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Our universe
much shorter than a day, invalidating the static sky ap-
proximation that underlies rotation synthesis. This was the
key motivation behind the aforementioned Waseda tele-
scope [4–6].

IV. APPLICATION TO 21 CM TOMOGRAPHY

In the previous section we discussed the pros and cons of
the FFTT telescope, and found that its main strength is for
mapping below about 1 GHz when extreme sensitivity is
required. This suggests that the emerging field of 21 cm
tomography is an ideal first science application of the
FFTT: it requires sky mapping in the sub-GHz frequency
range, and the sensitivity requirements, especially to im-
prove cosmic microwave background constraints on cos-
mological parameters, are far beyond what has been
achieved in the past [18,36–38].

A. 21 cm tomography science

It is becoming increasingly clear that 21 cm tomography
has great scientific potential for both astrophysics [12–
15,35] and fundamental physics [18,36–39]. The basic
idea is to produce a three-dimensional map of the matter
distribution throughout our Universe through precision
measurements of the redshifted 21 cm hydrogen line. For
astrophysics, much of the excitement centers around prob-
ing the cosmic dark ages and the subsequent epoch of
reionization caused by the first stars. Here we will focus
mainly on fundamental physics, as this arguably involves
both the most extreme sensitivity requirements and the
greatest potential for funding extremely sensitive
measurements.

1. Three physics frontiers

Future measurements of the redshifted 21 cm hydrogen
line have the potential to probe hitherto unexplored regions
of parameter space, pushing three separate frontiers: time,
scale, and sensitivity. Figure 5 shows a scaled sketch of our
observable Universe, our Hubble patch. It serves to show
the regions that can be mapped with various cosmological
probes, and illustrates that the vast majority of our observ-
able universe is still not mapped. We are located at the
center of the diagram. Galaxies [from the Sloan Digital
Sky Survey (SDSS) in the plot] map the distribution of
matter in a three-dimensional region at low redshifts. Other
popular probes like gravitational lensing, supernovae Ia,
galaxy clusters and the Lyman ! forest are currently also
limited to the small volume fraction corresponding to red-
shifts & 3 or less, and in many cases much less. The CMB
can be used to infer the distribution of matter in a thin shell
at the so-called ‘‘surface of last scattering’’, whose thick-
ness corresponds to the width of the black circle at z!
1100 and thus covers only a tiny fraction of the total
volume. The region available for observation with the
21 cm line of hydrogen is shown in light blue/grey.

Clearly the 21 cm line of hydrogen has the potential of
allowing us to map the largest fraction of our observable
universe and thus obtain the largest amount of cosmologi-
cal information.
At the high redshift end (z * 30) the 21 cm signal is

relatively simple to model as perturbations are still linear
and ‘‘gastrophysics’’ related to stars and quasars is ex-
pected to be unimportant. At intermediate times, during
the epoch of reionization (EOR) around redshift z! 8, the
signal is strongly affected by the first generation of sources
of radiation that heat the gas and ionize hydrogen.
Modeling this era requires understanding a wide range of
astrophysical processes. At low redshifts, after the epoch of
reionization, the 21 cm line can be used to trace neutral gas
in galaxies and map the large-scale distribution of those
galaxies.

2. The time frontier

Figure 5 illustrates that observations of the 21 cm line
from the EOR and higher redshifts would map the distri-
bution of hydrogen at times where we currently have no
other observational probe, pushing the redshift frontier.
Measurements of the 21 cm signal as a function of redshift
will constrain the expansion history of the universe, the
growth rate of perturbations and the thermal history of the
gas during an epoch that has yet to be probed.

FIG. 5 (color online). 21 cm tomography can potentially map
most of our observable universe (light blue/gray), whereas the
CMB probes mainly a thin shell at z " 1100 and current large-
scale structure maps (here exemplified by the Sloan Digital Sky
Survey and its luminous red galaxies) map only small volumes
near the center. Half of the comoving volume lies at z > 29
(Appendix B). This paper focuses on the convenient 7 & z & 9
region (dark blue/grey).
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Expansion history
• Distance vs redshift: 

• expansion history of the space time 

• the matter contents. 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CMB
• Ratio of peaks: baryons vs DM 

• Height of peaks: DM and primordial power 

• Overal position of all peaks: age of universe, spatial 
curvature 

• Lensing: DE 

• Damping: reionization 

• Sunyaev-Zel’dovich: cluster masses 

• … (Polarization not discussed yet)
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Distances



Large Scale Sctructure

• Galaxy sizes: O(kpc) = O(103 ly) 

• Cluster sizes: O(Mpc) = O(106 ly)



Linear perturbations
• Very much same as CMB: 

• Cold Dark Matter clusters 

• density perturbations grow 

• Before CMB decoupling: 

• Baryons have pressure, oscillate 

• After CMB decoupling: 

• Baryons cluster pressureless, like CDM



Linear perturbations
• Cold Dark Matter clusters 

• density perturbations grow 

• Baryons cluster pressureless, like CDM 

• Neutrinos: special case 

• large scales: like massive particles 

• small scales: like massless particles 

• Dark Energy: 

• Slows down clustering of DM 

• Can cluster itself 

• Modified Gravity 

• speaks for itself



5 Structure Formation

In the previous chapter, we derived the evolution equations for all matter and metric perturba-

tions. In principle, we could now solve these equations. The complex interactions between the

di↵erent species (see fig. 5.1) means that we get a large number of coupled di↵erential equations.

This set of equations is easy to solve numerically and this is what is usually done. However, our

goal in this chapter is to obtain some analytical insights into the basic qualitative features of

the solutions.
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Figure 5.1: Interactions between the di↵erent forms of matter in the universe.

5.1 Initial Conditions

Any mode of interest for observations today was outside the Hubble radius if we go back su�-

ciently far into the past. Inflation sets the initial condition for these superhorizon modes. The

prediction from inflation (see Ch. 6) is presented most conveniently in terms of a spectrum of

fluctuations for the curvature perturbation R. Eq. (4.4.175) relates this to the gravitational

potential � in Newtonian gauge

R = ��� 2

3(1 + w)

✓
�0

H + �

◆
, (5.1.1)

where w is the equation of state of the background. For adiabatic perturbations, we have

c2s ⇡ w and a combination of Einstein equations imply a closed form evolution equation for the

gravitational potential

� 00 + 3(1 + w)H� 0 + wk2� = 0 . (5.1.2)
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Linear perturbations

[following Daniel Baumann’s notes]

Same as in CMB story:

k ! H ” aH “ 9a
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Notice that in deriving (5.1.2) we have assumed a constant equation of state. It therefore only

applies if a single component dominates the universe. For the more general case, you should

consult (4.4.171).

Exercise.—Derive eq. (5.1.2) from the Einstein equations.

5.1.1 Superhorizon Limit

On superhorizon scales, k ⌧ H, we can drop the last term in (5.1.2). The growing-mode solution

then is

� = const. (superhorizon) . (5.1.3)

Notice that this superhorizon solution is independent of the equation of state w (as long as

w = const.). In particular, the gravitational potential is frozen outside the horizon during both

the radiation and matter eras.

The Poisson equation (4.4.169) relates the gravitational potential to the total Newtonian-gauge

density contrast

� = �2

3

k2

H2
�� 2

H � 0 � 2� , (5.1.4)

where we have used 3
2H2 = 4⇡Ga2⇢̄. On superhorizon scales, only the decaying mode contributes

to �0. The first and second term in (5.1.4) then are of the same order and both are much smaller

than the third term. We therefore get

� ⇡ �2� = const. , (5.1.5)

so � is also frozen on superhorizon scales. For adiabatic initial conditions, we can relate the

primordial potential � to the fluctuations in both the matter and the radiation:

�m =
3

4
�r ⇡ �3

2
�RD , (5.1.6)

where we have used that �r ⇡ � for adiabatic perturbations during the radiation era. On

superhorizon scales, the density perturbations are therefore simply proportional to the curvature

perturbation set up by inflation.

5.1.2 Radiation-to-Matter Transition

We have seen that the gravitational potential is frozen on superhorizon scales as long as the

equation of state of the background is constant. However, unlike the curvature perturbation R,

the gravitational doesn’t stay constant when the equation of state changes. To follow the

evolution of � through the radiation-to-matter transition, we exploit the conservation of R.

In the superhorizon limit, the comoving curvature perturbation (4.4.175) becomes

R = �5 + 3w

3 + 3w
� (superhorizon) . (5.1.7)

This provides an important link between the source term for the evolution of fluctuations (�)

and the primordial initial conditions set up by inflation (R). Evaluating (5.1.7) for w = 1
3 and

Super Hubble:



0.01 0.1 1 10 100 1000

10-4

0.001

0.01

0.1

1DE
DM

Rad.



5 Structure Formation

In the previous chapter, we derived the evolution equations for all matter and metric perturba-

tions. In principle, we could now solve these equations. The complex interactions between the

di↵erent species (see fig. 5.1) means that we get a large number of coupled di↵erential equations.

This set of equations is easy to solve numerically and this is what is usually done. However, our

goal in this chapter is to obtain some analytical insights into the basic qualitative features of

the solutions.

Metric

Dark
Energy

Electrons

Photons

Neutrions

Dark
Matter

Protons

Rad
iatio

n

Baryons Mat
ter

Thomson
Scattering

CoulombScattering

Figure 5.1: Interactions between the di↵erent forms of matter in the universe.

5.1 Initial Conditions

Any mode of interest for observations today was outside the Hubble radius if we go back su�-

ciently far into the past. Inflation sets the initial condition for these superhorizon modes. The

prediction from inflation (see Ch. 6) is presented most conveniently in terms of a spectrum of

fluctuations for the curvature perturbation R. Eq. (4.4.175) relates this to the gravitational

potential � in Newtonian gauge

R = ��� 2

3(1 + w)

✓
�0

H + �

◆
, (5.1.1)

where w is the equation of state of the background. For adiabatic perturbations, we have

c2s ⇡ w and a combination of Einstein equations imply a closed form evolution equation for the

gravitational potential

� 00 + 3(1 + w)H� 0 + wk2� = 0 . (5.1.2)

101

Linear perturbations

[following Daniel Baumann’s notes]

Same as in CMB story:

103 5. Structure Formation

w = 0 relates the amplitudes of � during the radiation era and the matter eta

R = �3

2
�RD = �5

3
�MD ) �MD =

9

10
�RD , (5.1.8)

where we have used that R = const. throughout. We see that the gravitational potential

decreases by a factor of 9/10 in the transition from radiation-dominated to matter-dominated.

5.2 Evolution of Fluctuations

We wish to understand what happens to the superhorizon initial conditions, when modes enter

the horizon. We will first study the evolution of the gravitational potential (§5.2.1), and then

the perturbations in radiation (§5.2.2), matter (§5.2.3) and baryons (§5.2.4).

5.2.1 Gravitational Potential

To determine the evolution of � during both the radiation era and the matter era, we simply

have to specialise (5.1.2) to w = 1
3 and w = 0, respectively.

Radiation Era

In the radiation era, w = 1
3 , we get

� 00 +
4

⌧
� 0 +

k2

3
� = 0 . (5.2.9)

This equation has the following exact solution

�
k

(⌧) = A
k

j1(x)

x
+B

k

n1(x)

x
, x ⌘ 1p

3
k⌧ , (5.2.10)

where the subscript k indicates that the solution can have di↵erent amplitudes for each value

of k. The size of the initial fluctuations as a function of wavenumber will be a prediction of

inflation. The functions j1(x) and n1(x) in (5.2.10) are the spherical Bessel and Neumann

functions

j1(x) =
sinx

x2
� cosx

x
=

x

3
+O(x3) , (5.2.11)

n1(x) = �cosx

x2
� sinx

x
= � 1

x2
+O(x0) . (5.2.12)

Since n1(x) blows up for small x (early times), we reject that solution on the basis of initial

conditions, i.e. we set B
k

⌘ 0. We match the constant A
k

to the primordial value of the

potential, �
k

(0) = �2
3Rk

(0). Using (5.2.11), we find

�
k

(⌧) = �2R
k

(0)

✓
sinx� x cosx

x3

◆
(all scales) . (5.2.13)

Notice that (5.2.13) is valid on all scales. Outside the (sound) horizon, x = 1p
3
k⌧ ⌧ 1, the

solution approaches � = const., while on subhorizon scales, x � 1, we get

�
k

(⌧) ⇡ �6R
k

(0)
cos

�
1p
3
k⌧

�

(k⌧)2
(subhorizon) . (5.2.14)

During the radiation era, subhorizon modes of � therefore oscillate with frequency 1p
3
k and an

amplitude that decays as ⌧�2 / a�2 (see fig. 5.2). Remember this.
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Matter Era

In the matter era, w = 0, the evolution of the potential is

�00 +
6

⌧
�0 = 0 , (5.2.15)

whose solution is

� /

8
<

:
const.

⌧�5 / a�5/2
. (5.2.16)

We conclude that the gravitational potential is frozen on all scales during matter domination.

Summary

Fig. 5.2 shows the evolution of the gravitational potential for di↵erence wavelengths. As pre-

dicted, the potential is constant when the modes are outside the horizon. Two of the modes enter

the horizon during the radiation era. While they are inside the horizon during the radiation

era their amplitudes decrease as a�2. The resulting amplitudes in the matter era are therefore

strongly suppressed. During the matter era the potential is constant on all scales. The longest

wavelength mode in the figure enters the horizon during the matter era, so its amplitude is only

suppressed by the factor of 9
10 coming from the radiation-to-matter transition.

Figure 5.2: Numerical solutions for the linear evolution of the gravitational potential.

5.2.2 Radiation

In this section, we wish to determine the evolution of perturbations in the radiation density.

Radiation Era

In the radiation era, perturbations in the radiation density dominate (for adiabatic initial con-

ditions). Given the solution (5.2.13) for � during the radiation era, we therefore immediately

104 5. Structure Formation

Matter Era

In the matter era, w = 0, the evolution of the potential is

�00 +
6

⌧
�0 = 0 , (5.2.15)

whose solution is

� /

8
<

:
const.

⌧�5 / a�5/2
. (5.2.16)

We conclude that the gravitational potential is frozen on all scales during matter domination.

Summary

Fig. 5.2 shows the evolution of the gravitational potential for di↵erence wavelengths. As pre-

dicted, the potential is constant when the modes are outside the horizon. Two of the modes enter

the horizon during the radiation era. While they are inside the horizon during the radiation

era their amplitudes decrease as a�2. The resulting amplitudes in the matter era are therefore

strongly suppressed. During the matter era the potential is constant on all scales. The longest

wavelength mode in the figure enters the horizon during the matter era, so its amplitude is only

suppressed by the factor of 9
10 coming from the radiation-to-matter transition.

Figure 5.2: Numerical solutions for the linear evolution of the gravitational potential.

5.2.2 Radiation

In this section, we wish to determine the evolution of perturbations in the radiation density.

Radiation Era

In the radiation era, perturbations in the radiation density dominate (for adiabatic initial con-

ditions). Given the solution (5.2.13) for � during the radiation era, we therefore immediately

104 5. Structure Formation

Matter Era

In the matter era, w = 0, the evolution of the potential is

�00 +
6

⌧
�0 = 0 , (5.2.15)

whose solution is

� /

8
<

:
const.

⌧�5 / a�5/2
. (5.2.16)

We conclude that the gravitational potential is frozen on all scales during matter domination.

Summary

Fig. 5.2 shows the evolution of the gravitational potential for di↵erence wavelengths. As pre-

dicted, the potential is constant when the modes are outside the horizon. Two of the modes enter

the horizon during the radiation era. While they are inside the horizon during the radiation

era their amplitudes decrease as a�2. The resulting amplitudes in the matter era are therefore

strongly suppressed. During the matter era the potential is constant on all scales. The longest

wavelength mode in the figure enters the horizon during the matter era, so its amplitude is only

suppressed by the factor of 9
10 coming from the radiation-to-matter transition.

Figure 5.2: Numerical solutions for the linear evolution of the gravitational potential.

5.2.2 Radiation

In this section, we wish to determine the evolution of perturbations in the radiation density.

Radiation Era

In the radiation era, perturbations in the radiation density dominate (for adiabatic initial con-

ditions). Given the solution (5.2.13) for � during the radiation era, we therefore immediately



Linear perturbations

[following Daniel Baumann’s notes]

104 5. Structure Formation

Matter Era

In the matter era, w = 0, the evolution of the potential is

�00 +
6

⌧
�0 = 0 , (5.2.15)

whose solution is

� /

8
<

:
const.

⌧�5 / a�5/2
. (5.2.16)

We conclude that the gravitational potential is frozen on all scales during matter domination.

Summary

Fig. 5.2 shows the evolution of the gravitational potential for di↵erence wavelengths. As pre-

dicted, the potential is constant when the modes are outside the horizon. Two of the modes enter

the horizon during the radiation era. While they are inside the horizon during the radiation

era their amplitudes decrease as a�2. The resulting amplitudes in the matter era are therefore

strongly suppressed. During the matter era the potential is constant on all scales. The longest

wavelength mode in the figure enters the horizon during the matter era, so its amplitude is only

suppressed by the factor of 9
10 coming from the radiation-to-matter transition.

Figure 5.2: Numerical solutions for the linear evolution of the gravitational potential.

5.2.2 Radiation

In this section, we wish to determine the evolution of perturbations in the radiation density.

Radiation Era

In the radiation era, perturbations in the radiation density dominate (for adiabatic initial con-

ditions). Given the solution (5.2.13) for � during the radiation era, we therefore immediately



Linear perturbations

[following Daniel Baumann’s notes]

107 5. Structure Formation

Intermediate Times

The solution in the matter era also follows directly from the solution (5.2.16) for the gravitational

potential, which determines the comoving density contrast

�m =
r2�

4⇡Ga2⇢̄
/

8
<

:
a

a�3/2
, (5.2.26)

just as in the Newtonian treatment [cf. eq. (4.1.30)], but now valid on all scales. Notice that the

growing mode of �m grows as a outside the horizon, while �m is constant. Inside the horizon,

�m ⇡ �m and the density contrasts in both gauges evolve as a.

Late Times

At late times, the universe is a mixture of pressureless matter (m) and dark energy (⇤). Since

dark energy doesn’t have fluctuations, we still have

r2� = 4⇡Ga2⇢̄m�m . (5.2.27)

Pressure fluctuations are negligible, so the Einstein equations give

�00 + 3H�0 + (2H0 +H2)� = 0 . (5.2.28)

To get an evolution equation for �m, we use a neat trick. Since a2⇢̄m / a�1, we have � / �m/a.

Hence, eq. (5.2.28) implies

@2
⌧ (�m/a) + 3H@⌧ (�m/a) + (2H0 +H2)(�m/a) = 0 , (5.2.29)

which rearranges to

�00
m +H�0

m + (H0 �H2)�m = 0 . (5.2.30)

Exercise.—Show that (5.2.30) follows from (5.2.29). Use the Friedmann and conservation equations
to show that

H0 �H2 = �4⇡Ga2(⇢̄+ P̄ ) = �4⇡Ga2⇢̄m . (5.2.31)

Using (5.2.31), eq. (5.2.30) becomes

�00
m +H�0

m � 4⇡Ga2⇢̄m�m = 0 . (5.2.32)

This is the conformal-time version of the Newtonian equation (4.1.36), but now valid on all

scales. So we recover the usual suppression of the growth of structure by ⇤, but now on all

scales (see also Problem Set 3).

Summary

Fig. 5.3 shows the evolution of the matter density contrast �m for the same modes as in fig. 5.2.

Fluctuations are frozen until they enter the horizon. Subhorizon matter fluctuations in the

radiation era only grow logarithmically, �m / ln a. This changes to power-law growth, �m / a

If � = constant, then �m9a, since ⇢̄m9a´3
.



Power spectra

from [Lesgourgues & Pastor 2006]

on scales k ≫ knr, so that δρν does not contribute to the Poisson equation:
δρ = (ρ̄cdm + ρ̄b) δcdm, while the neutrino background density does contribute
to the expansion rate: 3 (ȧ/a)2 = 8πGa2(ρ̄cdm + ρ̄b + ρ̄ν). Let us assume that
ρ̄ν is dominated by non-relativistic neutrinos, so that it decays approximately
like a−3, and the number

fν ≡
ρν

(ρcdm + ρb + ρν)
=

Ων

Ωm
(129)

remains approximately constant. Then, the scale factor still evolves like τ 2

and the equation of evolution reads

δ̈cdm +
2

τ
δ̇cdm −

6

τ 2
(1 − fν) δcdm = 0 . (130)

Looking for solutions in δcdm ∝ τ 2p, we find two roots

p± =
−1 ±

√

1 + 24(1 − fν)

4
, (131)

and we conclude that the growing solution for the CDM density contrast reads

δcdm ∝ ap+ ≃ a1− 3
5
fν , (132)

where in the last step we assumed fν ≪ 1. As expected, the growth of δcdm is
reduced due to the fact that one of the component in the Universe contributes
to the homogeneous expansion rate but not to the gravitational clustering.
The Poisson equation gives

− k2ψ ∝ ap+−1 ≃ a− 3
5
fν , (133)

showing that for the same reason the gravitational potential slowly decays
during matter domination.

At the end of matter domination and during Λ domination, we have already
seen that in absence of neutrinos φ decays like g(a) and δcdm grows like a g(a)
(we recall that the damping factor g(a) is normalized to g = 1 for a ≪ aΛ).
The combined effect of Λ and of neutrinos on the growth of δcdm can be well
approximated by [93]

δcdm ∝ [a g(a)]p+ ≃ [a g(a)]1−
3
5
fν . (134)

Matter power spectrum for massive versus massless neutrinos.
Let us try to predict analytically the difference between the power spectrum
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Fig. 14. CMB temperature anisotropy spectrum CT
l and matter power spectrum

P (k) for three models: the neutrinoless ΛCDM model of section 4.4.6, a more re-
alistic ΛCDM model with three massless neutrinos (fν ≃ 0), and finally a ΛMDM
model with three massive degenerate neutrinos and a total density fraction fν = 0.1.
In all models, the values of (ωb, ωm, ΩΛ, As, n, τ) have been kept fixed.
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Fig. 15. CMB temperature anisotropy spectrum CT
l and matter power spectrum

P (k) for three models: the same ΛCDM model as in the previous figure, with three
massless neutrinos (fν ≃ 0); and two models with three massive degenerate neutri-
nos and a total density fraction fν = 0.1, sharing the same value of ωb and ωcdm as
the massless model, which implies a shift either in h (green dashed) or in ΩΛ (blue
dotted).

models, the values of (ωb, ωm, ΩΛ, As, n, τ) have been kept fixed, with the
increase in ων being compensated by a decrease in ωcdm. There is a clear
difference between the neutrinoless and massless neutrino cases, caused by a
large change in the time of equality and by the role of the neutrino energy-
momentum fluctuations in the perturbed Einstein equation [91]. However our
purpose is to focus on the impact of the mass, i.e. on the difference between
the solid (red) and thick dashed (green) curves in Fig. 14.

Impact on the CMB temperature spectrum. For fν ≤ 0.1, the three
neutrino species are still relativistic at the time of decoupling, and the di-
rect effect of free-streaming neutrinos on the evolution of the baryon-photon
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Power spectra observed
• For example WiggleZ



But wait…

• Linear perturbation theory 

• Are all quantities always small? 

• No, not below k = 0.1 h/Mpc at z=0.











Need to go nonlinear?

• Galaxies are highly nonlinear objects 

• Hopefully are tracers of linear density 
field 

• Can we be sure?



N-body simulations

• Gadget 

• Ramses 

• …



N-body simulation:
simulating phase space
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[Eagle simulation http://icc.dur.ac.uk/Eagle]

http://icc.dur.ac.uk/Eagle/Downloads/Videos/
2x2videos.mp4



Baryon Acoustic 
Oscillations

• Same peaks as in CMB

[Eisenstein et al., 2005]



Baryon Acoustic 
Oscillations

• Same peaks as in CMB



BAO as a distance measure



Weak lensing
• Probe the potential, not the galaxies 

• LSST, Euclid, …

[http://lsst.org/lsst/science/scientist_cosmic_shear]
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where dx is the separation vector between points on the
respective planes. In the weak-lensing limit, the deformation
can be decomposed as (Mellier 1999 ; Bartelmann & Schnei-
der 2001)

A
ij

\ (1 [ i)d
ij

[ c1 p3 [ c2 p1 , (2)

where the are the 2 ] 2 Pauli matrices, i > 1 is the con-p
ivergence, and is the shear. If a galaxy has (weighted)c

a
> 1

second moments MS, then the image will have

MI \ A~1 Æ MS Æ A~1 . (3)

The ellipticities are usually deÐned in terms of the second
moments of the light distribution, corrected for instrumen-
tal and observational e†ects, and in the weak-lensing regime
equation (3) simpliÐes dramatically, such that the observed
ellipticity of a galaxy is linearly related to the shear. The
proportionality constant depends on the deÐnition of the
ellipticity ; we take

SeT \ c , (4)

but note that 2c is often found in the literature (Bartelmann
& Schneider 2001). The result is that e deÐnes a (noisy)
estimate of the local shear Ðeld at nü .

Now consider an observation of a given area of the sky.
The observed Ðeld yields an estimate of the ellipticities e

iand positions of a set of galaxies binned into pixelsnü
ii \ 1, . . . , In a Cartesian coordinate system on the sky,Npix.the two components of the shear Ðeld, and trans-c1(nü ) c2(nü ),

form as a spin-2 Ðeld. The Fourier decomposition is

c1(nü ) ^ ic2(nü ) \P d2l
(2n)2W (l)[v(l) ^ ib(l)]eB2irleil Õ n9 , (5)

where is the angle between l and the x-axis, and W (l) isr
lthe Fourier transform of the pixel window function. For

square pixels of side p in radians,

W (l) \ j0
Alp

2
cos r

l
B

j0
Alp

2
sin r

l
B

, (6)

where is the zeroth-order spherical Besselj0(x) \ sin (x)/x
function. Note that for long wavelengths, the pixelization is
irrelevant and the window goes to unity.

We are interested in the power spectrum or correlation
function of the shear Ðeld. The two-point correlations in the
shear are determined by the three shear power spectra,

Sv(l)v(l @)T \ (2n)2d(l [ l@)C
l
vv ,

Sb(l)b(l@)T \ (2n)2d(l [ l@)C
l
bb ,

Sv(l)b(l@)T \ (2n)2d(l [ l@)C
l
vb . (7)

For the shear generated by weak lensing, C
l
vv \ C

l
ii, C

l
bb \

0, and For shot noise, Systematic errorsC
l
vb \ 0. C

l
vv \ C

l
bb.

can in principle generate any of the power spectra.
Since a 45¡ rotation of the shears takes v ] b, it converts

the lensing signal to a spectrum withC
l
bb \ C

l
ii C

l
vv \

A more general rotation leaves a signal in bothC
l
vb \ 0. C

l
vv

and but also correlates them as ForC
l
bb, (C

l
vb)2 \ C

l
vv C

l
bb.

the shot noise, the relation is invariant underC
l
vv \ C

l
bb

rotations. These rotations also allow one to visualize the
pattern implied by each spectrum (see Fig. 1). In particular,
the b-component possesses a ““ handedness ÏÏ ; formally, the
two are distinguished by their transformation under parity.

By direct substitution,

Sc1(nü
i
)c1(nü

j
)T \P d2l

(2n)2 (C
l
vv cos2 2r

l
] C

l
bb sin2 2r

l

[C
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vb sin 4r

l
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l
D

W 2(l)eilÕ(n9 i~n9 j) . (8)

For a coordinate system that is oriented so that nü
i
[ nü

j
px

and pixel separations that are small compared with the
coherence scale of the Ðeld, the cosmological vv signal gen-
erates For shot noise and forSc1 c1T [ 0. Sc2 c2T B Sc1 c1T,
either These are the tests suggested bySc1 c2T B 0.
Miralda-Escude (1991).

FIG. 1.ÈFundamental shear modes and their cross-correlation. (a) Pure v-Ðeld obtained from a convergence map from White & Hu (2000). (b) Pure b-Ðeld
obtained by a rotation of the shears by n/4. (c) Correlated mixture of v and b with obtained by a rotation of the shears by n/8.C

l
vv \ C

l
bb \ C

l
vb

Weak lensing

[Hu & White, 2001] 



68 HU & WHITE Vol. 554

where dx is the separation vector between points on the
respective planes. In the weak-lensing limit, the deformation
can be decomposed as (Mellier 1999 ; Bartelmann & Schnei-
der 2001)

A
ij

\ (1 [ i)d
ij

[ c1 p3 [ c2 p1 , (2)

where the are the 2 ] 2 Pauli matrices, i > 1 is the con-p
ivergence, and is the shear. If a galaxy has (weighted)c

a
> 1

second moments MS, then the image will have

MI \ A~1 Æ MS Æ A~1 . (3)

The ellipticities are usually deÐned in terms of the second
moments of the light distribution, corrected for instrumen-
tal and observational e†ects, and in the weak-lensing regime
equation (3) simpliÐes dramatically, such that the observed
ellipticity of a galaxy is linearly related to the shear. The
proportionality constant depends on the deÐnition of the
ellipticity ; we take

SeT \ c , (4)

but note that 2c is often found in the literature (Bartelmann
& Schneider 2001). The result is that e deÐnes a (noisy)
estimate of the local shear Ðeld at nü .

Now consider an observation of a given area of the sky.
The observed Ðeld yields an estimate of the ellipticities e

iand positions of a set of galaxies binned into pixelsnü
ii \ 1, . . . , In a Cartesian coordinate system on the sky,Npix.the two components of the shear Ðeld, and trans-c1(nü ) c2(nü ),

form as a spin-2 Ðeld. The Fourier decomposition is

c1(nü ) ^ ic2(nü ) \P d2l
(2n)2W (l)[v(l) ^ ib(l)]eB2irleil Õ n9 , (5)

where is the angle between l and the x-axis, and W (l) isr
lthe Fourier transform of the pixel window function. For

square pixels of side p in radians,

W (l) \ j0
Alp

2
cos r

l
B

j0
Alp

2
sin r

l
B

, (6)

where is the zeroth-order spherical Besselj0(x) \ sin (x)/x
function. Note that for long wavelengths, the pixelization is
irrelevant and the window goes to unity.

We are interested in the power spectrum or correlation
function of the shear Ðeld. The two-point correlations in the
shear are determined by the three shear power spectra,

Sv(l)v(l @)T \ (2n)2d(l [ l@)C
l
vv ,

Sb(l)b(l@)T \ (2n)2d(l [ l@)C
l
bb ,

Sv(l)b(l@)T \ (2n)2d(l [ l@)C
l
vb . (7)

For the shear generated by weak lensing, C
l
vv \ C

l
ii, C

l
bb \

0, and For shot noise, Systematic errorsC
l
vb \ 0. C

l
vv \ C

l
bb.

can in principle generate any of the power spectra.
Since a 45¡ rotation of the shears takes v ] b, it converts

the lensing signal to a spectrum withC
l
bb \ C

l
ii C

l
vv \

A more general rotation leaves a signal in bothC
l
vb \ 0. C

l
vv

and but also correlates them as ForC
l
bb, (C

l
vb)2 \ C

l
vv C

l
bb.

the shot noise, the relation is invariant underC
l
vv \ C

l
bb

rotations. These rotations also allow one to visualize the
pattern implied by each spectrum (see Fig. 1). In particular,
the b-component possesses a ““ handedness ÏÏ ; formally, the
two are distinguished by their transformation under parity.

By direct substitution,

Sc1(nü
i
)c1(nü

j
)T \P d2l

(2n)2 (C
l
vv cos2 2r

l
] C

l
bb sin2 2r

l

[C
l
vb sin 4r

l
)W 2(l)eil Õ (n9 i~n9 j) ,

Sc2(nü
i
)c2(nü

j
)T \P d2l

(2n)2 (C
l
vv sin2 2r

l
] C

l
bb cos2 2r

l

]C
l
vb sin 4r

l
)W 2(l)eilÕ(n9 i~n9 j) ,

Sc1(nü
i
)c2(nü

j
)T \P d2l

(2n)2
C1

2
(C

l
vv [ C

l
bb) sin 4r

l

]C
l
vb cos 4r

l
D

W 2(l)eilÕ(n9 i~n9 j) . (8)

For a coordinate system that is oriented so that nü
i
[ nü

j
px

and pixel separations that are small compared with the
coherence scale of the Ðeld, the cosmological vv signal gen-
erates For shot noise and forSc1 c1T [ 0. Sc2 c2T B Sc1 c1T,
either These are the tests suggested bySc1 c2T B 0.
Miralda-Escude (1991).

FIG. 1.ÈFundamental shear modes and their cross-correlation. (a) Pure v-Ðeld obtained from a convergence map from White & Hu (2000). (b) Pure b-Ðeld
obtained by a rotation of the shears by n/4. (c) Correlated mixture of v and b with obtained by a rotation of the shears by n/8.C

l
vv \ C

l
bb \ C

l
vb

Weak lensing

[Hu & White, 2001] 


