Cosmology III: Large Scale Structure

Wessel Valkenburg

Universiteit Leiden

Outline

- Summary of the previous
- The scales in large scale structure
- Linear perturbations
- mildly non-linear
- non-linear
- Baryon Acoustic Oscillations
- weak lensing

Our universe $z \equiv \frac{\lambda_{obs}}{\lambda_{emit}} - 1$

Image from Tegmark & Zaldarriaga, PRD, 2009

Image from Tegmark & Zaldarriaga, PRD, 2009

Expansion history

- Distance vs redshift:
 - expansion history of the space time
 - the matter contents.

$$H_0 d_A(z) = \frac{1}{1+z} \int \frac{dz}{\sqrt{\Omega_m (1+z)^3 + \Omega_r (1+z)^4 + \Omega_k (1+z)^2 + \Omega_\Lambda}}$$

CMB

- Ratio of peaks: baryons vs DM $\Omega_{\rm b}$ Height of peaks: DM and primordial power $\Omega_{\rm DM} A_{\rm s}, n_{\rm s}$ Overal position of all peaks: age of universe, spatial H_0, Ω_k curvature Ω_{Λ} Lensing: DE Damping: reionization \mathcal{T} Sunyaev-Zel'dovich: cluster masses $\Omega_{\rm DM}$ • ... (Polarization not discussed yet)
 - $m_{\nu} H_{\text{Inflation}}$

Distances

Large Scale Sctructure

- Galaxy sizes: O(kpc) = O(10³ ly)
- Cluster sizes: $O(Mpc) = O(10^6 \text{ ly})$

Linear perturbations

- Very much same as CMB:
- Cold Dark Matter clusters
 - density perturbations grow
- Before CMB decoupling:
 - Baryons have pressure, oscillate
- After CMB decoupling:
 - Baryons cluster pressureless, like CDM

Linear perturbations

- Cold Dark Matter clusters
 - density perturbations grow
- Baryons cluster pressureless, like CDM
- Neutrinos: special case
 - large scales: like massive particles
 - small scales: like massless particles
- Dark Energy:
 - Slows down clustering of DM
 - Can cluster itself
- Modified Gravity
 - speaks for itself

Linear perturbations Same as in CMB story:

$$\Phi'' + 3(1+w)\mathcal{H}\Phi' + wk^2\Phi = 0$$

Super Hubble:

$$k \ll \mathcal{H} \equiv aH = \dot{a} \longrightarrow \Phi = const.$$

Linear perturbations Same as in CMB story:

$$\Phi'' + 3(1+w)\mathcal{H}\Phi' + wk^2\Phi = 0$$

Sub-hubble, radiation domination $w = \frac{1}{3}$ $\Phi'' + \frac{4}{\tau}\Phi' + \frac{k^2}{3}\Phi = 0$

$$\Phi_{k}(\tau) \approx -6\mathcal{R}_{k}(0) \frac{\cos\left(\frac{1}{\sqrt{3}}k\tau\right)}{(k\tau)^{2}} \qquad \qquad x = k\tau$$
$$a(\tau)d\tau = dt$$

Linear perturbations Same as in CMB story:

$$\Phi'' + 3(1+w)\mathcal{H}\Phi' + wk^2\Phi = 0$$

Sub-hubble, radiation domination

$$w = 0 \qquad \Phi'' + \frac{6}{\tau} \Phi' = 0 \qquad x = k\tau$$
$$\Phi \propto \begin{cases} const. \qquad x = k\tau\\ \tau^{-5} \propto a^{-5/2} \qquad a(\tau)d\tau = dt \end{cases}$$

Linear perturbations

Linear perturbations

 $\nabla^2 \Phi = 4\pi G a^2 \bar{\rho}_m \Delta_m$

If $\Phi = \text{constant}$, then $\Delta_m \propto a$, since $\bar{\rho}_m \propto a^{-3}$.

Power spectra
$$\left\langle \delta_m(\vec{k})\delta_m(\vec{k}') \right\rangle = (2\pi)^3 P(k)\delta^{(3)}(\vec{k}-\vec{k}')$$

P(k) (Mpc/h)³

Power spectra observed

• For example WiggleZ

But wait...

- Linear perturbation theory
- Are all quantities always small?
- No, not below k = 0.1 h/Mpc at z=0.

Need to go nonlinear?

- Galaxies are highly nonlinear objects
- Hopefully are tracers of linear density field
- Can we be sure?

N-body simulations

- Gadget
- Ramses
- •

N-body simulation: simulating phase space

N-body simulation: simulating phase space

http://icc.dur.ac.uk/Eagle/Downloads/Videos/ 2x2videos.mp4

[Eagle simulation http://icc.dur.ac.uk/Eagle]

Baryon Acoustic Oscillations • Same peaks as in CMB

Baryon Acoustic Oscillations • Same peaks as in CMB

BAO as a distance measure

Weak lensing

- Probe the potential, not the galaxies
- LSST, Euclid, ...

[http://lsst.org/lsst/science/scientist_cosmic_shear]

Weak lensing

[Hu & White, 2001]

Weak lensing

[Hu & White, 2001]