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Outline
• Connection to previous lectures 

• Inflation 

• Solving problems 

• Generating perturbatinos 

• CMB polarization 

• qualitative 

• E/B-modes and inflation and BICEP-II



Correlations
• Structure in the universe has a power 

spectrum. 

• CMB: Cl  or Dl, at z=1100 

• LSS: P(k,z)

• Not discussed the initial conditions 
for differential equation of Φ(k,z).



• Spectrum if universe was made of white noise, 2-point 
correlation vanishes: 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Correlations
• But white noise in what? Look at e.g. 

GR Poisson equation: 

• If P(k)∝kn, origin may still be 
uncorrelated system
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dH=c t, with t age of universe.
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Harrison-Zel’dovich
• Horizon: light can travel at most  

dH=c t, with t age of universe.

• What is the amplitude of <(δρ/ρ)2> of a mode with λ=dH?

• Assume it is ∝ t^n (otherwise there is a preffered epoch)

• if n < 0: divergence in past, local universe is Black Hole

• if n > 0: divergence in future, local universe is Black Hole in 
future

• Only ‘non-special time’ if  <(δρ/ρ)2> at λ=dH  ∝ constant

• Translates to P(k) ∝ k



Harrison-Zel’dovich

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-05  0.0001  0.001  0.01  0.1  1

P
(k

) 
[(

M
p
c 

/ 
h
)3

]

k [h / Mpc]

No 2-point
Best fit to obs.

HZ



Horizon problem
• Conformal time: 
 

• Photons travel on ds2=0 or dτ= ±dr.
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• If radiation domination since Big Bang 
(z=∞)

• CMB decouples at t = 380.000 year

• dH = 50 kpc  
(physical distance, not comoving)

• at z = 1100

• Angular scale: 0.3o

Horizon problem
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• If radiation domination since Big Bang 
(z=∞)

• dH = 50 kpc  
(physical distance, not comoving)

• Angular scale: < 1o

• Why is CMB so uniform?

Horizon problem
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Flatness problem

• Spatial curvature: 
ds2 “aptq2

„
´d⌧2 ` dr2

1 ´ r2
` r2d✓2 ` r2 sin2 ✓d�2

⇢



Flatness problem

• Spatial curvature: 

• If Ω(t)=1, universe is spatially flat.
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Inflation
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Horizon problem solved
We, t=t0, r=0
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• Big bang is still at z=∞  

• More space time pushed into our light 
cone 

• One way of phrasing it: our Universe 
stems from a much smaller patch of initial 
space time, blown up to big proportions 
by inflation, hence it is causally connected.

Horizon problem solved
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FIG. 13: A conformal diagram of light cones in an inflationary universe. Inflation ends in reheating at conformal time ⌧ = 0,
which is the onset of the radiation-dominated expansion of the hot Big Bang. However, inflation provides a “sea” of negative
conformal time, which allows the past light cones of events at the last scattering surface to overlap.

transformations, x ! x0. Second, the metric appears in the kinetic term for the scalar field, where we replace the
Minkowski metric ⌘µ⌫ with the general metric gµ⌫ .

The action (78) is not the most general assumption we could make, as we can see by writing the full action including
gravity,

Stot =
Z

d4x
p
�g


m2

Pl

16⇡
R + L�

�
. (81)

Here R is the Ricci Scalar, composed of the metric and its derivatives. Variation of the first term in the action
results in the Einstein Field Equation (8). Such a minimally coupled theory assumes that there is no direct coupling
between the field and the metric, which would be represented in a more general action by terms which mix R and
�. In practice, many such non-minimally coupled theories can be transformed to a minimally coupled form by a field
redefinition. We could also write a more general theory by modifying the scalar field Lagrangian (79) to contain
non-canonical kinetic terms,

L� = F (�, gµ⌫@µ�@⌫�)� V (�) . (82)

where F () is some function of the field and its derivatives. Such Lagrangians appear frequently in models of inflation
based on string theory, and are a topic of considerable current research interest. We could also complicate the
gravitational sector by replacing the Ricci scalar R with a more complicated function f (R). An example of such a
model is the inflation model of Starobinsky [51], which can be reduced to the form (78) through a field redefinition.
We could also introduce multiple scalar fields.

Here we will confine ourselves for simplicity to a canonical Lagrangian (79) of a single scalar field, for which the

[following Will Kinney’s lecture notes arXiv:0902.1529]
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The simplest example of an accelerating expansion from a negative pressure fluid is the case of vacuum energy we
considered in Section (II B), for which the scale factor increases exponentially,

a / eHt. (74)

For such expansion, the universe is driven exponentially toward a flat geometry,

d ln ⌦
d ln a

= 2 (1� ⌦) . (75)

We can see that the horizon problem is also solved by looking at the conformal time:

d⌧ =
dt

a (t)
= e�Htdt, (76)

so that

⌧ = � 1
H

e�Ht = � 1
aH

. (77)

The conformal time during the inflationary period is negative, tending toward zero at late time. Therefore, if we have
a period of inflationary expansion prior to the early epoch of radiation-dominated expansion, inflation takes place in
negative conformal time, and conformal time ⌧ = 0 represents not the initial singularity but the transition from the
inflationary expansion to radiation domination. The initial singularity is pushed back into negative conformal time,
and can be pushed arbitrarily far depending on the duration of inflation. Figure 13 shows the causal structure of an
inflationary spacetime. The past light cones of two points on the CMB sky do not intersect at ⌧ = 0, but inflation
provides a “sea” of negative conformal time, which allows those points to share a causal past. In this way, inflation
solves the horizon problem.

In more realistic models of inflation in the early universe, the energy density is approximately, but not exactly,
constant, and the expansion is approximately, but not exactly, exponential. In such quasi-de Sitter spaces, the quali-
tative picture above still holds, and inflation provides a clean and compelling explanation for the peculiar boundary
conditions for our universe. In the next section, we discuss how to construct more detailed models of inflation in field
theory.

IV. INFLATION FROM SCALAR FIELDS

The example of de Sitter evolution we considered in Section III gives a good qualitative picture of how inflation,
or accelerated expansion, solves the horizon and flatness problems of the standard Big Bang cosmology. However,
this leaves open the question: what physics is responsible for the accelerated expansion at early times? It cannot
be Einstein’s cosmological constant, simply because a universe dominated by vacuum energy stays dominated by
vacuum energy for the infinite future, since in a de Sitter background matter (⇢ / a�3) and radiation (⇢ / a�4) are
diluted exponentially quickly. Therefore, we will never reach a radiation-dominated phase, and we will never see a
hot Big Bang. In order to transition from an inflating phase to a thermal equilibrium, radiation-dominated phase,
the vacuum-like energy during inflation must be time-dependent. We model this dynamics with a scalar field �, for
which we assume the following action:

S =
Z

d4x
p
�gL�, (78)

where g ⌘ Det (gµ⌫) is the determinant of the metric and the Lagrangian for the field � is

L� =
1
2
gµ⌫@µ�@⌫�� V (�) . (79)

Comparing the action (78) and the Lagrangian (79) with their Minkowski counterparts illustrates how we generalize
a classical field theory to curved spacetime:

SMinkowski =
Z

d4x


1
2
⌘µ⌫@µ�@⌫�� V (�)

�
. (80)

The metric appears in two places in the curved-spacetime action: First, it appears in the measure of volume in
the four-space, d4x, where the determinant of the metric takes the role of the Jacobian for arbitrary coordinate
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only adjustable quantity is the choice of potential V (�). For simplicity, we assume a flat spacetime,

gµ⌫ =

0

BBB@

1
�a2(t)

�a2(t)
�a2(t)

1

CCCA
, (83)

and the equation of motion for the field � with a Lagrangian given by Eq. (79) is:

�̈ + 3H�̇�r2� +
�V

��
= 0, (84)

where an overdot indicates a derivative with respect to the coordinate time t, and H = ȧ/a is the Hubble parameter.
We will be particularly interested in the homogeneous mode of the field, for which the gradient term vanishes, r� = 0,
so that the the functional derivative �V/�� simplifies to an ordinary derivative, and the equation of motion simplifies
to4

�̈ + 3H�̇ + V 0 (�) = 0. (85)

The stress-energy for a scalar field is given by

Tµ⌫ = @µ�@⌫�� gµ⌫L�, (86)

and, for a homogeneous field, it takes the form of a perfect fluid with energy density ⇢ and pressure p, with

⇢ =
1
2
�̇2 + V (�) ,

p =
1
2
�̇2 � V (�) . (87)

We see that the de Sitter limit, p ' �⇢, is just the limit in which the potential energy of the field dominates the
kinetic energy, �̇2 ⌧ V (�). This limit is referred to as slow roll, and under such conditions the universe expands
quasi-exponentially,

a (t) / exp
✓Z

Hdt

◆
⌘ e�N , (88)

where it is conventional to define the number of e-folds N with the sign convention

dN ⌘ �Hdt, (89)

so that N is large in the far past and decreases as we go forward in time and as the scale factor a increases.
This can be made quantitative by plugging the energy and pressure (87) into the Friedmann Equation

H2 =
✓

ȧ

a

◆2

=
8⇡

3m2
Pl


1
2
�̇2 + V (�)

�
, (90)

and the Raychaudhuri Equation, which we write in the convenient form
✓

ä

a

◆
= � 4⇡

3m2
Pl

(⇢ + 3p) = H2 (1� ✏) . (91)

4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.

EOM
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considered in Section (II B), for which the scale factor increases exponentially,

a / eHt. (74)

For such expansion, the universe is driven exponentially toward a flat geometry,

d ln ⌦
d ln a

= 2 (1� ⌦) . (75)

We can see that the horizon problem is also solved by looking at the conformal time:

d⌧ =
dt

a (t)
= e�Htdt, (76)

so that

⌧ = � 1
H

e�Ht = � 1
aH

. (77)

The conformal time during the inflationary period is negative, tending toward zero at late time. Therefore, if we have
a period of inflationary expansion prior to the early epoch of radiation-dominated expansion, inflation takes place in
negative conformal time, and conformal time ⌧ = 0 represents not the initial singularity but the transition from the
inflationary expansion to radiation domination. The initial singularity is pushed back into negative conformal time,
and can be pushed arbitrarily far depending on the duration of inflation. Figure 13 shows the causal structure of an
inflationary spacetime. The past light cones of two points on the CMB sky do not intersect at ⌧ = 0, but inflation
provides a “sea” of negative conformal time, which allows those points to share a causal past. In this way, inflation
solves the horizon problem.

In more realistic models of inflation in the early universe, the energy density is approximately, but not exactly,
constant, and the expansion is approximately, but not exactly, exponential. In such quasi-de Sitter spaces, the quali-
tative picture above still holds, and inflation provides a clean and compelling explanation for the peculiar boundary
conditions for our universe. In the next section, we discuss how to construct more detailed models of inflation in field
theory.

IV. INFLATION FROM SCALAR FIELDS

The example of de Sitter evolution we considered in Section III gives a good qualitative picture of how inflation,
or accelerated expansion, solves the horizon and flatness problems of the standard Big Bang cosmology. However,
this leaves open the question: what physics is responsible for the accelerated expansion at early times? It cannot
be Einstein’s cosmological constant, simply because a universe dominated by vacuum energy stays dominated by
vacuum energy for the infinite future, since in a de Sitter background matter (⇢ / a�3) and radiation (⇢ / a�4) are
diluted exponentially quickly. Therefore, we will never reach a radiation-dominated phase, and we will never see a
hot Big Bang. In order to transition from an inflating phase to a thermal equilibrium, radiation-dominated phase,
the vacuum-like energy during inflation must be time-dependent. We model this dynamics with a scalar field �, for
which we assume the following action:

S =
Z

d4x
p
�gL�, (78)

where g ⌘ Det (gµ⌫) is the determinant of the metric and the Lagrangian for the field � is

L� =
1
2
gµ⌫@µ�@⌫�� V (�) . (79)

Comparing the action (78) and the Lagrangian (79) with their Minkowski counterparts illustrates how we generalize
a classical field theory to curved spacetime:

SMinkowski =
Z

d4x


1
2
⌘µ⌫@µ�@⌫�� V (�)

�
. (80)

The metric appears in two places in the curved-spacetime action: First, it appears in the measure of volume in
the four-space, d4x, where the determinant of the metric takes the role of the Jacobian for arbitrary coordinate
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only adjustable quantity is the choice of potential V (�). For simplicity, we assume a flat spacetime,
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and the equation of motion for the field � with a Lagrangian given by Eq. (79) is:

�̈ + 3H�̇�r2� +
�V

��
= 0, (84)

where an overdot indicates a derivative with respect to the coordinate time t, and H = ȧ/a is the Hubble parameter.
We will be particularly interested in the homogeneous mode of the field, for which the gradient term vanishes, r� = 0,
so that the the functional derivative �V/�� simplifies to an ordinary derivative, and the equation of motion simplifies
to4

�̈ + 3H�̇ + V 0 (�) = 0. (85)

The stress-energy for a scalar field is given by

Tµ⌫ = @µ�@⌫�� gµ⌫L�, (86)

and, for a homogeneous field, it takes the form of a perfect fluid with energy density ⇢ and pressure p, with

⇢ =
1
2
�̇2 + V (�) ,

p =
1
2
�̇2 � V (�) . (87)

We see that the de Sitter limit, p ' �⇢, is just the limit in which the potential energy of the field dominates the
kinetic energy, �̇2 ⌧ V (�). This limit is referred to as slow roll, and under such conditions the universe expands
quasi-exponentially,

a (t) / exp
✓Z

Hdt

◆
⌘ e�N , (88)

where it is conventional to define the number of e-folds N with the sign convention

dN ⌘ �Hdt, (89)

so that N is large in the far past and decreases as we go forward in time and as the scale factor a increases.
This can be made quantitative by plugging the energy and pressure (87) into the Friedmann Equation
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, (90)

and the Raychaudhuri Equation, which we write in the convenient form
✓
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◆
= � 4⇡
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(⇢ + 3p) = H2 (1� ✏) . (91)

4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.
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FIG. 13: A conformal diagram of light cones in an inflationary universe. Inflation ends in reheating at conformal time ⌧ = 0,
which is the onset of the radiation-dominated expansion of the hot Big Bang. However, inflation provides a “sea” of negative
conformal time, which allows the past light cones of events at the last scattering surface to overlap.

transformations, x ! x0. Second, the metric appears in the kinetic term for the scalar field, where we replace the
Minkowski metric ⌘µ⌫ with the general metric gµ⌫ .

The action (78) is not the most general assumption we could make, as we can see by writing the full action including
gravity,

Stot =
Z

d4x
p
�g


m2

Pl

16⇡
R + L�

�
. (81)

Here R is the Ricci Scalar, composed of the metric and its derivatives. Variation of the first term in the action
results in the Einstein Field Equation (8). Such a minimally coupled theory assumes that there is no direct coupling
between the field and the metric, which would be represented in a more general action by terms which mix R and
�. In practice, many such non-minimally coupled theories can be transformed to a minimally coupled form by a field
redefinition. We could also write a more general theory by modifying the scalar field Lagrangian (79) to contain
non-canonical kinetic terms,

L� = F (�, gµ⌫@µ�@⌫�)� V (�) . (82)

where F () is some function of the field and its derivatives. Such Lagrangians appear frequently in models of inflation
based on string theory, and are a topic of considerable current research interest. We could also complicate the
gravitational sector by replacing the Ricci scalar R with a more complicated function f (R). An example of such a
model is the inflation model of Starobinsky [51], which can be reduced to the form (78) through a field redefinition.
We could also introduce multiple scalar fields.

Here we will confine ourselves for simplicity to a canonical Lagrangian (79) of a single scalar field, for which the
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The simplest example of an accelerating expansion from a negative pressure fluid is the case of vacuum energy we
considered in Section (II B), for which the scale factor increases exponentially,

a / eHt. (74)

For such expansion, the universe is driven exponentially toward a flat geometry,
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so that
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The conformal time during the inflationary period is negative, tending toward zero at late time. Therefore, if we have
a period of inflationary expansion prior to the early epoch of radiation-dominated expansion, inflation takes place in
negative conformal time, and conformal time ⌧ = 0 represents not the initial singularity but the transition from the
inflationary expansion to radiation domination. The initial singularity is pushed back into negative conformal time,
and can be pushed arbitrarily far depending on the duration of inflation. Figure 13 shows the causal structure of an
inflationary spacetime. The past light cones of two points on the CMB sky do not intersect at ⌧ = 0, but inflation
provides a “sea” of negative conformal time, which allows those points to share a causal past. In this way, inflation
solves the horizon problem.

In more realistic models of inflation in the early universe, the energy density is approximately, but not exactly,
constant, and the expansion is approximately, but not exactly, exponential. In such quasi-de Sitter spaces, the quali-
tative picture above still holds, and inflation provides a clean and compelling explanation for the peculiar boundary
conditions for our universe. In the next section, we discuss how to construct more detailed models of inflation in field
theory.

IV. INFLATION FROM SCALAR FIELDS

The example of de Sitter evolution we considered in Section III gives a good qualitative picture of how inflation,
or accelerated expansion, solves the horizon and flatness problems of the standard Big Bang cosmology. However,
this leaves open the question: what physics is responsible for the accelerated expansion at early times? It cannot
be Einstein’s cosmological constant, simply because a universe dominated by vacuum energy stays dominated by
vacuum energy for the infinite future, since in a de Sitter background matter (⇢ / a�3) and radiation (⇢ / a�4) are
diluted exponentially quickly. Therefore, we will never reach a radiation-dominated phase, and we will never see a
hot Big Bang. In order to transition from an inflating phase to a thermal equilibrium, radiation-dominated phase,
the vacuum-like energy during inflation must be time-dependent. We model this dynamics with a scalar field �, for
which we assume the following action:

S =
Z

d4x
p
�gL�, (78)

where g ⌘ Det (gµ⌫) is the determinant of the metric and the Lagrangian for the field � is

L� =
1
2
gµ⌫@µ�@⌫�� V (�) . (79)

Comparing the action (78) and the Lagrangian (79) with their Minkowski counterparts illustrates how we generalize
a classical field theory to curved spacetime:

SMinkowski =
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The metric appears in two places in the curved-spacetime action: First, it appears in the measure of volume in
the four-space, d4x, where the determinant of the metric takes the role of the Jacobian for arbitrary coordinate
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only adjustable quantity is the choice of potential V (�). For simplicity, we assume a flat spacetime,
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and the equation of motion for the field � with a Lagrangian given by Eq. (79) is:

�̈ + 3H�̇�r2� +
�V

��
= 0, (84)

where an overdot indicates a derivative with respect to the coordinate time t, and H = ȧ/a is the Hubble parameter.
We will be particularly interested in the homogeneous mode of the field, for which the gradient term vanishes, r� = 0,
so that the the functional derivative �V/�� simplifies to an ordinary derivative, and the equation of motion simplifies
to4

�̈ + 3H�̇ + V 0 (�) = 0. (85)

The stress-energy for a scalar field is given by

Tµ⌫ = @µ�@⌫�� gµ⌫L�, (86)

and, for a homogeneous field, it takes the form of a perfect fluid with energy density ⇢ and pressure p, with

⇢ =
1
2
�̇2 + V (�) ,

p =
1
2
�̇2 � V (�) . (87)

We see that the de Sitter limit, p ' �⇢, is just the limit in which the potential energy of the field dominates the
kinetic energy, �̇2 ⌧ V (�). This limit is referred to as slow roll, and under such conditions the universe expands
quasi-exponentially,
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Hdt
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⌘ e�N , (88)

where it is conventional to define the number of e-folds N with the sign convention

dN ⌘ �Hdt, (89)

so that N is large in the far past and decreases as we go forward in time and as the scale factor a increases.
This can be made quantitative by plugging the energy and pressure (87) into the Friedmann Equation
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and the Raychaudhuri Equation, which we write in the convenient form
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4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.
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We see that the de Sitter limit, p ' �⇢, is just the limit in which the potential energy of the field dominates the
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We will be particularly interested in the homogeneous mode of the field, for which the gradient term vanishes, r� = 0,
so that the the functional derivative �V/�� simplifies to an ordinary derivative, and the equation of motion simplifies
to4

�̈ + 3H�̇ + V 0 (�) = 0. (85)

The stress-energy for a scalar field is given by

Tµ⌫ = @µ�@⌫�� gµ⌫L�, (86)

and, for a homogeneous field, it takes the form of a perfect fluid with energy density ⇢ and pressure p, with

⇢ =
1
2
�̇2 + V (�) ,

p =
1
2
�̇2 � V (�) . (87)

We see that the de Sitter limit, p ' �⇢, is just the limit in which the potential energy of the field dominates the
kinetic energy, �̇2 ⌧ V (�). This limit is referred to as slow roll, and under such conditions the universe expands
quasi-exponentially,

a (t) / exp
✓Z

Hdt

◆
⌘ e�N , (88)

where it is conventional to define the number of e-folds N with the sign convention

dN ⌘ �Hdt, (89)

so that N is large in the far past and decreases as we go forward in time and as the scale factor a increases.
This can be made quantitative by plugging the energy and pressure (87) into the Friedmann Equation

H2 =
✓

ȧ
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FIG. 13: A conformal diagram of light cones in an inflationary universe. Inflation ends in reheating at conformal time ⌧ = 0,
which is the onset of the radiation-dominated expansion of the hot Big Bang. However, inflation provides a “sea” of negative
conformal time, which allows the past light cones of events at the last scattering surface to overlap.

transformations, x ! x0. Second, the metric appears in the kinetic term for the scalar field, where we replace the
Minkowski metric ⌘µ⌫ with the general metric gµ⌫ .

The action (78) is not the most general assumption we could make, as we can see by writing the full action including
gravity,
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Z

d4x
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Here R is the Ricci Scalar, composed of the metric and its derivatives. Variation of the first term in the action
results in the Einstein Field Equation (8). Such a minimally coupled theory assumes that there is no direct coupling
between the field and the metric, which would be represented in a more general action by terms which mix R and
�. In practice, many such non-minimally coupled theories can be transformed to a minimally coupled form by a field
redefinition. We could also write a more general theory by modifying the scalar field Lagrangian (79) to contain
non-canonical kinetic terms,

L� = F (�, gµ⌫@µ�@⌫�)� V (�) . (82)

where F () is some function of the field and its derivatives. Such Lagrangians appear frequently in models of inflation
based on string theory, and are a topic of considerable current research interest. We could also complicate the
gravitational sector by replacing the Ricci scalar R with a more complicated function f (R). An example of such a
model is the inflation model of Starobinsky [51], which can be reduced to the form (78) through a field redefinition.
We could also introduce multiple scalar fields.

Here we will confine ourselves for simplicity to a canonical Lagrangian (79) of a single scalar field, for which the
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The simplest example of an accelerating expansion from a negative pressure fluid is the case of vacuum energy we
considered in Section (II B), for which the scale factor increases exponentially,

a / eHt. (74)

For such expansion, the universe is driven exponentially toward a flat geometry,
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We can see that the horizon problem is also solved by looking at the conformal time:
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The conformal time during the inflationary period is negative, tending toward zero at late time. Therefore, if we have
a period of inflationary expansion prior to the early epoch of radiation-dominated expansion, inflation takes place in
negative conformal time, and conformal time ⌧ = 0 represents not the initial singularity but the transition from the
inflationary expansion to radiation domination. The initial singularity is pushed back into negative conformal time,
and can be pushed arbitrarily far depending on the duration of inflation. Figure 13 shows the causal structure of an
inflationary spacetime. The past light cones of two points on the CMB sky do not intersect at ⌧ = 0, but inflation
provides a “sea” of negative conformal time, which allows those points to share a causal past. In this way, inflation
solves the horizon problem.

In more realistic models of inflation in the early universe, the energy density is approximately, but not exactly,
constant, and the expansion is approximately, but not exactly, exponential. In such quasi-de Sitter spaces, the quali-
tative picture above still holds, and inflation provides a clean and compelling explanation for the peculiar boundary
conditions for our universe. In the next section, we discuss how to construct more detailed models of inflation in field
theory.

IV. INFLATION FROM SCALAR FIELDS

The example of de Sitter evolution we considered in Section III gives a good qualitative picture of how inflation,
or accelerated expansion, solves the horizon and flatness problems of the standard Big Bang cosmology. However,
this leaves open the question: what physics is responsible for the accelerated expansion at early times? It cannot
be Einstein’s cosmological constant, simply because a universe dominated by vacuum energy stays dominated by
vacuum energy for the infinite future, since in a de Sitter background matter (⇢ / a�3) and radiation (⇢ / a�4) are
diluted exponentially quickly. Therefore, we will never reach a radiation-dominated phase, and we will never see a
hot Big Bang. In order to transition from an inflating phase to a thermal equilibrium, radiation-dominated phase,
the vacuum-like energy during inflation must be time-dependent. We model this dynamics with a scalar field �, for
which we assume the following action:

S =
Z

d4x
p
�gL�, (78)

where g ⌘ Det (gµ⌫) is the determinant of the metric and the Lagrangian for the field � is

L� =
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Comparing the action (78) and the Lagrangian (79) with their Minkowski counterparts illustrates how we generalize
a classical field theory to curved spacetime:
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The metric appears in two places in the curved-spacetime action: First, it appears in the measure of volume in
the four-space, d4x, where the determinant of the metric takes the role of the Jacobian for arbitrary coordinate
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where an overdot indicates a derivative with respect to the coordinate time t, and H = ȧ/a is the Hubble parameter.
We will be particularly interested in the homogeneous mode of the field, for which the gradient term vanishes, r� = 0,
so that the the functional derivative �V/�� simplifies to an ordinary derivative, and the equation of motion simplifies
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The stress-energy for a scalar field is given by
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and, for a homogeneous field, it takes the form of a perfect fluid with energy density ⇢ and pressure p, with
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ȧ

a

◆2

=
8⇡

3m2
Pl


1
2
�̇2 + V (�)

�
, (90)

and the Raychaudhuri Equation, which we write in the convenient form
✓

ä
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4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.
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We will be particularly interested in the homogeneous mode of the field, for which the gradient term vanishes, r� = 0,
so that the the functional derivative �V/�� simplifies to an ordinary derivative, and the equation of motion simplifies
to4

�̈ + 3H�̇ + V 0 (�) = 0. (85)

The stress-energy for a scalar field is given by

Tµ⌫ = @µ�@⌫�� gµ⌫L�, (86)

and, for a homogeneous field, it takes the form of a perfect fluid with energy density ⇢ and pressure p, with

⇢ =
1
2
�̇2 + V (�) ,

p =
1
2
�̇2 � V (�) . (87)

We see that the de Sitter limit, p ' �⇢, is just the limit in which the potential energy of the field dominates the
kinetic energy, �̇2 ⌧ V (�). This limit is referred to as slow roll, and under such conditions the universe expands
quasi-exponentially,

a (t) / exp
✓Z

Hdt

◆
⌘ e�N , (88)

where it is conventional to define the number of e-folds N with the sign convention

dN ⌘ �Hdt, (89)

so that N is large in the far past and decreases as we go forward in time and as the scale factor a increases.
This can be made quantitative by plugging the energy and pressure (87) into the Friedmann Equation

H2 =
✓

ȧ
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4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
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investigating the observational consequences of inflation.
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4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.
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why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.
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4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.
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4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.
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We see that the de Sitter limit, p ' �⇢, is just the limit in which the potential energy of the field dominates the
kinetic energy, �̇2 ⌧ V (�). This limit is referred to as slow roll, and under such conditions the universe expands
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where it is conventional to define the number of e-folds N with the sign convention

dN ⌘ �Hdt, (89)

so that N is large in the far past and decreases as we go forward in time and as the scale factor a increases.
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4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.
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Here H2 is given in terms of � by the Friedmann Equation (90), and the parameter ✏ specifies the equation of state,
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It is a straightforward exercise to show that ✏ is related to the evolution of the Hubble parameter by

✏ = �d lnH
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, (93)

where N is the number of e-folds (89). This is a useful parameterization because the condition for accelerated
expansion ä > 0 is simply equivalent to ✏ < 1. The de Sitter limit p! �⇢ is equivalent to ✏! 0, so that the potential
V (�) dominates the energy density, and
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We make the additional approximation that the friction term in the equation of motion (85) dominates,

�̈⌧ 3H�̇, (95)

so that the equation of motion for the scalar field is approximately

3H�̇ + V 0 (�) ' 0. (96)

Equation (96) together with the Friedmann Equation (94) are together referred to as the slow roll approximation.
The condition (95) can be expressed in terms of a second dimensionless parameter, conventionally defined as
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The parameters ✏ and ⌘ are referred to as slow roll parameters, and the slow roll approximation is valid as long as
both are small, ✏, |⌘|⌧ 1. It is not obvious that this will be a valid approximation for situations of physical interest:
⌘ need not be small for inflation to take place. Inflation takes place when ✏ < 1, regardless of the value of ⌘. We later
demonstrate explicitly that slow roll does in fact hold for interesting choices of inflationary potential. In the limit of
slow roll, we can use Eqs. (94, 96) to write the parameter ✏ approximately as
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The inflationary limit, ✏⌧ 1 is then just equivalent to a field evolving on a flat potential, V 0 (�)⌧ V (�). The second
slow roll parameter ⌘ can likewise be written approximately as:
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so that the curvature V 00 of the potential must also be small for slow roll to be a valid approximation. Similarly, we
can write number of e-folds as a function N (�) of the field as:
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The limits on the last integral are defined such that �e is a fixed field value, which we will later take to be the end
of inflation, and N increases as we go backward in time, representing the number of e-folds of expansion which take
place between field value � and �e.
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We see that the de Sitter limit, p ' �⇢, is just the limit in which the potential energy of the field dominates the
kinetic energy, �̇2 ⌧ V (�). This limit is referred to as slow roll, and under such conditions the universe expands
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4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.
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ȧ

a

◆2

=
8⇡

3m2
Pl


1
2
�̇2 + V (�)

�
, (90)

and the Raychaudhuri Equation, which we write in the convenient form
✓

ä
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Here H2 is given in terms of � by the Friedmann Equation (90), and the parameter ✏ specifies the equation of state,
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It is a straightforward exercise to show that ✏ is related to the evolution of the Hubble parameter by

✏ = �d lnH
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where N is the number of e-folds (89). This is a useful parameterization because the condition for accelerated
expansion ä > 0 is simply equivalent to ✏ < 1. The de Sitter limit p! �⇢ is equivalent to ✏! 0, so that the potential
V (�) dominates the energy density, and

H2 ' 8⇡
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We make the additional approximation that the friction term in the equation of motion (85) dominates,

�̈⌧ 3H�̇, (95)

so that the equation of motion for the scalar field is approximately

3H�̇ + V 0 (�) ' 0. (96)

Equation (96) together with the Friedmann Equation (94) are together referred to as the slow roll approximation.
The condition (95) can be expressed in terms of a second dimensionless parameter, conventionally defined as
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The parameters ✏ and ⌘ are referred to as slow roll parameters, and the slow roll approximation is valid as long as
both are small, ✏, |⌘|⌧ 1. It is not obvious that this will be a valid approximation for situations of physical interest:
⌘ need not be small for inflation to take place. Inflation takes place when ✏ < 1, regardless of the value of ⌘. We later
demonstrate explicitly that slow roll does in fact hold for interesting choices of inflationary potential. In the limit of
slow roll, we can use Eqs. (94, 96) to write the parameter ✏ approximately as

✏ =
4⇡

m2
Pl

 
�̇

H

!2

' m2
Pl

16⇡

✓
V 0 (�)
V (�)

◆2

. (98)

The inflationary limit, ✏⌧ 1 is then just equivalent to a field evolving on a flat potential, V 0 (�)⌧ V (�). The second
slow roll parameter ⌘ can likewise be written approximately as:
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so that the curvature V 00 of the potential must also be small for slow roll to be a valid approximation. Similarly, we
can write number of e-folds as a function N (�) of the field as:
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The limits on the last integral are defined such that �e is a fixed field value, which we will later take to be the end
of inflation, and N increases as we go backward in time, representing the number of e-folds of expansion which take
place between field value � and �e.
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demonstrate explicitly that slow roll does in fact hold for interesting choices of inflationary potential. In the limit of
slow roll, we can use Eqs. (94, 96) to write the parameter ✏ approximately as
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The inflationary limit, ✏⌧ 1 is then just equivalent to a field evolving on a flat potential, V 0 (�)⌧ V (�). The second
slow roll parameter ⌘ can likewise be written approximately as:
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so that the curvature V 00 of the potential must also be small for slow roll to be a valid approximation. Similarly, we
can write number of e-folds as a function N (�) of the field as:
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The limits on the last integral are defined such that �e is a fixed field value, which we will later take to be the end
of inflation, and N increases as we go backward in time, representing the number of e-folds of expansion which take
place between field value � and �e.
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only adjustable quantity is the choice of potential V (�). For simplicity, we assume a flat spacetime,
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and the equation of motion for the field � with a Lagrangian given by Eq. (79) is:

�̈ + 3H�̇�r2� +
�V

��
= 0, (84)

where an overdot indicates a derivative with respect to the coordinate time t, and H = ȧ/a is the Hubble parameter.
We will be particularly interested in the homogeneous mode of the field, for which the gradient term vanishes, r� = 0,
so that the the functional derivative �V/�� simplifies to an ordinary derivative, and the equation of motion simplifies
to4

�̈ + 3H�̇ + V 0 (�) = 0. (85)

The stress-energy for a scalar field is given by

Tµ⌫ = @µ�@⌫�� gµ⌫L�, (86)

and, for a homogeneous field, it takes the form of a perfect fluid with energy density ⇢ and pressure p, with

⇢ =
1
2
�̇2 + V (�) ,

p =
1
2
�̇2 � V (�) . (87)

We see that the de Sitter limit, p ' �⇢, is just the limit in which the potential energy of the field dominates the
kinetic energy, �̇2 ⌧ V (�). This limit is referred to as slow roll, and under such conditions the universe expands
quasi-exponentially,
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where it is conventional to define the number of e-folds N with the sign convention

dN ⌘ �Hdt, (89)

so that N is large in the far past and decreases as we go forward in time and as the scale factor a increases.
This can be made quantitative by plugging the energy and pressure (87) into the Friedmann Equation
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ȧ

a

◆2

=
8⇡

3m2
Pl


1
2
�̇2 + V (�)

�
, (90)

and the Raychaudhuri Equation, which we write in the convenient form
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4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.
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Here H2 is given in terms of � by the Friedmann Equation (90), and the parameter ✏ specifies the equation of state,
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It is a straightforward exercise to show that ✏ is related to the evolution of the Hubble parameter by
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where N is the number of e-folds (89). This is a useful parameterization because the condition for accelerated
expansion ä > 0 is simply equivalent to ✏ < 1. The de Sitter limit p! �⇢ is equivalent to ✏! 0, so that the potential
V (�) dominates the energy density, and
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We make the additional approximation that the friction term in the equation of motion (85) dominates,

�̈⌧ 3H�̇, (95)

so that the equation of motion for the scalar field is approximately

3H�̇ + V 0 (�) ' 0. (96)

Equation (96) together with the Friedmann Equation (94) are together referred to as the slow roll approximation.
The condition (95) can be expressed in terms of a second dimensionless parameter, conventionally defined as
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The parameters ✏ and ⌘ are referred to as slow roll parameters, and the slow roll approximation is valid as long as
both are small, ✏, |⌘|⌧ 1. It is not obvious that this will be a valid approximation for situations of physical interest:
⌘ need not be small for inflation to take place. Inflation takes place when ✏ < 1, regardless of the value of ⌘. We later
demonstrate explicitly that slow roll does in fact hold for interesting choices of inflationary potential. In the limit of
slow roll, we can use Eqs. (94, 96) to write the parameter ✏ approximately as
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The inflationary limit, ✏⌧ 1 is then just equivalent to a field evolving on a flat potential, V 0 (�)⌧ V (�). The second
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so that the curvature V 00 of the potential must also be small for slow roll to be a valid approximation. Similarly, we
can write number of e-folds as a function N (�) of the field as:
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The limits on the last integral are defined such that �e is a fixed field value, which we will later take to be the end
of inflation, and N increases as we go backward in time, representing the number of e-folds of expansion which take
place between field value � and �e.
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The inflationary limit, ✏⌧ 1 is then just equivalent to a field evolving on a flat potential, V 0 (�)⌧ V (�). The second
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so that the curvature V 00 of the potential must also be small for slow roll to be a valid approximation. Similarly, we
can write number of e-folds as a function N (�) of the field as:
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The limits on the last integral are defined such that �e is a fixed field value, which we will later take to be the end
of inflation, and N increases as we go backward in time, representing the number of e-folds of expansion which take
place between field value � and �e.
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why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field � will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
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It is a straightforward exercise to show that ✏ is related to the evolution of the Hubble parameter by
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where N is the number of e-folds (89). This is a useful parameterization because the condition for accelerated
expansion ä > 0 is simply equivalent to ✏ < 1. The de Sitter limit p! �⇢ is equivalent to ✏! 0, so that the potential
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We make the additional approximation that the friction term in the equation of motion (85) dominates,
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so that the equation of motion for the scalar field is approximately
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The parameters ✏ and ⌘ are referred to as slow roll parameters, and the slow roll approximation is valid as long as
both are small, ✏, |⌘|⌧ 1. It is not obvious that this will be a valid approximation for situations of physical interest:
⌘ need not be small for inflation to take place. Inflation takes place when ✏ < 1, regardless of the value of ⌘. We later
demonstrate explicitly that slow roll does in fact hold for interesting choices of inflationary potential. In the limit of
slow roll, we can use Eqs. (94, 96) to write the parameter ✏ approximately as
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The inflationary limit, ✏⌧ 1 is then just equivalent to a field evolving on a flat potential, V 0 (�)⌧ V (�). The second
slow roll parameter ⌘ can likewise be written approximately as:
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so that the curvature V 00 of the potential must also be small for slow roll to be a valid approximation. Similarly, we
can write number of e-folds as a function N (�) of the field as:
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The limits on the last integral are defined such that �e is a fixed field value, which we will later take to be the end
of inflation, and N increases as we go backward in time, representing the number of e-folds of expansion which take
place between field value � and �e.
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both are small, ✏, |⌘|⌧ 1. It is not obvious that this will be a valid approximation for situations of physical interest:
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The inflationary limit, ✏⌧ 1 is then just equivalent to a field evolving on a flat potential, V 0 (�)⌧ V (�). The second
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so that the curvature V 00 of the potential must also be small for slow roll to be a valid approximation. Similarly, we
can write number of e-folds as a function N (�) of the field as:
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The limits on the last integral are defined such that �e is a fixed field value, which we will later take to be the end
of inflation, and N increases as we go backward in time, representing the number of e-folds of expansion which take
place between field value � and �e.
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The inflationary limit, ✏⌧ 1 is then just equivalent to a field evolving on a flat potential, V 0 (�)⌧ V (�). The second
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so that the curvature V 00 of the potential must also be small for slow roll to be a valid approximation. Similarly, we
can write number of e-folds as a function N (�) of the field as:
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The limits on the last integral are defined such that �e is a fixed field value, which we will later take to be the end
of inflation, and N increases as we go backward in time, representing the number of e-folds of expansion which take
place between field value � and �e.
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A perturbed flat Friedmann-Robertson-Walker metric can be written in general as

g00 = −a2(τ) {1 + 2ψ(x⃗, τ)} ,

g0i = a2(τ)wi(x⃗, τ) , (7)

gij = a2(τ) {[1 − 2φ(x⃗, τ)]δij + χij(x⃗, τ)} , χii = 0

where the functions ψ,φ, wi and χij represent metric perturbations about the Robertson-Walker

spacetime and are assumed to be small compared with unity. The trace part of the perturbation

to gij is absorbed in φ, and χij is taken to be traceless.

Consider a general coordinate transformation from a coordinate system xµ to another x̂µ

xµ → x̂µ = xµ + dµ(xν) . (8)

We write the time and the spatial parts separately as

x̂0 = x0 + α(x⃗, τ) ,

ˆ⃗x = x⃗ + ∇⃗β(x⃗, τ) + ϵ⃗ (x⃗, τ) , ∇⃗ · ϵ⃗ = 0 , (9)

where the vector d⃗ has been decomposed into a longitudinal component ∇⃗β (∇⃗ × ∇⃗β = 0) and a

transverse component ϵ⃗ (∇⃗ · ϵ⃗ = 0). The requirement that ds2 be invariant under this coordinate

transformation leads to

ĝµν(x) = gµν(x) − gµβ(x)∂νd
β − gαν(x)∂µdα − dα∂αgµν(x) + O(d2) . (10)

We note that both sides of this equation are evaluated at the same coordinate values x in the two

gauges, which do not correspond to the same physical point in general. Assuming dµ to be of

the same order as the metric perturbations ψ, wi,φ and χij , the metric perturbations in the two

coordinate systems are related to first order in the perturbed quantities by

ψ̂(x⃗, τ) = ψ(x⃗, τ) − α̇(x⃗, τ) −
ȧ

a
α(x⃗, τ) , (11a)

ŵi(x⃗, τ) = wi(x⃗, τ) + ∂iα(x⃗, τ) − ∂iβ̇(x⃗, τ) − ϵ̇i(x⃗, τ) , (11b)

φ̂(x⃗, τ) = φ(x⃗, τ) +
1

3
∇2β(x⃗, τ) +

ȧ

a
α(x⃗, τ) , (11c)

χ̂ij(x⃗, τ) = χij(x⃗, τ) − 2
{(

∂i∂j −
1

3
δij∇2

)

β(x⃗, τ) +
1

2
(∂iϵj + ∂jϵi)

}

. (11d)

We can further decompose the transformations of wi and χij above into longitudinal and

transverse parts:

ŵ∥
i (x⃗, τ) = w∥
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ŵi(x⃗, τ) = wi(x⃗, τ) + ∂iα(x⃗, τ) − ∂iβ̇(x⃗, τ) − ϵ̇i(x⃗, τ) , (11b)

φ̂(x⃗, τ) = φ(x⃗, τ) +
1

3
∇2β(x⃗, τ) +

ȧ
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ȧ

a
α(x⃗, τ) , (11c)

χ̂ij(x⃗, τ) = χij(x⃗, τ) − 2
{(

∂i∂j −
1

3
δij∇2

)

β(x⃗, τ) +
1

2
(∂iϵj + ∂jϵi)

}

. (11d)

We can further decompose the transformations of wi and χij above into longitudinal and

transverse parts:

ŵ∥
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ȧ

a
α(x⃗, τ) , (11c)

χ̂ij(x⃗, τ) = χij(x⃗, τ) − 2
{(

∂i∂j −
1

3
δij∇2

)

β(x⃗, τ) +
1

2
(∂iϵj + ∂jϵi)

}

. (11d)

We can further decompose the transformations of wi and χij above into longitudinal and

transverse parts:

ŵ∥
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where i, j = 1, 2, 3, and ê+,⇥
ij are longitudinal and transverse polarization tensors, respectively. It is left as an exercise

for the reader to show that the scalars '+,⇥ behave to linear order as free scalars, with equation of motion (122).
To solve the equation of motion (122), we first Fourier expand the field into momentum states 'k,

' (⌧,x) =
Z

d3k

(2⇡)3/2

⇥
'

k

(⌧) b
k

eik·x + '⇤
k

(⌧) b⇤
k

e�ik·x⇤
. (124)

Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
not redshift with expansion. The proper wavevector is

kprop = k/a (⌧) . (125)

Therefore, the comoving wavenumber k is not itself dynamical, but is just a set of constants labeling a particular
Fourier component. The equation of motion for a single mode '

k

is

'00
k

+ 2
✓

a0

a

◆
'0

k

+ k2'
k

= 0. (126)

It is convenient to introduce a field redefinition

uk ⌘ a (⌧)'
k

(⌧) , (127)

and the mode function uk obeys a generalization of the Klein-Gordon equation to an expanding spacetime,

u00k +

k2 � a00

a

�
uk = 0. (128)

(We have dropped the vector notation k on the subscript, since the Klein-Gordon equation depends only on the
magnitude of k.)

Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:

• Short wavelength limit, k � a00/a. In this case, the equation of motion is that for a conformally Minkowski
Klein-Gordon field,

u00k + k2uk = 0, (129)

with solution

uk (⌧) =
1p
2k

�
Ake�ik⌧ + Bkeik⌧

�
. (130)

Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.

[following Will Kinney’s lecture notes arXiv:0902.1529]
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Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
not redshift with expansion. The proper wavevector is

kprop = k/a (⌧) . (125)

Therefore, the comoving wavenumber k is not itself dynamical, but is just a set of constants labeling a particular
Fourier component. The equation of motion for a single mode '

k

is

'00
k

+ 2
✓

a0

a

◆
'0

k

+ k2'
k

= 0. (126)

It is convenient to introduce a field redefinition
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and the mode function uk obeys a generalization of the Klein-Gordon equation to an expanding spacetime,
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(We have dropped the vector notation k on the subscript, since the Klein-Gordon equation depends only on the
magnitude of k.)

Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:

• Short wavelength limit, k � a00/a. In this case, the equation of motion is that for a conformally Minkowski
Klein-Gordon field,

u00k + k2uk = 0, (129)

with solution
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.
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a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.
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with the trivial solution
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This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
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• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes
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This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
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This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
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28

where i, j = 1, 2, 3, and ê+,⇥
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes
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with the trivial solution
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This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
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wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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not redshift with expansion. The proper wavevector is

kprop = k/a (⌧) . (125)

Therefore, the comoving wavenumber k is not itself dynamical, but is just a set of constants labeling a particular
Fourier component. The equation of motion for a single mode '

k

is

'00
k

+ 2
✓

a0

a

◆
'0

k

+ k2'
k

= 0. (126)

It is convenient to introduce a field redefinition

uk ⌘ a (⌧)'
k

(⌧) , (127)

and the mode function uk obeys a generalization of the Klein-Gordon equation to an expanding spacetime,

u00k +

k2 � a00

a

�
uk = 0. (128)

(We have dropped the vector notation k on the subscript, since the Klein-Gordon equation depends only on the
magnitude of k.)

Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:

• Short wavelength limit, k � a00/a. In this case, the equation of motion is that for a conformally Minkowski
Klein-Gordon field,

u00k + k2uk = 0, (129)

with solution

uk (⌧) =
1p
2k

�
Ake�ik⌧ + Bkeik⌧

�
. (130)

Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
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This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
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This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
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This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes
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with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes
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with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
not redshift with expansion. The proper wavevector is
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
not redshift with expansion. The proper wavevector is
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Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
not redshift with expansion. The proper wavevector is

kprop = k/a (⌧) . (125)

Therefore, the comoving wavenumber k is not itself dynamical, but is just a set of constants labeling a particular
Fourier component. The equation of motion for a single mode '

k

is
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= 0. (126)

It is convenient to introduce a field redefinition

uk ⌘ a (⌧)'
k

(⌧) , (127)

and the mode function uk obeys a generalization of the Klein-Gordon equation to an expanding spacetime,

u00k +

k2 � a00

a

�
uk = 0. (128)

(We have dropped the vector notation k on the subscript, since the Klein-Gordon equation depends only on the
magnitude of k.)

Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:

• Short wavelength limit, k � a00/a. In this case, the equation of motion is that for a conformally Minkowski
Klein-Gordon field,

u00k + k2uk = 0, (129)

with solution

uk (⌧) =
1p
2k

�
Ake�ik⌧ + Bkeik⌧

�
. (130)

Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
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B. Quantization

We have seen that the equation of motion for field perturbations approaches the usual Minkowski Space Klein-
Gordon equation in the ultraviolet limit, which corresponds to the limit of early time for a mode redshifting with
expansion. We determine the boundary conditions for the mode function via canonical quantization. To quantize
the field 'k, we promote the Fourier coe�cients in the classical mode expansion (124) to annihilation and creation
operators

b
k

! b̂
k

, b⇤
k

! b̂†
k

, (133)

with commutation relation
h
b̂
k

, b̂†
k

0

i
⌘ �3 (k� k

0) . (134)

Note that the commutator in an FRW background is given in terms of comoving wavenumber, and holds whether we
are in the short wavelength limit or not. In the short wavelength limit, this becomes equivalent to a Minkowski Space
commutator. The quantum field ' is then given by the usual expansion in operators b̂
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The corresponding canonical momentum is
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It is left as an exercise for the reader to show that the canonical commutation relation
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corresponds to a Wronskian condition on the mode uk,
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which for the ultraviolet mode function (130) results in a condition on the integration constants

|Ak|2 � |Bk|2 = 1. (139)

This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.

C. Vacuum Selection

Consider a quantum field in Minkowski Space. The state space for a quantum field theory is a set of states
|n(k1), . . . , n(ki)i representing the number of particles with momenta k1, . . . ,ki. The creation and annihilation
operators â†

k

and â
k

act on these states by adding or subtracting a particle from the state:

â†
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|n(k)i =
p

n + 1 |n(k) + 1i
â
k
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n |n(k)� 1i . (140)

The ground state, or vacuum state of the space, is just the zero particle state:

â
k

|0i = 0. (141)

Note in particular that the vacuum state |0i is not equivalent to zero. The vacuum is not nothing:

|0i 6= 0. (142)
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.
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with the trivial solution
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This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
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Note that the commutator in an FRW background is given in terms of comoving wavenumber, and holds whether we
are in the short wavelength limit or not. In the short wavelength limit, this becomes equivalent to a Minkowski Space
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which for the ultraviolet mode function (130) results in a condition on the integration constants

|Ak|2 � |Bk|2 = 1. (139)

This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.

C. Vacuum Selection

Consider a quantum field in Minkowski Space. The state space for a quantum field theory is a set of states
|n(k1), . . . , n(ki)i representing the number of particles with momenta k1, . . . ,ki. The creation and annihilation
operators â†
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and â
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act on these states by adding or subtracting a particle from the state:
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The ground state, or vacuum state of the space, is just the zero particle state:
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|0i = 0. (141)

Note in particular that the vacuum state |0i is not equivalent to zero. The vacuum is not nothing:

|0i 6= 0. (142)
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k

act on these states by adding or subtracting a particle from the state:

â†
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where i, j = 1, 2, 3, and ê+,⇥
ij are longitudinal and transverse polarization tensors, respectively. It is left as an exercise

for the reader to show that the scalars '+,⇥ behave to linear order as free scalars, with equation of motion (122).
To solve the equation of motion (122), we first Fourier expand the field into momentum states 'k,
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Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
not redshift with expansion. The proper wavevector is
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It is convenient to introduce a field redefinition
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and the mode function uk obeys a generalization of the Klein-Gordon equation to an expanding spacetime,
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(We have dropped the vector notation k on the subscript, since the Klein-Gordon equation depends only on the
magnitude of k.)

Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:

• Short wavelength limit, k � a00/a. In this case, the equation of motion is that for a conformally Minkowski
Klein-Gordon field,

u00k + k2uk = 0, (129)

with solution
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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We have seen that the equation of motion for field perturbations approaches the usual Minkowski Space Klein-
Gordon equation in the ultraviolet limit, which corresponds to the limit of early time for a mode redshifting with
expansion. We determine the boundary conditions for the mode function via canonical quantization. To quantize
the field 'k, we promote the Fourier coe�cients in the classical mode expansion (124) to annihilation and creation
operators
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Note that the commutator in an FRW background is given in terms of comoving wavenumber, and holds whether we
are in the short wavelength limit or not. In the short wavelength limit, this becomes equivalent to a Minkowski Space
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which for the ultraviolet mode function (130) results in a condition on the integration constants

|Ak|2 � |Bk|2 = 1. (139)

This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.

C. Vacuum Selection

Consider a quantum field in Minkowski Space. The state space for a quantum field theory is a set of states
|n(k1), . . . , n(ki)i representing the number of particles with momenta k1, . . . ,ki. The creation and annihilation
operators â†
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and â
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act on these states by adding or subtracting a particle from the state:
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The ground state, or vacuum state of the space, is just the zero particle state:
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|0i = 0. (141)

Note in particular that the vacuum state |0i is not equivalent to zero. The vacuum is not nothing:

|0i 6= 0. (142)
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Gordon equation in the ultraviolet limit, which corresponds to the limit of early time for a mode redshifting with
expansion. We determine the boundary conditions for the mode function via canonical quantization. To quantize
the field 'k, we promote the Fourier coe�cients in the classical mode expansion (124) to annihilation and creation
operators
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corresponds to a Wronskian condition on the mode uk,
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which for the ultraviolet mode function (130) results in a condition on the integration constants

|Ak|2 � |Bk|2 = 1. (139)

This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.
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where i, j = 1, 2, 3, and ê+,⇥
ij are longitudinal and transverse polarization tensors, respectively. It is left as an exercise

for the reader to show that the scalars '+,⇥ behave to linear order as free scalars, with equation of motion (122).
To solve the equation of motion (122), we first Fourier expand the field into momentum states 'k,
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Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
not redshift with expansion. The proper wavevector is

kprop = k/a (⌧) . (125)

Therefore, the comoving wavenumber k is not itself dynamical, but is just a set of constants labeling a particular
Fourier component. The equation of motion for a single mode '
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It is convenient to introduce a field redefinition
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and the mode function uk obeys a generalization of the Klein-Gordon equation to an expanding spacetime,
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(We have dropped the vector notation k on the subscript, since the Klein-Gordon equation depends only on the
magnitude of k.)

Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:

• Short wavelength limit, k � a00/a. In this case, the equation of motion is that for a conformally Minkowski
Klein-Gordon field,

u00k + k2uk = 0, (129)

with solution
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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We have seen that the equation of motion for field perturbations approaches the usual Minkowski Space Klein-
Gordon equation in the ultraviolet limit, which corresponds to the limit of early time for a mode redshifting with
expansion. We determine the boundary conditions for the mode function via canonical quantization. To quantize
the field 'k, we promote the Fourier coe�cients in the classical mode expansion (124) to annihilation and creation
operators
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Note that the commutator in an FRW background is given in terms of comoving wavenumber, and holds whether we
are in the short wavelength limit or not. In the short wavelength limit, this becomes equivalent to a Minkowski Space
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which for the ultraviolet mode function (130) results in a condition on the integration constants

|Ak|2 � |Bk|2 = 1. (139)

This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.

C. Vacuum Selection

Consider a quantum field in Minkowski Space. The state space for a quantum field theory is a set of states
|n(k1), . . . , n(ki)i representing the number of particles with momenta k1, . . . ,ki. The creation and annihilation
operators â†

k

and â
k

act on these states by adding or subtracting a particle from the state:
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The ground state, or vacuum state of the space, is just the zero particle state:
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|0i = 0. (141)

Note in particular that the vacuum state |0i is not equivalent to zero. The vacuum is not nothing:

|0i 6= 0. (142)
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â
k

|0i = 0. (141)

Note in particular that the vacuum state |0i is not equivalent to zero. The vacuum is not nothing:

|0i 6= 0. (142)

29

B. Quantization

We have seen that the equation of motion for field perturbations approaches the usual Minkowski Space Klein-
Gordon equation in the ultraviolet limit, which corresponds to the limit of early time for a mode redshifting with
expansion. We determine the boundary conditions for the mode function via canonical quantization. To quantize
the field 'k, we promote the Fourier coe�cients in the classical mode expansion (124) to annihilation and creation
operators

b
k

! b̂
k

, b⇤
k

! b̂†
k

, (133)

with commutation relation
h
b̂
k

, b̂†
k

0

i
⌘ �3 (k� k

0) . (134)

Note that the commutator in an FRW background is given in terms of comoving wavenumber, and holds whether we
are in the short wavelength limit or not. In the short wavelength limit, this becomes equivalent to a Minkowski Space
commutator. The quantum field ' is then given by the usual expansion in operators b̂

k

, b̂†
k

' (⌧,x) =
Z

d3k

(2⇡)3/2

⇥
'

k

(⌧) b
k

eik·x + H.C.
⇤

(135)

The corresponding canonical momentum is

⇧ (⌧,x) ⌘ �L
� (@0')

= a2 (⌧)
@'

@⌧
. (136)

It is left as an exercise for the reader to show that the canonical commutation relation

[' (⌧,x) ,⇧ (⌧,x0)] = i�3 (x� x

0) (137)

corresponds to a Wronskian condition on the mode uk,

uk
@u⇤

k

@⌧
� u⇤

k

@uk

@⌧
= i, (138)

which for the ultraviolet mode function (130) results in a condition on the integration constants

|Ak|2 � |Bk|2 = 1. (139)

This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.

C. Vacuum Selection

Consider a quantum field in Minkowski Space. The state space for a quantum field theory is a set of states
|n(k1), . . . , n(ki)i representing the number of particles with momenta k1, . . . ,ki. The creation and annihilation
operators â†
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where i, j = 1, 2, 3, and ê+,⇥
ij are longitudinal and transverse polarization tensors, respectively. It is left as an exercise

for the reader to show that the scalars '+,⇥ behave to linear order as free scalars, with equation of motion (122).
To solve the equation of motion (122), we first Fourier expand the field into momentum states 'k,

' (⌧,x) =
Z

d3k

(2⇡)3/2

⇥
'

k

(⌧) b
k

eik·x + '⇤
k

(⌧) b⇤
k

e�ik·x⇤
. (124)

Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
not redshift with expansion. The proper wavevector is

kprop = k/a (⌧) . (125)

Therefore, the comoving wavenumber k is not itself dynamical, but is just a set of constants labeling a particular
Fourier component. The equation of motion for a single mode '
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It is convenient to introduce a field redefinition
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and the mode function uk obeys a generalization of the Klein-Gordon equation to an expanding spacetime,
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(We have dropped the vector notation k on the subscript, since the Klein-Gordon equation depends only on the
magnitude of k.)

Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:

• Short wavelength limit, k � a00/a. In this case, the equation of motion is that for a conformally Minkowski
Klein-Gordon field,

u00k + k2uk = 0, (129)

with solution
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Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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We have seen that the equation of motion for field perturbations approaches the usual Minkowski Space Klein-
Gordon equation in the ultraviolet limit, which corresponds to the limit of early time for a mode redshifting with
expansion. We determine the boundary conditions for the mode function via canonical quantization. To quantize
the field 'k, we promote the Fourier coe�cients in the classical mode expansion (124) to annihilation and creation
operators
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Note that the commutator in an FRW background is given in terms of comoving wavenumber, and holds whether we
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which for the ultraviolet mode function (130) results in a condition on the integration constants
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This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.

C. Vacuum Selection

Consider a quantum field in Minkowski Space. The state space for a quantum field theory is a set of states
|n(k1), . . . , n(ki)i representing the number of particles with momenta k1, . . . ,ki. The creation and annihilation
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The ground state, or vacuum state of the space, is just the zero particle state:
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Note in particular that the vacuum state |0i is not equivalent to zero. The vacuum is not nothing:

|0i 6= 0. (142)
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corresponds to a Wronskian condition on the mode uk,
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which for the ultraviolet mode function (130) results in a condition on the integration constants
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This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.
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â
k

|n(k)i =
p

n |n(k)� 1i . (140)

The ground state, or vacuum state of the space, is just the zero particle state:

â
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where i, j = 1, 2, 3, and ê+,⇥
ij are longitudinal and transverse polarization tensors, respectively. It is left as an exercise

for the reader to show that the scalars '+,⇥ behave to linear order as free scalars, with equation of motion (122).
To solve the equation of motion (122), we first Fourier expand the field into momentum states 'k,
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Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
not redshift with expansion. The proper wavevector is

kprop = k/a (⌧) . (125)

Therefore, the comoving wavenumber k is not itself dynamical, but is just a set of constants labeling a particular
Fourier component. The equation of motion for a single mode '

k
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It is convenient to introduce a field redefinition

uk ⌘ a (⌧)'
k

(⌧) , (127)

and the mode function uk obeys a generalization of the Klein-Gordon equation to an expanding spacetime,

u00k +

k2 � a00

a

�
uk = 0. (128)

(We have dropped the vector notation k on the subscript, since the Klein-Gordon equation depends only on the
magnitude of k.)

Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:

• Short wavelength limit, k � a00/a. In this case, the equation of motion is that for a conformally Minkowski
Klein-Gordon field,

u00k + k2uk = 0, (129)

with solution

uk (⌧) =
1p
2k

�
Ake�ik⌧ + Bkeik⌧

�
. (130)

Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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B. Quantization

We have seen that the equation of motion for field perturbations approaches the usual Minkowski Space Klein-
Gordon equation in the ultraviolet limit, which corresponds to the limit of early time for a mode redshifting with
expansion. We determine the boundary conditions for the mode function via canonical quantization. To quantize
the field 'k, we promote the Fourier coe�cients in the classical mode expansion (124) to annihilation and creation
operators
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Note that the commutator in an FRW background is given in terms of comoving wavenumber, and holds whether we
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corresponds to a Wronskian condition on the mode uk,

uk
@u⇤

k

@⌧
� u⇤

k

@uk

@⌧
= i, (138)

which for the ultraviolet mode function (130) results in a condition on the integration constants

|Ak|2 � |Bk|2 = 1. (139)

This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.

C. Vacuum Selection

Consider a quantum field in Minkowski Space. The state space for a quantum field theory is a set of states
|n(k1), . . . , n(ki)i representing the number of particles with momenta k1, . . . ,ki. The creation and annihilation
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The ground state, or vacuum state of the space, is just the zero particle state:
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Note in particular that the vacuum state |0i is not equivalent to zero. The vacuum is not nothing:

|0i 6= 0. (142)

[following Will Kinney’s lecture notes arXiv:0902.1529]
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corresponds to a Wronskian condition on the mode uk,
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which for the ultraviolet mode function (130) results in a condition on the integration constants
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This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.
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The ground state, or vacuum state of the space, is just the zero particle state:
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Note in particular that the vacuum state |0i is not equivalent to zero. The vacuum is not nothing:

|0i 6= 0. (142)
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where i, j = 1, 2, 3, and ê+,⇥
ij are longitudinal and transverse polarization tensors, respectively. It is left as an exercise

for the reader to show that the scalars '+,⇥ behave to linear order as free scalars, with equation of motion (122).
To solve the equation of motion (122), we first Fourier expand the field into momentum states 'k,
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Note that the coordinates x are comoving coordinates, and the wavevector k is a comoving wavevector, which does
not redshift with expansion. The proper wavevector is

kprop = k/a (⌧) . (125)

Therefore, the comoving wavenumber k is not itself dynamical, but is just a set of constants labeling a particular
Fourier component. The equation of motion for a single mode '

k
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It is convenient to introduce a field redefinition

uk ⌘ a (⌧)'
k

(⌧) , (127)

and the mode function uk obeys a generalization of the Klein-Gordon equation to an expanding spacetime,

u00k +

k2 � a00

a

�
uk = 0. (128)

(We have dropped the vector notation k on the subscript, since the Klein-Gordon equation depends only on the
magnitude of k.)

Any mode with a fixed comoving wavenumber k redshifts with time, so that early time corresponds to short
wavelength (ultraviolet) and late time corresponds to long wavelength (infrared). The solutions to the mode equation
show qualitatively di↵erent behaviors in the ultraviolet and infrared limits:

• Short wavelength limit, k � a00/a. In this case, the equation of motion is that for a conformally Minkowski
Klein-Gordon field,

u00k + k2uk = 0, (129)

with solution

uk (⌧) =
1p
2k

�
Ake�ik⌧ + Bkeik⌧

�
. (130)

Note that this is in terms of conformal time and comoving wavenumber, and can only be identified with an
exactly Minkowski spacetime in the ultraviolet limit.

• Long wavelength limit, k ⌧ a00/a. In the infrared limit, the mode equation becomes

a00uk = au00k , (131)

with the trivial solution

uk / a ) 'k = const. (132)

This illustrates the phenomenon of mode freezing: field modes 'k with wavelength longer than the horizon size
cease to be dynamical, and asymptote to a constant, nonzero amplitude.5 This is a quantitative expression of
our earlier qualitative notion of particle creation at the cosmological horizon. The amplitude of the field at long
wavelength is determined by the boundary condition on the mode, i.e. the integration constants Ak and Bk.

Therefore, all of the physics boils down to the question of how we set the boundary condition on field perturbations in
the ultraviolet limit. This is fortunate, since in that limit the field theory describing the modes becomes approximately
Minkowskian, and we know how to quantize fields in Minkowski Space. Once the integration constants are fixed, the
behavior of the mode function uk is completely determined, and the long-wavelength amplitude of the perturbation
can then be calculated without ambiguity. We next discuss quantization.

5 The second solution to this equation is a decaying mode, which is always subdominant in the infrared limit.
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B. Quantization

We have seen that the equation of motion for field perturbations approaches the usual Minkowski Space Klein-
Gordon equation in the ultraviolet limit, which corresponds to the limit of early time for a mode redshifting with
expansion. We determine the boundary conditions for the mode function via canonical quantization. To quantize
the field 'k, we promote the Fourier coe�cients in the classical mode expansion (124) to annihilation and creation
operators
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corresponds to a Wronskian condition on the mode uk,
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which for the ultraviolet mode function (130) results in a condition on the integration constants

|Ak|2 � |Bk|2 = 1. (139)

This quantization condition corresponds to one of the two boundary conditions which are necessary to completely
determine the solution. The second boundary condition comes from vacuum selection, i.e. our definition of which
state corresponds to a zero-particle state for the system. In the next section, we discuss the issue of vacuum selection
in detail.

C. Vacuum Selection

Consider a quantum field in Minkowski Space. The state space for a quantum field theory is a set of states
|n(k1), . . . , n(ki)i representing the number of particles with momenta k1, . . . ,ki. The creation and annihilation
operators â†

k

and â
k

act on these states by adding or subtracting a particle from the state:
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The ground state, or vacuum state of the space, is just the zero particle state:

â
k

|0i = 0. (141)

Note in particular that the vacuum state |0i is not equivalent to zero. The vacuum is not nothing:

|0i 6= 0. (142)
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â
k

|n(k)i =
p

n |n(k)� 1i . (140)

The ground state, or vacuum state of the space, is just the zero particle state:

â
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â†
k

|n(k)i =
p

n + 1 |n(k) + 1i
â
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Similarly, our rotated operator b̂
k

gives zero when acting on some state

b̂
k

|0bi = 0. (156)

The point is that the two “vacuum” states are not the same

|0ai 6= |0bi . (157)

From this point of view, we can define any state we wish to be the “vacuum” and build a completely consistent
quantum field theory based on this assumption. From another equally valid point of view this state will contain
particles. How do we tell which is the physical vacuum state? To define the real vacuum, we have to consider the
spacetime the field is living in. For example, in regular special relativistic quantum field theory, the “true” vacuum
is the zero-particle state as seen by an inertial observer. Another more formal way to state this is that we require the
vacuum to be Lorentz symmetric. This fixes our choice of vacuum |0i and defines unambiguously our set of creation
and annihilation operators â and â†. A consequence of this is that an accelerated observer in the Minkowski vacuum
will think that the space is full of particles, a phenomenon known as the Unruh e↵ect [58]. The zero-particle state for
an accelerated observer is di↵erent than for an inertial observer. The case of an FRW spacetime is exactly analogous,
except that the FRW equivalent of an inertial observer is an observer at rest in comoving coordinates. Since an FRW
spacetime is asymptotically Minkowski in the ultraviolet limit, we choose the vacuum field which corresponds to the
usual Minkowski vacuum in that limit,

uk (⌧) / e�ik⌧ ) Ak = 1, Bk = 0. (158)

This is known as the Bunch-Davies vacuum. This is not the only possible choice, although it is widely believed to
be the most natural. The issue of vacuum ambiguity of inflationary perturbations is a subject which is extensively
discussed in the literature, and is still the subject of controversy. It is known that the choice of vacuum is potentially
sensitive to quantum-gravitational physics [59, 60, 61], a subject which is referred to as Trans-Planckian physics
[18, 62, 63]. For the remainder of our discussion, we will assume a Bunch-Davies vacuum.

The key point is that quantization and vacuum selection together completely specify the mode function, up to an
overall phase. This means that the amplitude of the mode once it has redshifted to long wavelength and frozen
out is similarly determined. In the next section, we solve the mode equation at long wavelength for an inflationary
background.

D. Exact Solutions and the Primordial Power Spectrum

The exact form of the solution to Eq. (128) depends on the evolution of the background spacetime, as encoded in
a (⌧), which in turn depends on the equation of state of the field driving inflation. We will consider the case where the
equation of state is constant, which will not be the case in general for scalar field-driven inflation, but will nonetheless
turn out to be a good approximation in the limit of a slowly rolling field. Generalizing Eq. (77) to the case of arbitrary
equation of state parameter ✏ = const., the conformal time can be written

⌧ = �
✓

1
aH

◆ ✓
1

1� ✏

◆
, (159)

and the Friedmann and Raychaudhuri Equations (14) give

a00

a
= a2H2 (2� ✏) , (160)

where a prime denotes a derivative with respect to conformal time. The conformal time, as in the case of de Sitter
space, is negative and tending toward zero during inflation. (Proof of these relations is left as an exercise for the
reader.) We can then write the mode equation (128) as

u00k +
⇥
k2 � a2H2 (2� ✏)

⇤
uk = 0. (161)

Using Eq. (159) to write aH in terms of the conformal time ⌧ , the equation of motion becomes

⌧2 (1� ✏)2 u00k +
h
(k⌧)2 (1� ✏)2 � (2� ✏)

i
uk = 0. (162)
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=
2✏

(✏� 1)
' �2✏, (185)

in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /

p
V (�). Because of this, it is convenient to define N (k) to be the

number of e-folds (100) when a mode with wavenumber k crosses outside the horizon, and �N (k) to be the field value
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index

nT = �2✏. (188)

If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index
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If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index
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If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index

nS � 1 =
✏

H2 (✏� 1)
d

dN

✓
H2

✏

◆
' �4✏ + 2⌘, (190)

where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /
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number of e-folds (100) when a mode with wavenumber k crosses outside the horizon, and �N (k) to be the field value
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index

nT = �2✏. (188)

If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /

p
V (�). Because of this, it is convenient to define N (k) to be the

number of e-folds (100) when a mode with wavenumber k crosses outside the horizon, and �N (k) to be the field value
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index

nT = �2✏. (188)

If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index
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If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index
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If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /
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number of e-folds (100) when a mode with wavenumber k crosses outside the horizon, and �N (k) to be the field value
N (k) e-folds before the end of inflation. Then the power spectrum can be written equivalently as either a function of
k or of �:

P 1/2 (k) =
✓

H

2⇡

◆

k=aH

=
✓

H

2⇡

◆

�=�N (k)

'

s
2V (�N )
3⇡m2

Pl

. (186)

Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index
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If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /
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number of e-folds (100) when a mode with wavenumber k crosses outside the horizon, and �N (k) to be the field value
N (k) e-folds before the end of inflation. Then the power spectrum can be written equivalently as either a function of
k or of �:

P 1/2 (k) =
✓

H

2⇡

◆

k=aH

=
✓

H

2⇡

◆

�=�N (k)

'

s
2V (�N )
3⇡m2

Pl

. (186)

Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index
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If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index
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If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /
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number of e-folds (100) when a mode with wavenumber k crosses outside the horizon, and �N (k) to be the field value
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index

nT = �2✏. (188)

If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /
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number of e-folds (100) when a mode with wavenumber k crosses outside the horizon, and �N (k) to be the field value
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index

nT = �2✏. (188)

If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /
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number of e-folds (100) when a mode with wavenumber k crosses outside the horizon, and �N (k) to be the field value
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index
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If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum
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where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index
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where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :
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in agreement with (180). Note that we are rather freely changing variables from the wavenumber k to the comoving
horizon size (aH)�1 to the number of e-folds N . As long as the cosmological evolution is monotonic, these are all
di↵erent ways of measuring time: the time when a mode with wavenumber k exits the horizon, the time at which the
horizon is a particular size, the number of e-folds N and the field value � are all e↵ectively just di↵erent choices of
a clock, and we can switch from one to another as is convenient. For example, in the slow roll approximation, the
Hubble parameter H is just a function of �, H /
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Wavenumbers k are conventionally normalized in units of hMpc�1 as measured in the current universe. We can
relate N to scales in the current universe by recalling that modes which are of order the horizon size in the universe
today, k ⇠ a0H0, exited the horizon during inflation when N = [46, 60], so that we can calculate the amplitude of
perturbations at the scale of the CMB quadrupole today by evaluating the power spectrum for field values between
�46 and �60.

One example of a free scalar in inflation is gravitational wave modes, where the transverse and longitudinal po-
larization states of the gravity waves evolve as independent scalar fields. Using Eq. (123), we can then calculate
the power spectrum in gravity waves (or tensors) as the sum of the two-point correlation functions for the separate
polarizations:
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with spectral index
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If the amplitude is large enough, such a spectrum of primordial gravity waves will be observable in the cosmic
microwave background anisotropy and polarization, or be directly detectable by proposed experiments such as Big
Bang Observer [65, 66].

The second type of perturbation generated during inflation is perturbations in the density of the universe, which are
the dominant component of the CMB anisotropy �T/T ⇠ �⇢/⇢ ⇠ 10�5, and are responsible for structure formation.
Density, or scalar perturbations are more complicated than tensor perturbations because they are generated by
quantum fluctuations in the inflaton field itself: since the background energy density is dominated by the inflaton,
fluctuations of the inflaton up or down the potential generate perturbations in the density. The full calculation requires
self-consistent General Relativistic perturbation theory, and is presented in Appendix A. Here we simply state the
result: Perturbations in the inflaton field �� ' H/2⇡ generate density perturbations with power spectrum

PR (k) =
✓

�N

��
��

◆2

=
H2

⇡m2
Pl✏

����
k=aH

/ knS�1, (189)

where N is the number of e-folds. Scalar perturbations are therefore enhanced relative to tensor perturbations by a
factor of 1/✏. The scalar power spectrum is also an approximate power-law, with spectral index

nS � 1 =
✏

H2 (✏� 1)
d

dN

✓
H2

✏

◆
' �4✏ + 2⌘, (190)

where ⌘ is the second slow roll parameter (97). Therefore, for any particular choice of inflationary potential, we have
four measurable quantities: the amplitudes PT and PR of the tensor and scalar power spectra, and their spectral
indices nT and nS . However, not all of these parameters are independent. In particular, the ratio r between the scalar
and tensor amplitudes is given by the parameter ✏, as is the tensor spectral index nT :

r ⌘ PT

PS
= 16✏ = �8nT . (191)

note: nT † 0
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Figure 4.2: Adiabatic scalar and tensor CMB anisotropy spectra are shown (top
panels). The bottom panels show the corresponding polarization spectra (see Sec-
tion 4.4). (from [21]).

4.3.1 Elements of the derivation

When particles are not very tightly coupled, the fluid approximation breaks down
and they have to be described by a Boltzmann equation,

pµ∂µf − Γi
αβpαpβ ∂f

∂pi
= C[f ] . (4.40)

C[f ] is a collision integral which describes the interactions with other matter compo-
nents. The left hand side of (4.40) just requires the particles to move along geodesics
in the absence of collisions.

Let us first consider the situation where collisions are negligible, C[f ] = 0. The
unperturbed Boltzmann equation implies that f be a function of v = ap only. Setting
f = f̄(v) + F (η,x, v,n), where n denotes the momentum directions, leads then to
the perturbation equation

∂ηF − ni∂iF − Γ(S) i
jk njnk ∂F

∂ni
= v

df̄

dv

[
niA,i − ninj

(
Bi|j − Ḣij

)
+ HL

]
. (4.41)

Here Γ(S) i
jk are the Christoffel symbols of the space of constant curvature κ.

To derive (4.41), we have used p2 = 0. The Liouville equation for particles with
non–vanishing mass can be found in Ref. [6].

The ansatz

f(x,p) = f̄

(
g(3)(p,p)

1
2

T (x,n)

)

= f̄

(
Tv

T (x,n)

)
(4.42)
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Knowns and unknowns

• Scalar perturbations give V’(φ), but 
not V(φ) and hence HInf. 

• Need tensors for HInf. 

• tensor spectrum is strictly red.  

• Blue tensor spectrum would falsify 
inflation.



Not talked about

• Multi-field inflation: 

• turns in trajectories 

• Gaussian or not Gaussian


