotated contributions from
oppositely directed modes cancel.

3.3.1. Large Angle Correlation Pattern

Consider first the large-angle scalar perturbations.
Here the dominant source of correlated anisotropies is

the temperature perturbation on the last scattering sur-
face itself. The Doppler contributions can be up to half
of the total contribution but as we have seen in §2.3
do not correlate with the quadrupole moment. Contri-
butions after last scattering, while potentially strong in
isocurvature models for example, also rapidly lose their
correlation with the quadrupole at last scattering.

As we have seen, the temperature gradient associ-
ated with the scalar fluctuation makes the photon fluid
flow from hot regions to cold initially. Around a point
on a crest therefore the intensity peaks in the directions
along the crest and falls off to the neighboring troughs.
This corresponds to a polarization perpendicular to the
crest (see Fig. 12). Around a point on a trough the
polarization is parallel to the trough. As we superpose
waves with different k̂ we find the pattern is tangential
around hot spots and radial around cold spots (Crit-
tenden et al. 1995). It is important to stress that the
hot and cold spots refer only to the temperature com-
ponent which is correlated with the polarization. The
correlation increases at scales approaching the horizon
at last scattering since the quadrupole anisotropy that
generates polarization is caused by flows.

For the vectors, no temperature perturbations exist
on the last scattering surface and again Doppler contri-
butions do not correlate with the quadrupole. Thus the
main correlations with the temperature will come from
the quadrupole moment itself. The correlated signal
is reduced since the strong B-contributions of vectors
play no role. Hot spots occur in the direction θ = π/4,
φ = 0 where the hot lobe of the quadrupole is pointed
at the observer (see Fig. 5). Here the Q (E) component
lies in the N-S direction perpendicular to the crest (see
Fig. 6). Thus the pattern is tangential to hot spot, like
scalars (Hu & White 1997). The signature peaks near
the horizon at last scattering for reasons similar to the
scalars.

For the tensors, both the temperature and polariza-
tion perturbations arise from the quadrupole moment,
which fixes the sense of the main correlation. Hot
spots and cold spots occur when the quadrupole lobe
is pointed at the observer, θ = π/2, φ = π/2 and 3π/2.
The cold lobe and hence the polarization then points
in the E-W direction. Unlike the scalars and vectors,
the pattern will be mainly radial to hot spots (Critten-
den et al. 1995). Again the polarization and hence the
cross-correlation peaks near the horizon at last scatter-
ing since gravitational waves are frozen before horizon
crossing (Polnarev 1985).
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Equations of motion

as

C[T ] = aσT ne[ − T +

(
1

4π

∫
dΩ′M′ + (n · vb), 0, 0

)

+
1

10

2∑

m=−2

∫
dΩ′P (m)(n,n′)T ′] (B.31)

From Eqs. (B.13) to (B.17) one can determine the scattering matrix for the vector
T

P (m) =

⎛

⎜
⎝

Y m′
2 Y m

2 −
√

3
22Y m′

2 Y m
2 −

√
3
2 −2Y m′

2 Y m
2

−
√

6Y m′
2 2Y m

2 3 2Y m′
2 2Y m

2 3 −2Y m′
2 2Y m

2

−
√

6Y m′
2 −2Y m

2 3 2Y m′
2 −2Y m

2 3 −2Y m′
2 −2Y m

2

⎞

⎟
⎠ (B.32)

where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].

We now decompose the Fourier components of the temperature anisotropy M
and the polarization variables E and B as

M =
∑

ℓ

2∑

m=−2

M(m)
ℓ 0G

m
ℓ , (B.33)

Q ± iU =
∑

ℓ

2∑

m=−2

(E(m)
ℓ ± iB(m)

ℓ )2G
m
ℓ (n). (B.34)

Here m = 0 is the scalar mode, m = ±1 are the vector and m = ±2 are the tensor
modes. The functions sGm

ℓ are closely related to the spin weighted harmonics sY m
ℓ :

sG
m
ℓ (n) = (−i)ℓ

√
4π

2ℓ + 1
sY

m
ℓ (n)

The evolution equations in term of these variables can be given in the following
compact form [50]

Ṁ(m)
ℓ − k

[
0κm

ℓ

2ℓ − 1
M(m)

ℓ−1 −
0κm

ℓ+1

2ℓ + 3
M(m)

ℓ+1

]
=

−neσT aM(m)
ℓ + S(m)

ℓ (ℓ ≥ m) (B.35)

Ė(m)
ℓ − k

[
2κm

ℓ

2ℓ − 1
E(m)

ℓ−1 −
2m

ℓ(ℓ + 1)
B(m)

ℓ − 2κm
ℓ+1

2ℓ + 3
E(m)

ℓ+1

]
=

−neσT a[E(m)
ℓ +

√
6C(m)δℓ,2 (B.36)

Ḃ(m)
ℓ − k

[
2κm

ℓ

2ℓ − 1
B(m)

ℓ−1 +
2m

ℓ(ℓ + 1)
E(m)

ℓ − 2κm
ℓ+1

2ℓ + 3
B(m)

ℓ+1

]
=

−neσT aB(m)
ℓ . (B.37)
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].

We now decompose the Fourier components of the temperature anisotropy M
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∑
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Here m = 0 is the scalar mode, m = ±1 are the vector and m = ±2 are the tensor
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ℓ are closely related to the spin weighted harmonics sY m
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where sY m′
l = sY m∗
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where sY m′
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].
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Here m = 0 is the scalar mode, m = ±1 are the vector and m = ±2 are the tensor
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where sY m′
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where sY m′
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where sY m′
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].

We now decompose the Fourier components of the temperature anisotropy M
and the polarization variables E and B as

M =
∑

ℓ

2∑

m=−2

M(m)
ℓ 0G

m
ℓ , (B.33)

Q ± iU =
∑

ℓ

2∑
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(E(m)
ℓ ± iB(m)

ℓ )2G
m
ℓ (n). (B.34)

Here m = 0 is the scalar mode, m = ±1 are the vector and m = ±2 are the tensor
modes. The functions sGm

ℓ are closely related to the spin weighted harmonics sY m
ℓ :

sG
m
ℓ (n) = (−i)ℓ

√
4π

2ℓ + 1
sY

m
ℓ (n)

The evolution equations in term of these variables can be given in the following
compact form [50]
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ℓ +

√
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where sY m′
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].
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Here m = 0 is the scalar mode, m = ±1 are the vector and m = ±2 are the tensor
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The evolution equations in term of these variables can be given in the following
compact form [50]
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where we have set

S(0)
0 = neσT aM(0)

0 , S(0)
1 = neσT a4Vb + 4k(Ψ − Φ),

S(0)
2 = neσT aC(0), S(1)

1 = neσT a4ωb,

S(1)
2 = neσT aC(1) + 4kΣ, S(2)

2 = neσT aC(2) + 4Ḣ

(B.38)

and C(m) = 1
10 [M

(m)
2 −

√
6E(m)

2 ]. The coupling coefficients are

sκ
m
ℓ =

√
(ℓ2 − m2)(ℓ2 − s2)

ℓ2
.

Note that for scalar perturbations, m = 0, B-polarization is not sourced and we
have B(0)

ℓ ≡ 0.

Finally we want to connect the intensities M(m)
ℓ with the more familiar expansion

of the scalar (S), vector (V ) and tensor (T ) contributions to the brightness function
in terms of Legendre polynomials. Usually one sets

M = M(S) + M(V ) + M(T ) .

Here M(S) only depends on µ = (n ·k)/k and the n-dependence of M(V ) and M(T )

can be written as

M(V )(µ, φ) =
√

1−µ2
[
M(V )

1 (µ) cosφ+M(V )
2 (µ) sin φ

]
(B.39)

M(T )(µ, φ) = (1 − µ2)
[
M(T )

+ cos(2φ) + M(T )
× sin(2φ)

]
, (B.40)

where φ is the azimuthal angle in the plane normal to k. Each of the functions
M(S,V,T )

• (µ) is now expanded in Legendre polynomials

M(S,V,T )
• =

∑

ℓ

(−i)ℓ(2ℓ + 1)σ(S,V,T )
•,ℓ Pℓ(µ) . (B.41)

The coefficients σ(S,V,T )
•,ℓ are then related to M(m)

ℓ via the identities

M(0)
ℓ = (2ℓ + 1)σ(S)

ℓ (B.42)

M(±1)
ℓ =

i

2

√
ℓ(ℓ + 1)[σ(V )

1,ℓ+1 ∓ iσ(V )
2,ℓ+1 + σ(V )

1,ℓ−1 ∓ iσ(V )
2,ℓ−1] (B.43)

M(±2)
ℓ = −

√
(ℓ + 2)!

(ℓ − 2)!
[

1

2ℓ + 3
σ(T )
↑↓,ℓ+2 +

2(ℓ + 1)

(2ℓ − 1)(2ℓ + 3)
σ(T )
↑↓,ℓ

+
1

2ℓ − 1
σ(T )
↑↓,ℓ−2] , (B.44)

where

σ↑↓,ℓ =
1

2
[σ+ℓ ∓ iσ×ℓ] .

We do not repeat this correspondence for the Stokes parameters Q and U since
it is rather complicated and not very useful as it depends on the coordinate system
chosen.
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].

We now decompose the Fourier components of the temperature anisotropy M
and the polarization variables E and B as

M =
∑

ℓ

2∑

m=−2

M(m)
ℓ 0G

m
ℓ , (B.33)

Q ± iU =
∑

ℓ

2∑

m=−2

(E(m)
ℓ ± iB(m)

ℓ )2G
m
ℓ (n). (B.34)

Here m = 0 is the scalar mode, m = ±1 are the vector and m = ±2 are the tensor
modes. The functions sGm

ℓ are closely related to the spin weighted harmonics sY m
ℓ :

sG
m
ℓ (n) = (−i)ℓ

√
4π

2ℓ + 1
sY

m
ℓ (n)

The evolution equations in term of these variables can be given in the following
compact form [50]
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=
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ℓ (ℓ ≥ m) (B.35)
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]
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√
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].

We now decompose the Fourier components of the temperature anisotropy M
and the polarization variables E and B as
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ℓ , (B.33)
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Here m = 0 is the scalar mode, m = ±1 are the vector and m = ±2 are the tensor
modes. The functions sGm

ℓ are closely related to the spin weighted harmonics sY m
ℓ :
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2ℓ + 1
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The evolution equations in term of these variables can be given in the following
compact form [50]
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].

We now decompose the Fourier components of the temperature anisotropy M
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Here m = 0 is the scalar mode, m = ±1 are the vector and m = ±2 are the tensor
modes. The functions sGm

ℓ are closely related to the spin weighted harmonics sY m
ℓ :
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The evolution equations in term of these variables can be given in the following
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].

We now decompose the Fourier components of the temperature anisotropy M
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Here m = 0 is the scalar mode, m = ±1 are the vector and m = ±2 are the tensor
modes. The functions sGm

ℓ are closely related to the spin weighted harmonics sY m
ℓ :
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The evolution equations in term of these variables can be given in the following
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].

We now decompose the Fourier components of the temperature anisotropy M
and the polarization variables E and B as
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Here m = 0 is the scalar mode, m = ±1 are the vector and m = ±2 are the tensor
modes. The functions sGm

ℓ are closely related to the spin weighted harmonics sY m
ℓ :

sG
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√
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sY
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The evolution equations in term of these variables can be given in the following
compact form [50]
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ℓ (ℓ ≥ m) (B.35)
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From Eqs. (B.13) to (B.17) one can determine the scattering matrix for the vector
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where sY m′
l = sY m∗

l (n′) and sY m
l are the spin-weighted spherical harmonics [48, 49].
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0 = neσT aM(0)

0 , S(0)
1 = neσT a4Vb + 4k(Ψ − Φ),

S(0)
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1 = neσT a4ωb,
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2 = neσT aC(2) + 4Ḣ

(B.38)

and C(m) = 1
10 [M

(m)
2 −

√
6E(m)

2 ]. The coupling coefficients are

sκ
m
ℓ =

√
(ℓ2 − m2)(ℓ2 − s2)

ℓ2
.

Note that for scalar perturbations, m = 0, B-polarization is not sourced and we
have B(0)

ℓ ≡ 0.

Finally we want to connect the intensities M(m)
ℓ with the more familiar expansion

of the scalar (S), vector (V ) and tensor (T ) contributions to the brightness function
in terms of Legendre polynomials. Usually one sets

M = M(S) + M(V ) + M(T ) .

Here M(S) only depends on µ = (n ·k)/k and the n-dependence of M(V ) and M(T )

can be written as

M(V )(µ, φ) =
√

1−µ2
[
M(V )

1 (µ) cosφ+M(V )
2 (µ) sin φ

]
(B.39)

M(T )(µ, φ) = (1 − µ2)
[
M(T )

+ cos(2φ) + M(T )
× sin(2φ)

]
, (B.40)

where φ is the azimuthal angle in the plane normal to k. Each of the functions
M(S,V,T )

• (µ) is now expanded in Legendre polynomials

M(S,V,T )
• =

∑

ℓ

(−i)ℓ(2ℓ + 1)σ(S,V,T )
•,ℓ Pℓ(µ) . (B.41)

The coefficients σ(S,V,T )
•,ℓ are then related to M(m)

ℓ via the identities

M(0)
ℓ = (2ℓ + 1)σ(S)

ℓ (B.42)
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where

σ↑↓,ℓ =
1

2
[σ+ℓ ∓ iσ×ℓ] .

We do not repeat this correspondence for the Stokes parameters Q and U since
it is rather complicated and not very useful as it depends on the coordinate system
chosen.
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Spectra

where the superscript (S) indicates that Eq. (B.49) gives the contribution from scalar

perturbations and MM means that it is the contribution to the intensity perturba-
tion.

The QQ, UU , MQ, MU and QU correlators depend with the Stokes parameters
on the particular coordinate system chosen. It is much more convenient to express
the polarization power spectra in terms of the variables E and B which are indepen-
dent of the coordinate system. Furthermore, since B is parity odd, its correlators
with M and E vanishes. One finds the simple general expression [50]

(2ℓ + 1)2CXY (m)
ℓ =

nm

8π

∫
k2dkX(m)

ℓ Y (m)∗
ℓ , (B.50)

where nm = 1 for m = 0 and nm = 2 for m = 1, 2, accounting for the number of
modes.
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Fig. 14.— Temperature, polarization, and temperature-polarization cross correlation predictions and sensitivity
of MAP for a fiducial model Ω0 = 1, ΩB = 0.1, h = 0.5 cold dark matter. The raw MAP satellite sensitivity
(1 σ errors on the recovered power spectrum binned in ℓ) is approximated by noise weights of w−1

T = (0.11µK)2

for the temperature and w−1
P = (0.15µK)2 for the polarization and a FWHM beam of 0.25◦. Note that errors

between the spectra are correlated. While the reionized model (purple τ = 0.1) is impossible to distinguish
from the fiducial model from temperature anisotropies alone, its effect on polarization is clearly visible at low
ℓ. Dashed lines for the temperature-polarization correlation represent anticorrelation. Animation (available at
http://www.sns.ias.edu/∼whu/polar/tauan.html): Variations in the spectra as τ is stepped from 0 − 1.
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• As reionization completes, ionization regions grow and fill the 
 space 

 

Inhomogeneous Ionization

Zahn et al. (2006) [Mortonson et al (2009)]

slide from Wayne Hu [http://background.uchicago.edu/~whu]

http://background.uchicago.edu/~whu


Spectra
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Reionization
Secondary anisotropy

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]



Reionization
Secondary anisotropy

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]



Weak lensing
• Probe the potential, not the galaxies 

• LSST, Euclid, …

[http://lsst.org/lsst/science/scientist_cosmic_shear]

Reminder from lecture III
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where dx is the separation vector between points on the
respective planes. In the weak-lensing limit, the deformation
can be decomposed as (Mellier 1999 ; Bartelmann & Schnei-
der 2001)

A
ij

\ (1 [ i)d
ij

[ c1 p3 [ c2 p1 , (2)

where the are the 2 ] 2 Pauli matrices, i > 1 is the con-p
ivergence, and is the shear. If a galaxy has (weighted)c

a
> 1

second moments MS, then the image will have

MI \ A~1 Æ MS Æ A~1 . (3)

The ellipticities are usually deÐned in terms of the second
moments of the light distribution, corrected for instrumen-
tal and observational e†ects, and in the weak-lensing regime
equation (3) simpliÐes dramatically, such that the observed
ellipticity of a galaxy is linearly related to the shear. The
proportionality constant depends on the deÐnition of the
ellipticity ; we take

SeT \ c , (4)

but note that 2c is often found in the literature (Bartelmann
& Schneider 2001). The result is that e deÐnes a (noisy)
estimate of the local shear Ðeld at nü .

Now consider an observation of a given area of the sky.
The observed Ðeld yields an estimate of the ellipticities e

iand positions of a set of galaxies binned into pixelsnü
ii \ 1, . . . , In a Cartesian coordinate system on the sky,Npix.the two components of the shear Ðeld, and trans-c1(nü ) c2(nü ),

form as a spin-2 Ðeld. The Fourier decomposition is

c1(nü ) ^ ic2(nü ) \P d2l
(2n)2W (l)[v(l) ^ ib(l)]eB2irleil Õ n9 , (5)

where is the angle between l and the x-axis, and W (l) isr
lthe Fourier transform of the pixel window function. For

square pixels of side p in radians,

W (l) \ j0
Alp

2
cos r

l
B

j0
Alp

2
sin r

l
B

, (6)

where is the zeroth-order spherical Besselj0(x) \ sin (x)/x
function. Note that for long wavelengths, the pixelization is
irrelevant and the window goes to unity.

We are interested in the power spectrum or correlation
function of the shear Ðeld. The two-point correlations in the
shear are determined by the three shear power spectra,

Sv(l)v(l @)T \ (2n)2d(l [ l@)C
l
vv ,

Sb(l)b(l@)T \ (2n)2d(l [ l@)C
l
bb ,

Sv(l)b(l@)T \ (2n)2d(l [ l@)C
l
vb . (7)

For the shear generated by weak lensing, C
l
vv \ C

l
ii, C

l
bb \

0, and For shot noise, Systematic errorsC
l
vb \ 0. C

l
vv \ C

l
bb.

can in principle generate any of the power spectra.
Since a 45¡ rotation of the shears takes v ] b, it converts

the lensing signal to a spectrum withC
l
bb \ C

l
ii C

l
vv \

A more general rotation leaves a signal in bothC
l
vb \ 0. C

l
vv

and but also correlates them as ForC
l
bb, (C

l
vb)2 \ C

l
vv C

l
bb.

the shot noise, the relation is invariant underC
l
vv \ C

l
bb

rotations. These rotations also allow one to visualize the
pattern implied by each spectrum (see Fig. 1). In particular,
the b-component possesses a ““ handedness ÏÏ ; formally, the
two are distinguished by their transformation under parity.

By direct substitution,

Sc1(nü
i
)c1(nü

j
)T \P d2l

(2n)2 (C
l
vv cos2 2r

l
] C

l
bb sin2 2r

l

[C
l
vb sin 4r

l
)W 2(l)eil Õ (n9 i~n9 j) ,

Sc2(nü
i
)c2(nü

j
)T \P d2l

(2n)2 (C
l
vv sin2 2r

l
] C

l
bb cos2 2r

l

]C
l
vb sin 4r

l
)W 2(l)eilÕ(n9 i~n9 j) ,

Sc1(nü
i
)c2(nü

j
)T \P d2l

(2n)2
C1

2
(C

l
vv [ C

l
bb) sin 4r

l

]C
l
vb cos 4r

l
D

W 2(l)eilÕ(n9 i~n9 j) . (8)

For a coordinate system that is oriented so that nü
i
[ nü

j
px

and pixel separations that are small compared with the
coherence scale of the Ðeld, the cosmological vv signal gen-
erates For shot noise and forSc1 c1T [ 0. Sc2 c2T B Sc1 c1T,
either These are the tests suggested bySc1 c2T B 0.
Miralda-Escude (1991).

FIG. 1.ÈFundamental shear modes and their cross-correlation. (a) Pure v-Ðeld obtained from a convergence map from White & Hu (2000). (b) Pure b-Ðeld
obtained by a rotation of the shears by n/4. (c) Correlated mixture of v and b with obtained by a rotation of the shears by n/8.C

l
vv \ C

l
bb \ C

l
vb [Hu & White, 2001] 

Reminder from lecture III

Weak lensing



CMB lensing
• Background of E-mode polarized light 

(from mostly scalar perturbations) 

• Travelling through the gravitational 
potential (a scalar). 

• Scalars only? 

• Scalar + scalar = nonlinear 

• B-modes generated!



CMB from BICEP2

observable nonzero value is 0.002. Most of the TT, TE, and
TB jackknifes pass, but following C10 and B14 we omit
them from formal consideration (and they are not included
in the table and figure). The signal-to-noise ratio in TT is
∼104 so tiny differences in absolute calibration between the
data subsets can cause jackknife failure, and the same is
true to a lesser extent for TE and TB. Even in EE the signal
to noise is approaching ∼103 (500 in the l ≈ 110 bin) and
in fact most of the low values in the table are in EE.
However, with a maximum signal-to-noise ratio of ≲10 in
BB such calibration differences are not a concern. All the
BB (and EB) jackknifes are seen to pass, with the 112
numbers in Table I having one greater than 0.99, one less
than 0.01 and a distribution consistent with uniform. Note
that the four test statistics for each spectrum and jackknife
are correlated this must be taken into account when
assessing uniformity.
To form the jackknife spectra we difference the maps

made from the two halves of the data split, divide by two,
and take the power spectrum. This holds the power
spectrum amplitude of a contribution which is uncorrelated
in the two halves (such as noise) constant, while a fully
correlated component (such as sky signal) cancels perfectly.
The amplitude of a component which appears only in one
half will stay the same under this operation as it is in the
fully coadded map and the apparent signal-to-noise will
also stay the same. For a noise-dominated experiment this
means that jackknife tests can only limit potential

contamination to a level comparable to the noise uncer-
tainty. However, the BB band powers shown in Fig. 2 have
signal-to-noise as high as 10. This means that jackknife
tests are extremely powerful in our case—the reductions in
power which occur in the jackknife spectra are empirical
proof that the B-mode pattern on the sky is highly
correlated between all data splits considered.
We have therefore conducted an unusually large number

of jackknife tests trying to imagine data splits which might
conceivably contain differing contamination. Here we
briefly describe each of these:
BICEP2 observed at deck angles of 68°, 113°, 248° and

293°. We can split these in two ways without losing the
ability to make Q and U maps (see Sec. IVG). The deck
jackknife is defined as 68° and 113° vs 248° and 293° while
the alt. deck jackknife is 68° and 293° vs 113° and 248°.
Uniform differential pointing averages down in a coad-
dition of data including an equal mix of 180° complement
angles, but it will be amplified in either of these jackknifes
(as we see in our simulations). The fact that we are passing
these jackknifes indicates that residual beam systematics of
this type are subdominant after deprojection.
The temporal-split simply divides the data into two

equal weight parts sequentially. Similarly, but at the
opposite end of the time scale range, we have the scan
direction jackknife, which differences maps made from the
right and left going half scans, and is sensitive to errors in
the detector transfer function.

BICEP2: E signal
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FIG. 3 (color). Left: BICEP2 apodized E-mode and B-mode maps filtered to 50 < l < 120. Right: The equivalent maps for the first of
the lensed-ΛCDMþ noise simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while the lines
display the equivalent magnitude and orientation of linear polarization. Note that excess B mode is detected over lensing+noise with
high signal-to-noise ratio in the map (s=n > 2 per map mode at l ≈ 70). (Also note that the E-mode and B-mode maps use different
color and length scales.)
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observable nonzero value is 0.002. Most of the TT, TE, and
TB jackknifes pass, but following C10 and B14 we omit
them from formal consideration (and they are not included
in the table and figure). The signal-to-noise ratio in TT is
∼104 so tiny differences in absolute calibration between the
data subsets can cause jackknife failure, and the same is
true to a lesser extent for TE and TB. Even in EE the signal
to noise is approaching ∼103 (500 in the l ≈ 110 bin) and
in fact most of the low values in the table are in EE.
However, with a maximum signal-to-noise ratio of ≲10 in
BB such calibration differences are not a concern. All the
BB (and EB) jackknifes are seen to pass, with the 112
numbers in Table I having one greater than 0.99, one less
than 0.01 and a distribution consistent with uniform. Note
that the four test statistics for each spectrum and jackknife
are correlated this must be taken into account when
assessing uniformity.
To form the jackknife spectra we difference the maps

made from the two halves of the data split, divide by two,
and take the power spectrum. This holds the power
spectrum amplitude of a contribution which is uncorrelated
in the two halves (such as noise) constant, while a fully
correlated component (such as sky signal) cancels perfectly.
The amplitude of a component which appears only in one
half will stay the same under this operation as it is in the
fully coadded map and the apparent signal-to-noise will
also stay the same. For a noise-dominated experiment this
means that jackknife tests can only limit potential

contamination to a level comparable to the noise uncer-
tainty. However, the BB band powers shown in Fig. 2 have
signal-to-noise as high as 10. This means that jackknife
tests are extremely powerful in our case—the reductions in
power which occur in the jackknife spectra are empirical
proof that the B-mode pattern on the sky is highly
correlated between all data splits considered.
We have therefore conducted an unusually large number

of jackknife tests trying to imagine data splits which might
conceivably contain differing contamination. Here we
briefly describe each of these:
BICEP2 observed at deck angles of 68°, 113°, 248° and

293°. We can split these in two ways without losing the
ability to make Q and U maps (see Sec. IVG). The deck
jackknife is defined as 68° and 113° vs 248° and 293° while
the alt. deck jackknife is 68° and 293° vs 113° and 248°.
Uniform differential pointing averages down in a coad-
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angles, but it will be amplified in either of these jackknifes
(as we see in our simulations). The fact that we are passing
these jackknifes indicates that residual beam systematics of
this type are subdominant after deprojection.
The temporal-split simply divides the data into two

equal weight parts sequentially. Similarly, but at the
opposite end of the time scale range, we have the scan
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FIG. 3 (color). Left: BICEP2 apodized E-mode and B-mode maps filtered to 50 < l < 120. Right: The equivalent maps for the first of
the lensed-ΛCDMþ noise simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while the lines
display the equivalent magnitude and orientation of linear polarization. Note that excess B mode is detected over lensing+noise with
high signal-to-noise ratio in the map (s=n > 2 per map mode at l ≈ 70). (Also note that the E-mode and B-mode maps use different
color and length scales.)
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C. Internal consistency tests

We evaluate the consistency of the jackknife spectra with
their ΛCDM expectations by using a simple χ2 statistic,

χ2 ¼ ðd − hmiÞTD−1ðd − hmiÞ; ð7Þ

where d is the vector of observed band-power values, hmi
is the mean of the lensed-ΛCDMþ noise simulations
(except where alternative signal models are considered),
and D is the band-power covariance matrix as evaluated
from those simulations. (Because of differences in sky
coverage between the two halves of a jackknife split, in
conjunction with filtering, the expectation value of some of
the jackknifes is not quite zero—hence we always evaluate
χ2 versus the mean of the simulations. Because the BPWF
overlap slightly adjacent band powers are≲10% correlated.
We zero all but the main and first off-diagonal elements of
D as the other elements are not measured above noise given
the limited simulation statistics.) We also compute χ2 for
each of the simulations (recomputing D each time,

excluding that simulation) and take the probability to
exceed (PTE) the observed value versus the simulated
distribution. In addition to χ2 we compute the sum of
normalized deviations,

χ ¼
X

i

di − hmii
σmi

; ð8Þ

where the di are the observed band-power values and hmii
and σmi

are the mean and standard deviation of the lensed-
ΛCDMþ noise simulations. This statistic tests for sets of
band powers which are consistently all above or below the
expectation. Again we evaluate the PTE of the observed
value against the distribution of the simulations.
We evaluate these statistics both for the full set of nine

band powers (as in C10 and B14), and also for the lower
five of these corresponding to the multipole range of
greatest interest (20 < l < 200). Numerical values are
given in Table I and the distributions are plotted in
Fig. 4. Since we have 500 simulations the minimum
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FIG. 2 (color). BICEP2 power spectrum results for signal (black points) and temporal-split jackknife (blue points). The solid red
curves show the lensed-ΛCDM theory expectations while the dashed red curves show r ¼ 0.2 tensor spectra and the sum of both. The
error bars are the standard deviations of the lensed-ΛCDMþ noise simulations and hence contain no sample variance on tensors. The
probability to exceed (PTE) the observed value of a simple χ2 statistic is given (as evaluated against the simulations). Note the very
different y-axis scales for the jackknife spectra (other than BB). See the text for additional discussion of the BB spectrum. (Note that the
calibration procedure uses EB to set the overall polarization angle so TB and EB as plotted above cannot be used to measure
astrophysical polarization rotation—see Sec. VIII B.)
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Spinning dust
• Spinning dust generates a magnetic field 

• Will align with any present large scale 
magnetic field (e.g. galaxy) 

• Hence an orientation (a vector field) enters 
the dynamics 

• E- and B-modes sourced 

• No “standard model of dust emission”
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Fig. 10: Frequency dependence of the amplitude A

BB of the angular power spectrum DBB

` computed on MB2 defined in Sect. 6.1,
normalized to the 353 GHz amplitude (red points); amplitudes for cross-power spectra are plotted at the geometric mean frequency.
The square of the adopted dust SED, a modified blackbody spectrum with �d = 1.59 and Td = 19.6 K, is over-plotted as a black
dashed-line, again normalized to the 353 GHz point. The ±1� error area arising from the expected dispersion of �d, 0.11 for the
MB2 patch size (Sect. 2.2.1), is displayed in light grey.

↵BB = �0.42 (see Sect. 4.2). In Fig. 10 we plot these amplitudes
as a function of the e↵ective frequency from 143 to 353 GHz, in
units of sky brightness squared, like in Sect. 4.5. Data points at
e↵ective frequencies below 143 GHz are not presented, because
the dust polarization is not detected at these frequencies. An up-
per limit on the synchrotron contribution at 150 GHz from the
Planck LFI data is given in Appendix D.4.

We can see that the frequency dependence of the amplitudes
of the Planck HFI DBB

` spectra is in very good agreement with
a squared dust modified blackbody spectrum having �d = 1.59
and Td = 19.6 K (Planck Collaboration Int. XXII 2014). We note
that this emission model was normalized only to the 353 GHz
point and that no global fit has been performed. Nevertheless,
the �2 value from the amplitudes relative to this model is 4.56
(Ndof = 7). This shows that dust dominates in the specific MB2
region defined where these cross-spectra have been computed.
This result emphasizes the need for a dedicated joint Planck–
BICEP2 analysis.

7. Conclusions

We have presented the first nearly all-sky statistical analysis of
the polarized emission from interstellar dust, focussing mostly
on the characterization of this emission as a foreground contam-
inant at frequencies above 100 GHz. Our quantitative analysis of
the angular dependence of the dust polarization relies on mea-
surements at 353 GHz of the C

EE

` and C

BB

` (alternatively DEE

`

andDBB

` ) angular power spectra for multipoles 40 < ` < 500. At
this frequency only two polarized components are present: dust
emission; and the CMB, which is subdominant in this multipole

range. We have found that the statistical, spatial, and spectral
distribution properties can be represented accurately by a sim-
ple model over most of the sky, and for all frequencies at which
Planck HFI measures polarization.

– The angular power spectra C

EE

` and C

BB

` at 353 GHz are
well fit by power laws in ` with exponents consistent with
↵

EE,BB

= �2.42 ± 0.02, for sky fractions ranging from 24 %
to 72 % for the LR regions used.

– The amplitudes ofDEE

` andDBB

` in the LR regions vary with
mean dust intensity at 353 GHz, hI353i, roughly as hI353i1.9.

– The frequency dependence of the dust DEE

` and DBB

` from
353 GHz down to 100 GHz, obtained after removal of the
DEE

` prediction from the Planck best-fit CMB model (Planck
Collaboration XVI 2014), is accurately described by the
modified blackbody dust emission law derived in Planck
Collaboration Int. XXII (2014), with �d = 1.59 and Td =
19.6 K.

– The ratio between the amplitudes of the two polarization
power spectra is C

BB

` /C
EE

` = 0.53, which is not consistent
with the simplest theoretical models.

– Dust DEE

` and DBB

` spectra computed for 352 high Galactic
latitude 400 deg2 patches satisfy the above general properties
at 353 GHz and have the same frequency dependence.

We have shown that Planck’s determination of the 353 GHz
dust polarization properties is una↵ected by systematic errors
for ` > 40. This enables us to draw the following conclusions
relevant for CMB polarization experiments aimed at detection
of primordial CMB tensor B-modes.
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ABSTRACT

The polarized thermal emission from di↵use Galactic dust is the main foreground present in measurements of the polarization of the cosmic
microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100
to 353 GHz to measure the polarized dust angular power spectra C

EE

` and C

BB

` over the multipole range 40 < ` < 600 well away from the Galactic
plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for
CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the
emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are
well described by power laws in multipole, C` / `↵, with exponents ↵EE,BB = �2.42± 0.02. The amplitudes of the polarization power spectra vary
with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent
with modified blackbody emission with �d = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic di↵erence
between the amplitudes of the Galactic B- and E-modes, C

BB

` /C
EE

` = 0.5. We verify that these general properties are preserved towards high
Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no “clean” windows in the sky
where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the
level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz
gives a dust powerDBB` ⌘ `(`+ 1)CBB

` /(2⇡) of 1.32⇥ 10�2 µK2
CMB over the multipole range of the primordial recombination bump (40 < ` < 120);

the statistical uncertainty is ±0.29 ⇥ 10�2 µK2
CMB and there is an additional uncertainty (+0.28,�0.24) ⇥ 10�2 µK2

CMB from the extrapolation. This
level is the same magnitude as reported by BICEP2 over this ` range, which highlights the need for assessment of the polarized dust signal even in
the cleanest windows of the sky.

Key words. Submillimetre: ISM – Radio continuum: ISM – Polarization – ISM: dust, magnetic fields – cosmic background radiation
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described in detail in Lamarre et al. (2010) and their in-flight per-
formance is reported in Planck HFI Core Team (2011), Planck
Collaboration VII (2014), Planck Collaboration VIII (2014),
Planck Collaboration IX (2014), and Planck Collaboration X
(2014), while Planck Collaboration VI (2014) describes the gen-
eral processing applied to the data to measure polarization. In
this paper, we make use of full-mission (Surveys 1 to 5, 30
months, Planck Collaboration I 2014), polarization maps of the
Planck HFI (internal data release “DX11d”), projected into the
HEALPix pixelization scheme (Górski et al. 2005). This is one of
the first publications to use these maps, which will be described
in the Planck cosmology 2014 release.

To compute polarization angular power spectra, we use Q

and U maps at 100, 143, 217, and 353 GHz. Specifically, we
calculate power spectra using the so-called “Detector-Set” maps
(hereafter “DetSets”), constructed using two subsets of polar-
ization sensitive bolometers (PSBs) at a given frequency (see
table 3 of Planck Collaboration VI 2014). Each DetSet polariza-
tion map is constructed using data from two pairs of PSBs, with
the angle between the two PSBs in a pair being 90�, and the an-
gle between pairs being 45�. In this paper we concentrate on the
Q and U maps at 353 GHz. The Stokes Q and U maps at lower
frequencies (100, 143, and 217 GHz) are only used to determine
the spectral energy distribution (SED) of the dust emission in
polarization.

To quantify systematic e↵ects, we additionally use maps
made from other data subsets (Planck Collaboration VI 2014).
We use the ring halves, (hereafter “HalfRing”), where the ap-
proximately 60 circles performed for each Planck telescope ring
(also called a stable pointing period) are divided into two inde-
pendent subsets of 30 circles. Additionally we use observational
years (hereafter “Years”), consisting of Surveys 1 and 2 on the
one hand and Surveys 3 and 4 on the other, to build two further
maps with independent noise.

The Planck maps we use are in thermodynamic units
(KCMB). To characterize the SED of the dust emission in polar-
ization we express the data as the specific intensity (such as Id(⌫)
for Stokes I dust emission) at the Planck reference frequencies,
using the conversion factors and colour corrections from Planck
Collaboration IX (2014).3 For the average dust SED at interme-
diate Galactic latitudes, the colour correction factor is 1.12 at
353 GHz (see Table 3 in Planck Collaboration Int. XXII 2014).

As well as these basic products, a Planck CO map from
Planck Collaboration XIII (2014), the so-called “Type 3” map,
and the Planck 857 GHz map, are also used in the selection of
the large intermediate latitude analysis regions (see Sect. 3.3.1).

3 The conversion factor from KCMB to MJy sr�1 is computed for
a specific intensity I⌫ / ⌫�1. The colour correction depends on the
dust SED; it is the scaling factor used to transform from the specific
intensity of the dust emission, at the reference frequency, to the Planck

brightness in MJy sr�1 (see equation 19 in Planck Collaboration Int.
XXII 2014). The conversion factors and the colour corrections are
computed via equation (32) in Planck Collaboration IX (2014) using
the Planck HFI filters and the Planck UcCC software available through
the Planck Explanatory Supplement (http://www.sciops.esa.
int/wikiSI/planckpla/index.php?title=Unit_conversion_
and_Color_correction&instance=Planck_Public_PLA); we use
the band-average values.

2.2. Emission contributions to the Planck HFI polarization
maps

2.2.1. Polarized thermal dust emission

Thermal dust emission is partially linearly polarized (e.g.,
Hildebrand et al. 1999; Benoı̂t et al. 2004; Ponthieu et al. 2005;
Vaillancourt 2007). It is the dominant polarized foreground sig-
nal in the high frequency Planck bands (Tucci et al. 2005;
Dunkley et al. 2009b; Fraisse et al. 2009; Fauvet et al. 2011;
Planck Collaboration Int. XXII 2014).

Dust polarization arises from alignment of non-spherical
grains with the interstellar magnetic field (e.g., Hildebrand 1988;
Draine 2004; Martin 2007). The structure of the dust polarization
sky has already been described using maps of the polarization
fraction (p) and angle ( ) derived from the Planck HFI 353 GHz
data (Planck Collaboration Int. XIX 2014; Planck Collaboration
Int. XX 2014). The map of p shows structure on all scales,
with polarization fractions ranging from low (less than 1 %) to
high values (greater than 18 %). Planck Collaboration Int. XIX
(2014) and Planck Collaboration Int. XX (2014) report an anti-
correlation between p and the local dispersion of  , which indi-
cates that variations in p arise mainly from depolarization asso-
ciated with changes in the magnetic field orientation within the
beam, rather than from changes in the e�ciency of grain align-
ment.

Planck Collaboration Int. XXII (2014) showed that the SED
of polarized dust emission over the four Planck HFI frequencies
from 100 to 353 GHz is consistent with a modified blackbody
emission law of the type Id(⌫) / ⌫�d

B⌫(Td), with spectral index
�d = 1.59 for Td = 19.6 K,4 and where B⌫ is the Planck function.
About 39 % of the sky at intermediate Galactic latitudes was
analysed.5 Among 400 circular patches with 10� radius (equiv-
alent to a sky fraction f

e↵
sky = 0.0076) the 1� dispersion of �d

was 0.17 for constant Td = 19.6 K. We scale this uncertainty on
�d to larger sky areas by using the factor (0.0076/ f

e↵
sky)0.5. This

is a conservative choice because this uncertainty includes the ef-
fects of noise in the data and so is an upper limit to the true
regional variations of �d on this scale. This polarization spectral
index can be compared to variations in the spectral index �I

d,mm
for the intensity SED. For that quantity the S/N of the data is
higher than for polarization and Planck Collaboration Int. XXII
(2014) report a dispersion of 0.07 (1�) over the same sized cir-
cular patches. Planck Collaboration Int. XVII (2014) extend this
analysis for intensity to high Galactic latitudes in the southern
Galactic cap, using the dust-H i correlation to separate the faint
emission of dust from the anisotropies of the cosmic infrared
background, and find a dispersion of about 0.10 in �I

d,mm. We
expect spectral variations to be correlated in polarization and in-
tensity, unless the dust emission has a significant component that
is unpolarized.

2.2.2. CMB

The CMB temperature anisotropies have been measured with
unprecedented accuracy by the Planck collaboration (Planck
Collaboration I 2014; Planck Collaboration XV 2014), and pre-
liminary Planck polarization results have been demonstrated to

4 This spectral index was called � p
d,mm in that paper, but we adopt a

more compact notation here.
5 More specifically, for the latitude range 10� < |b| < 60�, with

patches contained within the region in Fig. 1 (below) defined by fsky =
0.8 minus that with fsky = 0.4.
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is a conservative choice because this uncertainty includes the ef-
fects of noise in the data and so is an upper limit to the true
regional variations of �d on this scale. This polarization spectral
index can be compared to variations in the spectral index �I

d,mm
for the intensity SED. For that quantity the S/N of the data is
higher than for polarization and Planck Collaboration Int. XXII
(2014) report a dispersion of 0.07 (1�) over the same sized cir-
cular patches. Planck Collaboration Int. XVII (2014) extend this
analysis for intensity to high Galactic latitudes in the southern
Galactic cap, using the dust-H i correlation to separate the faint
emission of dust from the anisotropies of the cosmic infrared
background, and find a dispersion of about 0.10 in �I

d,mm. We
expect spectral variations to be correlated in polarization and in-
tensity, unless the dust emission has a significant component that
is unpolarized.

2.2.2. CMB

The CMB temperature anisotropies have been measured with
unprecedented accuracy by the Planck collaboration (Planck
Collaboration I 2014; Planck Collaboration XV 2014), and pre-
liminary Planck polarization results have been demonstrated to

4 This spectral index was called � p
d,mm in that paper, but we adopt a

more compact notation here.
5 More specifically, for the latitude range 10� < |b| < 60�, with

patches contained within the region in Fig. 1 (below) defined by fsky =
0.8 minus that with fsky = 0.4.

3
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Fig. 9: Planck 353 GHz DBB

` angular power spectrum computed on MB2 defined in Sect. 6.1 and extrapolated to 150 GHz (box
centres). The shaded boxes represent the ±1� uncertainties: blue for the statistical uncertainties from noise; and red adding in
quadrature the uncertainty from the extrapolation to 150 GHz. The Planck 2013 best-fit ⇤CDMDBB

` CMB model based on temper-
ature anisotropies, with a tensor amplitude fixed at r = 0.2, is overplotted as a black line.

Appendix D.1 confirms that the result does not depend on the
method of computing the power spectrum.

This power spectrum is extrapolated to 150 GHz as in
Sect. 6.2, with an extrapolation uncertainty estimated from the
inferred dispersion of �d. Our final estimate of the DBB

` spec-
trum is presented in Fig. 9, together with its 1� error budget.
For the first bin, `= 40–120, the expected level of dust polarized
DBB

` , as extrapolated to 150 GHz, is 1.32⇥ 10�2 µK2
CMB (Fig. 9).

The statistical error, estimated from Monte Carlo simulations of
inhomogeneous Planck noise (presented in Appendix A for this
particular binning), is ± 0.29⇥10�2 µK2

CMB, so that the dustDBB

`
spectrum is statistically detected at 4.5� in this broad ` bin.

In order to assess the potential contribution from systemat-
ics, we have computed the dust DBB

` spectrum on MB2 on dif-
ferent subsets of the data and performed null tests, which are
presented in Appendix D.3. In this lowest bin of `, we do not ob-
serve any departure from what is allowed by noise. Nevertheless,
we stress that below the noise level our cross-spectra could be
subject to a positive or negative bias due to systematic e↵ects.
For example, if instead of taking the DetSets cross-spectra (as
we have done throughout this paper) we take the mean value
computed from the DetSets, HalfRings, and Years cross-spectra
(presented in Appendix D.3), the statistical significance of our
measurement is decreased from 4.5� to 3.6�.

The uncertainty coming from the MB2 definition (presented
in Appendix D.2) is 0.04 ⇥ 10�2 µK2

CMB for this bin, thus much
less than the statistical error. For this reason, it is not added to
the error budget. However, the spectral extrapolation to 150 GHz
adds an additional uncertainty (+0.28,�0.24) ⇥ 10�2 µK2

CMB to
the estimated power in MB2, added in quadrature in Fig. 9.

The expected value in this lowest-` bin from direct compu-
tation of theDBB

` power spectrum on MB2, as shown in Fig. 9, is
lower than (but consistent with) the statistical expectation from
the analysis of the 352 high Galactic latitude patches presented
in Sects. 5.2 and 6.2. This indicates that MB2 is not one of the
outliers of Fig. 7 and therefore its dust B-mode power is well rep-
resented by its mean dust intensity through the empirical scaling
lawD / hI353i1.9.

These values of the DBB

` amplitude in the ` range of the pri-
mordial recombination bump are of the same magnitude as those
reported by BICEP2 Collaboration (2014b). Our results empha-
size the need for a dedicated joint analysis of the B-mode po-
larization in this region incorporating all pertinent observational
details of the Planck and BICEP2 data sets, which is in progress.

6.4. Frequency dependence

We complement the power spectrum analysis of the 353 GHz
map with Planck data at lower frequencies. As in the analysis
in Sect. 4.5, we compute the frequency dependence of the BB

power measured by Planck at HFI frequencies in the BICEP2
field, using the patch MB2 as defined in Sect. 6.1.

We compute on MB2 the Planck DBB

` auto- and cross-power
spectra from the three Planck HFI bands at 100, 143, 217, and
353 GHz, using the two DetSets with independent noise at each
frequency, resulting in ten angular power spectra (100 ⇥ 100,
100⇥143, 100⇥217, 100⇥353, 143⇥143, 143⇥217, 143⇥353,
217 ⇥ 217, 217 ⇥ 353, and 353 ⇥ 353), constructed by combin-
ing the cross-spectra as presented in Sect. 3.2. We use the same
multipole binning as in Sect. 6.3. To each of these DBB

` spectra,
we fit the amplitude of a power law in ` with a fixed exponent

15

Boxes: Planck’s dust from 350 GHz 
extrapolated to 100/150 GHz
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FIG. 7. Likelihood results when varying the data sets used
and the model priors—see Sec III C for details.

this variant analysis, and so we compare to this
case in Fig. 8 rather than the usual fiducial case.)

• Varying lensing amplitude: in the fiducial anal-
ysis the amplitude of the lensing e↵ect is held
fixed at the ⇤CDM expectation (AL = 1). Using
their own and other data, the Planck Collabora-
tion quote a limit on the amplitude of the lens-
ing e↵ect versus the ⇤CDM expectation of AL =
0.99 ± 0.05 [3]. Allowing AL to float freely, and
using all nine bandpowers, we obtain the results
shown in Fig. 9—there is only weak degeneracy be-
tween AL and both r and Ad. Marginalizing over r
and Ad we find AL = 1.13± 0.18 with a likelihood
ratio between zero and peak of 3⇥10�11. Using the
expression given in Sec. III B this corresponds to a
smaller-than probability of 2⇥10�12, equivalent to
a 7.0� detection of lensing in the BB spectrum.
We note this is the most significant to-date direct
measurement of lensing in B-mode polarization.

IV. LIKELIHOOD VALIDATION

A. Validation with simulations

We run the algorithm used in Sec. III B on ensembles of
simulated realizations to check its performance. We first
consider a model where r = 0 and Ad = 3.6µK2, this lat-
ter being close to the value favored by the data in a dust-
only scenario [46]. We generate Gaussian random real-
izations using the fiducial spatial power law D` / `�0.42,
scale these to the various frequency bands using the mod-
ified blackbody law with Td = 19.6K and �d = 1.59,
and add to the usual realizations of lensed-⇤CDM+noise.
Figure 10 shows the resulting r and Ad constraint curves,
with the result for the real data from Fig. 6 overplotted.
As expected, approximately 50% of the r likelihoods peak
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FIG. 8. Likelihood results for a fit when adding the lower
frequency bands of Planck, and extending the model to in-
clude a synchrotron component. The results for two di↵er-
ent assumed degrees of correlation between the dust and syn-
chrotron sky patterns are compared to those for the compa-
rable model without synchrotron (see text for details).
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FIG. 9. Likelihood results for a fit allowing the lensing
scale factor AL to float freely and using all nine bandpowers.
Marginalizing over r and Ad, we find that AL = 1.13 ± 0.18
and AL = 0 is ruled out with 7.0� significance.

above zero. The median 95% upper limit is r < 0.075.
We find that 8% of the realizations have a ratio L0/Lpeak

less than the 0.38 observed in the real data, in agreement
with the estimate in Sec. III B. Running these dust-only
realizations for BICEP2 only and Keck Array only, we
find that the shift in the maximum likelihood value of r
seen in the real data in Fig. 6 is exceeded in about 10%
of the simulations.
The above simulations assume that the dust compo-

nent follows on average the fiducial D` / `�0.42 spatial
power law, and fluctuates around it in a Gaussian man-
ner. To obtain sample dust sky patterns that may deviate
from this behavior in a way which better reflects reality,
we take the pre-launch version of the Planck Sky Model
(PSM; version 1.7.8 run in “simulation” mode) [24] eval-
uated in the Planck 353GHz band and pull out the same
352 |b|> 35� partially overlapping regions used in PIP-
XXX. We then scale these to the other bands and proceed
as before. Figure 11 presents the results. Some of the re-
gions have dust power orders of magnitude higher than
the real data and we cut them out (selecting 139 regions
with peak Ad < 20µK2). The r likelihoods will broaden
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of Planck we find a highly significant B-mode detection
only in the cross spectrum with 353GHz. We emphasize
that this 150⇥353GHz cross-spectrum has a much higher
signal-to-noise ratio than the 353GHz single-frequency
spectrum that PIP-XXX analyzed.

We have analyzed the data using a multi-frequency,
multi-component fit. In this fit it is necessary to impose
a strong prior on the variation of the brightness of the
dust emission with observing frequency, since the avail-
able data are unable to constrain this alone, due to the
relatively low signal-to-noise ratio in B-mode polariza-
tion at 353GHz. However PIP-XXX clearly shows that
the frequency spectrum of dust emission is quite uniform
across the entire high latitude sky—a necessary condition
for the type of analysis employed here.

We have shown that the final constraint on the tensor-
to-scalar ratio r is very stable when varying the frequency
bands used, as well as the model priors. The result does
di↵er when using the BICEP2 and Keck Array data alone
rather than in combination, but the di↵erence is com-
patible with noise fluctuation. Expanding the model to
include synchrotron emission, while also including lower
Planck frequencies, does not change the result.

Allowing the amplitude of lensing to be free, we ob-
tain AL = 1.13± 0.18, with a significance of detection of
7.0�. This is the most significant direct detection to-date
of lensing in B-mode polarization, even compared to ex-
periments with higher angular resolution. The POLAR-
BEAR experiment has reported a detection of B-mode
lensing on smaller angular scales (500 < ` < 2100), re-
jecting the AL = 0 hypothesis at 97.2% confidence [47].
Additionally, ACT [48] and SPT [49] have reported lens-
ing detections in polarization in cross-correlation with
some other tracer of the dark matter distribution on the
sky.

We have validated the main likelihood analysis on sim-
ulations of a dust-only model and performed a simple
subtraction of scaled spectra, which approximates a map-
based dust cleaning (obtaining an r constraint curve that
peaks somewhat lower). Finally we investigated the pos-
sibility of astrophysical or instrumental decorrelation of
the sky patterns between experiments or frequencies and
find no evidence for relevant bias.

The final result is expressed as a likelihood curve for
r, and yields an upper limit r < 0.12 at 95% confidence.
The median limit in the lensed-⇤CDM+noise+dust sim-
ulations is r < 0.075. It is interesting to compare this
latter to dust-free simulations using only BICEP2/Keck
where the median limit is r < 0.03—the di↵erence rep-
resents the limitation due to noise in the Planck maps,
when marginalizing over dust. The r constraint curve
peaks at r = 0.05 but disfavors zero only by a fac-
tor of 2.5. This is expected by chance 8% of the time,
as confirmed in simulations of a dust-only model. We
emphasize that this significance is too low to be inter-
preted as a detection of primordial B-modes. Transform-
ing the Planck temperature-only 95% confidence limit of
r0.002 < 0.11 [3] to the pivot scale used in this paper

yields r0.05 < 0.12 compatible with the present result.
A COSMOMC module containing the BB bandpowers for

all cross-spectra between the combined BICEP2/Keck
maps and all of the frequencies of Planck will be made
available for download at http://bicepkeck.org.

In order to further constrain or detect IGW, addi-
tional data are required. The Planck Collaboration may
be able to make progress alone using the large angular
scale “reionization bump,” if systematics can be appro-
priately controlled [50]. To take small patch “recombi-
nation bump” studies of the type pursued here to the
next level, data with signal-to-noise comparable to that
achieved by BICEP2/Keck at 150GHz are required at
more than one frequency. Figure 13 summarizes the sit-
uation. The BICEP2/Keck noise is much lower in the BI-
CEP2/Keck field than the Planck noise. However, since
dust emission is dramatically brighter at 353GHz, it is
detected in the cross-spectrum between BICEP2/Keck
and Planck 353GHz. Synchrotron is not detected and
the crossover frequency with dust is <⇠ 100GHz. Planck’s
PR2 data release [51] shows that for the cleanest 73% of
the sky, at 40’ scales, the polarized foreground minimum
is at ⇠80–90GHz. During the 2014 season, two of the
Keck Array receivers observed in the 95GHz band and
these data are under active analysis. BICEP3 will add
substantial additional sensitivity at 95GHz in the 2015,
and especially 2016, seasons. Meanwhile many other
ground-based and sub-orbital experiments are making
measurements at a variety of frequencies and sky cov-
erage fractions.
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Friedmann-Lemaître 
metric

• If we are not in a special position 

• Universe must be everywhere similar to here* 

• First approximation: no space dependence, only time. 

• Invariant under rotations and translations

* realize how revolutionary that idea was (still is)
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Baryon Acoustic 
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• Same peaks as in CMB
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Parameter constraints from Planck

H0=ȧ/a=68.65±0.93


