Cosmology V: CMB Polarization and other themes

Wessel Valkenburg

Outline

Spherical harmonics

$$T(\phi, \theta) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm}(\phi, \theta)$$
$$a_{lm} = \int_{\Omega} d\Omega T(\phi, \theta) Y_{lm}^*$$
$$D_l^{TT} \equiv \frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^2$$

Spherical harmonics

$T(\phi, \theta) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm}(\phi, \theta)$ $a_{lm} = \int_{\Omega} d\Omega T(\phi, \theta) Y_{lm}^*$

 $D_{l}^{TT} \equiv \frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^{2}$

Correlations

$$\langle T(\phi_1, \theta_1) T^*(\phi_2, \theta_2) \rangle = \sum_{l=0}^{\infty} C_l \frac{2l+1}{4\pi} P_l(\hat{n}_1 \cdot \hat{n}_2)$$

For a gaussian random field: $\langle a_{lm} a_{l'm'}^* \rangle \equiv C_l \delta_{ll'} \delta_{mm'}$ independent of *m*! So, $D_l^{TT} \equiv \frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^2$ measures 2l+1independent random variables, drawn from the same gaussian distribution with variance C_l .

Perturbation Theory

$$\frac{\Delta T(\mathbf{n})}{T} = \left[\frac{1}{4}D_g^{(r)} + V_j^{(b)}n^j + \Psi - \Phi\right] \left(\eta_{dec}, \mathbf{x}_{dec}\right) + \int_{\eta_{dec}}^{\eta_0} (\dot{\Psi} - \dot{\Phi})(\eta, \mathbf{x}(\eta))d\eta$$

$$\frac{\Delta T(\mathbf{n})}{T} = \left[\frac{1}{4}D_g^{(r)} + V_j^{(b)}n^j + \Psi - \Phi\right](\eta_{dec}, \mathbf{x}_{dec}) + \int_{\eta_{dec}}^{\eta_0} (\dot{\Psi} - \dot{\Phi})(\eta, \mathbf{x}(\eta))d\eta$$

Photon density

$$\frac{\Delta T(\mathbf{n})}{T} = \begin{bmatrix} \frac{1}{4} D_g^{(r)} + V_j^{(b)} n^j + \Psi - \Phi \end{bmatrix} (\eta_{dec}, \mathbf{x}_{dec}) + \int_{\eta_{dec}}^{\eta_0} (\dot{\Psi} - \dot{\Phi})(\eta, \mathbf{x}(\eta)) d\eta$$
Photon density
Velocity (Doppler)
negligible

$$\frac{\Delta T(\mathbf{n})}{T} = \begin{bmatrix} \frac{1}{4} D_g^{(r)} + V_j^{(b)} n^j + \Psi - \Phi \end{bmatrix} (\eta_{dec}, \mathbf{x}_{dec}) + \int_{\eta_{dec}}^{\eta_0} (\dot{\Psi} - \dot{\Phi})(\eta, \mathbf{x}(\eta)) d\eta$$
Photon density
Gravitational potential
Velocity (Doppler)
negligible

$$\frac{\Delta T(\mathbf{n})}{T} = \begin{bmatrix} \frac{1}{4} D_g^{(r)} + V_j^{(b)} n^j + \Psi - \Phi \end{bmatrix} (\eta_{dec}, \mathbf{x}_{dec}) + \int_{\eta_{dec}}^{\eta_0} (\dot{\Psi} - \dot{\Phi})(\eta, \mathbf{x}(\eta)) d\eta$$
Photon density
Gravitational potential
Velocity (Doppler)
negligible
Time change of gravitational
potential along the photon path

$$\frac{\Delta T(\mathbf{n})}{T} = \left[\frac{1}{4}D_g^{(r)} + V_j^{(b)}n^j + \Psi - \Phi\right] \left(\eta_{dec}, \mathbf{x}_{dec}\right) + \int_{\eta_{dec}}^{\eta_0} (\dot{\Psi} - \dot{\Phi})(\eta, \mathbf{x}(\eta))d\eta$$

For adiabatic perturbations: $D_{q}^{(r)}(k,\eta) = -20/3\Psi(k,\eta)$

$$\left(\frac{\Delta T(\mathbf{n})}{T}\right)_{\text{odiabatic}}^{(OSW)} = \frac{1}{3}\Psi(\eta_{dec}, \mathbf{x}_{dec})$$

see [Durrer, astro-ph/0109522] or [text book "The Cosmic Microwave Background" by Durrer]

adiabatic

Ordinary Sachs-Wolfe effectIntegrated Sachs-Wolfe effect
$$\frac{\Delta T(\mathbf{n})}{T} = \left[\frac{1}{4}D_g^{(r)} + V_j^{(b)}n^j + \Psi - \Phi\right](\eta_{dec}, \mathbf{x}_{dec}) + \int_{\eta_{dec}}^{\eta_0} (\dot{\Psi} - \dot{\Phi})(\eta, \mathbf{x}(\eta))d\eta$$

For adiabatic perturbations:

$$D_g^{(r)}(k,\eta) = -20/3\Psi(k,\eta)$$

$$\left(\frac{\Delta T(\mathbf{n})}{T}\right)_{\text{adiabatic}}^{(OSW)} = \frac{1}{3}\Psi(\eta_{dec}, \mathbf{x}_{dec})$$

Gravity wins! Hot = underdense Cold=overdense

$$\left(\frac{\Delta T(\mathbf{n})}{T}\right)_{\text{adiabatic}}^{(OSW)} = \frac{1}{3}\Psi(\eta_{dec}, \mathbf{x}_{dec})$$

Shortcut

[Durrer, arXiv:astro-ph/0109522]

- Unpolarized light: individual photons random orientation
- Polarized light: individual photons same orientation

Polarization by reflection

Polarization by reflection

Polarization by Thomson scattering

Polarization by Thomson scattering

No polarization by Thomson scattering for isotropic influx

No polarization by Thomson scattering for isotropic influx

Polarization by Thomson scattering of influx with quadrupolar anisotropy

Polarization by Thomson scattering of influx with quadrupolar anisotropy

[from Baumann et al. 2008]

Decompose the vector field

[from Baumann et al. 2008]

Local quadrupole leads to polarized radiation

Local quadrupole with gravity wave sources E&B modes

[from Hu & White 1997]

[from Hu & White 1997]

[from Hu & White 1997]

Equations of motion

$$\dot{\mathcal{M}}_{\ell}^{(m)} - k \left[\frac{{}_{0} \kappa_{\ell}^{m}}{2\ell - 1} \mathcal{M}_{\ell-1}^{(m)} - \frac{{}_{0} \kappa_{\ell+1}^{m}}{2\ell + 3} \mathcal{M}_{\ell+1}^{(m)} \right] = -n_{e} \sigma_{T} a \mathcal{M}_{\ell}^{(m)} + S_{\ell}^{(m)} \quad (\ell \ge m)$$

$$\dot{E}_{\ell}^{(m)} - k \left[\frac{2\kappa_{\ell}^{m}}{2\ell - 1} E_{\ell-1}^{(m)} - \frac{2m}{\ell(\ell+1)} B_{\ell}^{(m)} - \frac{2\kappa_{\ell+1}^{m}}{2\ell + 3} E_{\ell+1}^{(m)} \right] = -n_e \sigma_T a \left[E_{\ell}^{(m)} + \sqrt{6}C^{(m)} \delta_{\ell,2} \right]$$

$$\dot{B}_{\ell}^{(m)} - k \left[\frac{2\kappa_{\ell}^{m}}{2\ell - 1} B_{\ell-1}^{(m)} + \frac{2m}{\ell(\ell+1)} E_{\ell}^{(m)} - \frac{2\kappa_{\ell+1}^{m}}{2\ell + 3} B_{\ell+1}^{(m)} \right] = -n_e \sigma_T a B_{\ell}^{(m)}$$

Equations of motion

$$\dot{\mathcal{M}}_{\ell}^{(m)} - k \left[\frac{{}_{0} \kappa_{\ell}^{m}}{2\ell - 1} \mathcal{M}_{\ell-1}^{(m)} - \frac{{}_{0} \kappa_{\ell+1}^{m}}{2\ell + 3} \mathcal{M}_{\ell+1}^{(m)} \right] = -n_{e} \sigma_{T} a \mathcal{M}_{\ell}^{(m)} + S_{\ell}^{(m)} \quad (\ell \ge m)$$

$$\dot{E}_{\ell}^{(m)} - k \left[\frac{2\kappa_{\ell}^{m}}{2\ell - 1} E_{\ell-1}^{(m)} - \frac{2m}{\ell(\ell+1)} B_{\ell}^{(m)} - \frac{2\kappa_{\ell+1}^{m}}{2\ell + 3} E_{\ell+1}^{(m)} \right] = -n_e \sigma_T a \left[E_{\ell}^{(m)} + \sqrt{6}C^{(m)} \delta_{\ell,2} \right]$$

$$\dot{B}_{\ell}^{(m)} - k \left[\frac{2\kappa_{\ell}^{m}}{2\ell - 1} B_{\ell-1}^{(m)} + \frac{2m}{\ell(\ell+1)} E_{\ell}^{(m)} - \frac{2\kappa_{\ell+1}^{m}}{2\ell + 3} B_{\ell+1}^{(m)} \right] = -n_e \sigma_T a B_{\ell}^{(m)}$$

$$S_{0}^{(0)} = n_{e}\sigma_{T}a\mathcal{M}_{0}^{(0)}, \qquad S_{1}^{(0)} = n_{e}\sigma_{T}a4V_{b} + 4k(\Psi - \Phi),$$

$$S_{2}^{(0)} = n_{e}\sigma_{T}aC^{(0)}, \qquad S_{1}^{(1)} = n_{e}\sigma_{T}a4\omega_{b},$$

$$S_{2}^{(1)} = n_{e}\sigma_{T}aC^{(1)} + 4k\Sigma, \qquad S_{2}^{(2)} = n_{e}\sigma_{T}aC^{(2)} + 4\dot{H}$$

Equations of motion

$$\dot{\mathcal{M}}_{\ell}^{(m)} - k \left[\frac{{}_{0} \kappa_{\ell}^{m}}{2\ell - 1} \mathcal{M}_{\ell-1}^{(m)} - \frac{{}_{0} \kappa_{\ell+1}^{m}}{2\ell + 3} \mathcal{M}_{\ell+1}^{(m)} \right] = -n_{e} \sigma_{T} a \mathcal{M}_{\ell}^{(m)} + S_{\ell}^{(m)} \quad (\ell \ge m)$$

$$\dot{E}_{\ell}^{(m)} - k \left[\frac{2\kappa_{\ell}^{m}}{2\ell - 1} E_{\ell-1}^{(m)} - \frac{2m}{\ell(\ell+1)} B_{\ell}^{(m)} - \frac{2\kappa_{\ell+1}^{m}}{2\ell + 3} E_{\ell+1}^{(m)} \right] = -n_e \sigma_T a \left[E_{\ell}^{(m)} + \sqrt{6}C^{(m)} \delta_{\ell,2} \right]$$

$$\dot{B}_{\ell}^{(m)} - k \left[\frac{2\kappa_{\ell}^{m}}{2\ell - 1} B_{\ell-1}^{(m)} + \frac{2m}{\ell(\ell+1)} E_{\ell}^{(m)} - \frac{2\kappa_{\ell+1}^{m}}{2\ell + 3} B_{\ell+1}^{(m)} \right] = -n_e \sigma_T a B_{\ell}^{(m)}$$

$$C^{(m)} = \frac{1}{10} [\mathcal{M}_{2}^{(m)} - \sqrt{6}E_{2}^{(m)}] \qquad \begin{array}{l} S_{0}^{(0)} = n_{e}\sigma_{T}a\mathcal{M}_{0}^{(0)}, & S_{1}^{(0)} = n_{e}\sigma_{T}a4V_{b} + 4k(\Psi - \Phi), \\ S_{2}^{(0)} = n_{e}\sigma_{T}aC^{(0)}, & S_{1}^{(1)} = n_{e}\sigma_{T}a4\omega_{b}, \\ S_{2}^{(1)} = n_{e}\sigma_{T}aC^{(1)} + 4k\Sigma, & S_{2}^{(2)} = n_{e}\sigma_{T}aC^{(2)} + 4\dot{H} \end{array}$$

Inhomogeneous Ionization

• As reionization completes, ionization regions grow and fill the space

slide from Wayne Hu [http://background.uchicago.edu/~whu]

Secondary anisotropy Reionization

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]

Secondary anisotropy Reionization

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]

Reminder from lecture III

Probe the potential, not the galaxies

• LSST, Euclid, ...

[http://lsst.org/lsst/science/scientist_cosmic_shear]

Reminder from lecture III

Weak lensing

[Hu & White, 2001]

CMB lensing

- Background of E-mode polarized light (from mostly scalar perturbations)
- Travelling through the gravitational potential (a scalar).
- Scalars only?
- Scalar + scalar = nonlinear
 - B-modes generated!

CMB from BICEP2

[BICEP2, March 2014]

CMB from BICEP2

Spinning dust

- Spinning dust generates a magnetic field
- Will align with any present large scale magnetic field (e.g. galaxy)
- Hence an orientation (a vector field) enters the dynamics
- E- and B-modes sourced
- No "standard model of dust emission"

Planck mesaurements of dust, paper XXX

Planck mesaurements of dust, paper XXX

Planck mesaurements of dust, paper XXX

 $C_\ell \propto \ell^lpha$

 $I_{\rm d}(\nu) \propto \nu^{\beta_{\rm d}} B_{\nu}(T_{\rm d}),$

 $\beta_{\rm d} = 1.59$ $T_{\rm d} = 19.6 \, {\rm K},$

 B_{ν} is the Planck function.

Planck measurements of dust, paper XXX

Last Friday's BICEP2+Keck +Planck paper

Conclusion about dust foreground seems robust

Summary of Cosmology

Our light cone

Our light cone

Our light cone

Friedmann-Lemaître metric

- If we are not in a special position
- Universe must be everywhere similar to here*
- First approximation: no space dependence, only time.
 - Invariant under rotations and translations

* realize how revolutionary that idea was (still is)

Baryon Acoustic Oscillations • Same peaks as in CMB

BAO as a distance measure

[following Will Kinney's lecture notes arXiv:0902.1529]

[following Will Kinney's lecture notes arXiv:0902.1529]

