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Summary of previous 
lecture

• Cosmologists observe light: 

• Intensity 

• Wavelength 

• Direction: 2 angles 

• That is: 

• 2 dims of the 4 of our space time 

• intensity and wavelength help to pin down a third 
dimension
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• Intensity, wavelength, direction: 2 angles 

• Light in vacuum has fixed velocity: c =1 

• (3+1)
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dL “ dA
aptq2 “ p1 ` zq2dA

dApzq “aptqr
ds2 “0 Ñ dt “ aptqdr

ª
dr “

ª
dt{aptq

r “
ª
dt{aptq “

ª
da{pa 9aq

“
ª
da{pa2Hpzqq “

ª
dz{Hpzq

H0dApzq “ 1

1 ` z

ª
dza

⌦mp1 ` zq3 ` ⌦rp1 ` zq4 ` ⌦kp1 ` zq2 ` ⌦⇤

dL - Luminosity distance
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a = 1/(1+z) 
in a truly

homogeneous universe

z - Redshift
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H(t)=H(a(t))=H(z(a(t)))=a/̇a 
Hubble rate



CMB as a distance measure
• assume for the moment that you know the 

physical distance of this characteristic scale 
1o

z=1100

CMB
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CMB by Planck
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Fig. 9. The nine Planck frequency maps show the broad frequency response of the individual channels. The color scale, based on inversion of the function y = 10x � 10�x, is
tailored to show the full dynamic range of the maps.
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Correlations?

• Important to remember meaning of 
correlation

• Cosmological problem: we measure 
only one universe, one realization

• Fundamentally impossible to measure 
correlations in cosmological quantities
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• Definition of correlation of variables:
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• Definition of correlation of variables:

• Application to CMB temperature

• But, for one human lifetime  
T(φ,ϑ) is always T(φ,ϑ,r(z=1100),t(z=1100)), always 
same remote spot in universe.

• We are stuck at i=0 in the sum that gives the 
correlation…

Correlations?
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• No, we do not see correlations in the 
CMB.  

• We see a spectrum of anisotropies. 

• So what is the relation to correlations?

Correlations?
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Correlations
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|alm|2So,                                 measures 2l+1 
independent random variables, drawn 
from the same gaussian distribution with 
variance Cl.

Often heard: Dl called pseudo Cl.

Large l: Dl gives a fair measurement of Cl. 
Small l: Dl has can have large deviation from Cl.
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Keep in mind
• Fundamentally, all Dl have cosmic 

variance with respect to Cl 

• Variance scales as √l 

• Planck satellite:  

• cosmic variance limited 2 < l < 1000 

• instrument limited 1000 ≤ l



Perturbation Theory

see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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Photon density

Velocity (Doppler)  
negligible
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to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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Photon density

Velocity (Doppler)
negligible

Gravitational potential



Perturbation Theory

see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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Photon density

Velocity (Doppler)
negligible

Gravitational potential

Time change of gravitational  
potential along the photon path



see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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For adiabatic perturbations:



see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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Ordinary Sachs-Wolfe effect Integrated Sachs-Wolfe effect

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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For adiabatic perturbations:



see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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Gravity wins!  
Hot = underdense 
Cold=overdense



see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]
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]
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(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
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For kη ≫ 1 this gives O(δ, v) = O
(

δT
T

)
≫ O(h). On sub-horizon scales the differ-

ence between δ, δ(long), Dg and D is negligible as well as the difference between v
and V or v(V ), V (V ) and Ω(V ).

Later we shall also need other perturbation variables like the perturbation of the
photon brightness (energy–integrated photon distribution function), but we shall
introduce them as we get there and discuss some applications first.

2.3 Basic perturbation equations

As already announced, we do not derive Einstein’s equations but just write down
those which we shall need later:

2.3.1 Constraint equations

4πGa2ρD = (k2 − 3κ)Φ (00)

4πGa2(ρ + p)V = k
((

ȧ
a

)
Ψ − Φ̇

)
(0i)

}

(scalar) (2.50)

8πGa2(ρ + p)Ω =
1

2

(
2κ − k2

)
σ(V ) (0i) (vector) (2.51)

2.3.2 Dynamical equations

− k2 (Φ + Ψ) = 8πGa2pΠ(S) (scalar) (2.52)

k

(
σ̇(V ) + 2

(
ȧ

a

)
σ(V )

)
= 8πGa2pΠ(V ) (vector) (2.53)

Ḧ(T ) + 2

(
ȧ

a

)
Ḣ(T ) +

(
2κ + k2

)
H(T ) = 8πGa2pΠ(T )

ij (tensor) (2.54)

There is a second dynamical scalar eqn., which is however complicated and not
needed, since we may instead use one of the conservation eqns. below. Note that for
perfect fluids, where Πi

j ≡ 0, we have Φ = −Ψ, σ(V ) ∝ 1/a2 and H obeys a damped
wave equation. The damping term can be neglected on small scales (over short time

periods) when η−2 <∼ 2κ + k2, and Hij represents propagating gravitational waves.

For vanishing curvature, these are just the sub-horizon scales, kη
>∼ 1. For κ < 0,

waves oscillate with a somewhat smaller frequency, ω =
√

2κ + k2, while for κ > 0
the frequency is somewhat larger.

2.3.3 Conservation equations

Ḋg + 3 (c2
s − w)

(
ȧ
a

)
Dg + (1 + w)kV + 3w

(
ȧ
a

)
Γ = 0

V̇ +
(

ȧ
a

)
(1 − 3c2

s) V = k (Ψ − 3c2
sΦ) + c2sk

1+wDg

+ wk
1+w

[
Γ − 2

3

(
1 − 3κ

k2

)
Π
]

⎫
⎪⎬

⎪⎭
(scalar) (2.55)
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j ≡ 0, we have Φ = −Ψ, σ(V ) ∝ 1/a2 and H obeys a damped
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see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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Ḣ(T ) +

(
2κ + k2

)
H(T ) = 8πGa2pΠ(T )

ij (tensor) (2.54)
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j ≡ 0, we have Φ = −Ψ, σ(V ) ∝ 1/a2 and H obeys a damped
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For vanishing curvature, these are just the sub-horizon scales, kη
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waves oscillate with a somewhat smaller frequency, ω =
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with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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For kη ≫ 1 this gives O(δ, v) = O
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ence between δ, δ(long), Dg and D is negligible as well as the difference between v
and V or v(V ), V (V ) and Ω(V ).

Later we shall also need other perturbation variables like the perturbation of the
photon brightness (energy–integrated photon distribution function), but we shall
introduce them as we get there and discuss some applications first.

2.3 Basic perturbation equations

As already announced, we do not derive Einstein’s equations but just write down
those which we shall need later:
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4πGa2ρD = (k2 − 3κ)Φ (00)

4πGa2(ρ + p)V = k
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ȧ
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}

(scalar) (2.50)
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− k2 (Φ + Ψ) = 8πGa2pΠ(S) (scalar) (2.52)
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ȧ

a

)
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wave equation. The damping term can be neglected on small scales (over short time

periods) when η−2 <∼ 2κ + k2, and Hij represents propagating gravitational waves.
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ȧ
a

)
Γ = 0

V̇ +
(

ȧ
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see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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For kη ≫ 1 this gives O(δ, v) = O
(

δT
T

)
≫ O(h). On sub-horizon scales the differ-

ence between δ, δ(long), Dg and D is negligible as well as the difference between v
and V or v(V ), V (V ) and Ω(V ).

Later we shall also need other perturbation variables like the perturbation of the
photon brightness (energy–integrated photon distribution function), but we shall
introduce them as we get there and discuss some applications first.

2.3 Basic perturbation equations

As already announced, we do not derive Einstein’s equations but just write down
those which we shall need later:

2.3.1 Constraint equations

4πGa2ρD = (k2 − 3κ)Φ (00)

4πGa2(ρ + p)V = k
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ȧ
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Ψ − Φ̇

)
(0i)

}

(scalar) (2.50)

8πGa2(ρ + p)Ω =
1

2

(
2κ − k2

)
σ(V ) (0i) (vector) (2.51)

2.3.2 Dynamical equations

− k2 (Φ + Ψ) = 8πGa2pΠ(S) (scalar) (2.52)

k

(
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σ(V )

)
= 8πGa2pΠ(V ) (vector) (2.53)

Ḧ(T ) + 2

(
ȧ

a

)
Ḣ(T ) +

(
2κ + k2

)
H(T ) = 8πGa2pΠ(T )

ij (tensor) (2.54)

There is a second dynamical scalar eqn., which is however complicated and not
needed, since we may instead use one of the conservation eqns. below. Note that for
perfect fluids, where Πi

j ≡ 0, we have Φ = −Ψ, σ(V ) ∝ 1/a2 and H obeys a damped
wave equation. The damping term can be neglected on small scales (over short time

periods) when η−2 <∼ 2κ + k2, and Hij represents propagating gravitational waves.

For vanishing curvature, these are just the sub-horizon scales, kη
>∼ 1. For κ < 0,

waves oscillate with a somewhat smaller frequency, ω =
√

2κ + k2, while for κ > 0
the frequency is somewhat larger.

2.3.3 Conservation equations

Ḋg + 3 (c2
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ȧ
a

)
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)
Γ = 0
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(

ȧ
a

)
(1 − 3c2
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(scalar) (2.55)
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see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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For kη ≫ 1 this gives O(δ, v) = O
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≫ O(h). On sub-horizon scales the differ-

ence between δ, δ(long), Dg and D is negligible as well as the difference between v
and V or v(V ), V (V ) and Ω(V ).

Later we shall also need other perturbation variables like the perturbation of the
photon brightness (energy–integrated photon distribution function), but we shall
introduce them as we get there and discuss some applications first.

2.3 Basic perturbation equations

As already announced, we do not derive Einstein’s equations but just write down
those which we shall need later:
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ȧ

a

)
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There is a second dynamical scalar eqn., which is however complicated and not
needed, since we may instead use one of the conservation eqns. below. Note that for
perfect fluids, where Πi

j ≡ 0, we have Φ = −Ψ, σ(V ) ∝ 1/a2 and H obeys a damped
wave equation. The damping term can be neglected on small scales (over short time

periods) when η−2 <∼ 2κ + k2, and Hij represents propagating gravitational waves.

For vanishing curvature, these are just the sub-horizon scales, kη
>∼ 1. For κ < 0,

waves oscillate with a somewhat smaller frequency, ω =
√

2κ + k2, while for κ > 0
the frequency is somewhat larger.
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the frequency is somewhat larger.
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ȧ
a

)
Γ = 0

V̇ +
(
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For kη ≫ 1 this gives O(δ, v) = O
(

δT
T

)
≫ O(h). On sub-horizon scales the differ-

ence between δ, δ(long), Dg and D is negligible as well as the difference between v
and V or v(V ), V (V ) and Ω(V ).

Later we shall also need other perturbation variables like the perturbation of the
photon brightness (energy–integrated photon distribution function), but we shall
introduce them as we get there and discuss some applications first.

2.3 Basic perturbation equations

As already announced, we do not derive Einstein’s equations but just write down
those which we shall need later:
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There is a second dynamical scalar eqn., which is however complicated and not
needed, since we may instead use one of the conservation eqns. below. Note that for
perfect fluids, where Πi

j ≡ 0, we have Φ = −Ψ, σ(V ) ∝ 1/a2 and H obeys a damped
wave equation. The damping term can be neglected on small scales (over short time

periods) when η−2 <∼ 2κ + k2, and Hij represents propagating gravitational waves.

For vanishing curvature, these are just the sub-horizon scales, kη
>∼ 1. For κ < 0,
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see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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For kη ≫ 1 this gives O(δ, v) = O
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ence between δ, δ(long), Dg and D is negligible as well as the difference between v
and V or v(V ), V (V ) and Ω(V ).

Later we shall also need other perturbation variables like the perturbation of the
photon brightness (energy–integrated photon distribution function), but we shall
introduce them as we get there and discuss some applications first.

2.3 Basic perturbation equations

As already announced, we do not derive Einstein’s equations but just write down
those which we shall need later:
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4πGa2ρD = (k2 − 3κ)Φ (00)
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(0i)

}

(scalar) (2.50)

8πGa2(ρ + p)Ω =
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)
σ(V ) (0i) (vector) (2.51)

2.3.2 Dynamical equations

− k2 (Φ + Ψ) = 8πGa2pΠ(S) (scalar) (2.52)
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= 8πGa2pΠ(V ) (vector) (2.53)
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Ḣ(T ) +
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)
H(T ) = 8πGa2pΠ(T )

ij (tensor) (2.54)

There is a second dynamical scalar eqn., which is however complicated and not
needed, since we may instead use one of the conservation eqns. below. Note that for
perfect fluids, where Πi

j ≡ 0, we have Φ = −Ψ, σ(V ) ∝ 1/a2 and H obeys a damped
wave equation. The damping term can be neglected on small scales (over short time

periods) when η−2 <∼ 2κ + k2, and Hij represents propagating gravitational waves.

For vanishing curvature, these are just the sub-horizon scales, kη
>∼ 1. For κ < 0,

waves oscillate with a somewhat smaller frequency, ω =
√

2κ + k2, while for κ > 0
the frequency is somewhat larger.

2.3.3 Conservation equations

Ḋg + 3 (c2
s − w)

(
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There is a second dynamical scalar eqn., which is however complicated and not
needed, since we may instead use one of the conservation eqns. below. Note that for
perfect fluids, where Πi

j ≡ 0, we have Φ = −Ψ, σ(V ) ∝ 1/a2 and H obeys a damped
wave equation. The damping term can be neglected on small scales (over short time

periods) when η−2 <∼ 2κ + k2, and Hij represents propagating gravitational waves.

For vanishing curvature, these are just the sub-horizon scales, kη
>∼ 1. For κ < 0,

waves oscillate with a somewhat smaller frequency, ω =
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2κ + k2, while for κ > 0
the frequency is somewhat larger.
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j ≡ 0, we have Φ = −Ψ, σ(V ) ∝ 1/a2 and H obeys a damped
wave equation. The damping term can be neglected on small scales (over short time

periods) when η−2 <∼ 2κ + k2, and Hij represents propagating gravitational waves.

For vanishing curvature, these are just the sub-horizon scales, kη
>∼ 1. For κ < 0,

waves oscillate with a somewhat smaller frequency, ω =
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2κ + k2, while for κ > 0
the frequency is somewhat larger.
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see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):

D′
g = −

4

3
V (3.20)

V ′ = 2Ψ +
1

4
Dg (3.21)

−2x2Ψ = 3Dg + 12Ψ +
12

x
V (3.22)

The general solution of this system is

Dg = D2

[

cos

(
x√
3

)
− 2

√
3

x
sin

(
x√
3

)]

+D1

[

sin

(
x√
3

)
+ 2

√
3

x
cos

(
x√
3

)]

(3.23)

V = −
3

4
D′

g (3.24)

Ψ =
−3Dg − (12/x)V

12 + 2x2
. (3.25)

Again, regularity at x = 0 requires D1 = 0.
In the super-horizon, x ≪ 1 regime we obtain

Ψ = Ψ0, Dg = D0 −
2

3
V0x

2, V = V0x (3.26)

with

D0 = −6Ψ0 = −D2 (3.27)

V0 =
1

2
Ψ0 = −

1

12
D0. (3.28)

On sub-horizon, x ≫ 1 scales we find oscillating solutions with constant amplitude
with a frequency of 1/

√
3:

V = V2 sin

(
x√
3

)
(3.29)

Dg = D2 cos

(
x√
3

)
, Ψ = −

3

2
x−2Dg (3.30)

D2 =
4V2√

3
. (3.31)
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=
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D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives
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)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):
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Again, regularity at x = 0 requires D1 = 0.
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with temperature perturbation
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]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives
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)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):

D′
g = −

4

3
V (3.20)

V ′ = 2Ψ +
1

4
Dg (3.21)

−2x2Ψ = 3Dg + 12Ψ +
12

x
V (3.22)

The general solution of this system is

Dg = D2

[

cos

(
x√
3

)
− 2

√
3

x
sin

(
x√
3

)]

+D1

[

sin

(
x√
3

)
+ 2

√
3

x
cos

(
x√
3

)]

(3.23)

V = −
3

4
D′

g (3.24)

Ψ =
−3Dg − (12/x)V

12 + 2x2
. (3.25)

Again, regularity at x = 0 requires D1 = 0.
In the super-horizon, x ≪ 1 regime we obtain

Ψ = Ψ0, Dg = D0 −
2

3
V0x

2, V = V0x (3.26)

with

D0 = −6Ψ0 = −D2 (3.27)

V0 =
1

2
Ψ0 = −

1

12
D0. (3.28)

On sub-horizon, x ≫ 1 scales we find oscillating solutions with constant amplitude
with a frequency of 1/

√
3:

V = V2 sin

(
x√
3

)
(3.29)

Dg = D2 cos

(
x√
3

)
, Ψ = −

3

2
x−2Dg (3.30)

D2 =
4V2√

3
. (3.31)
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3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):

D′
g = −

4

3
V (3.20)

V ′ = 2Ψ +
1

4
Dg (3.21)

−2x2Ψ = 3Dg + 12Ψ +
12

x
V (3.22)

The general solution of this system is

Dg = D2

[

cos

(
x√
3

)
− 2

√
3

x
sin

(
x√
3

)]

+D1

[

sin

(
x√
3

)
+ 2

√
3

x
cos

(
x√
3

)]

(3.23)

V = −
3

4
D′

g (3.24)

Ψ =
−3Dg − (12/x)V

12 + 2x2
. (3.25)

Again, regularity at x = 0 requires D1 = 0.
In the super-horizon, x ≪ 1 regime we obtain

Ψ = Ψ0, Dg = D0 −
2

3
V0x

2, V = V0x (3.26)

with

D0 = −6Ψ0 = −D2 (3.27)

V0 =
1

2
Ψ0 = −

1

12
D0. (3.28)

On sub-horizon, x ≫ 1 scales we find oscillating solutions with constant amplitude
with a frequency of 1/

√
3:

V = V2 sin

(
x√
3

)
(3.29)

Dg = D2 cos

(
x√
3

)
, Ψ = −

3

2
x−2Dg (3.30)

D2 =
4V2√

3
. (3.31)
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see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):

D′
g = −

4

3
V (3.20)

V ′ = 2Ψ +
1

4
Dg (3.21)

−2x2Ψ = 3Dg + 12Ψ +
12

x
V (3.22)

The general solution of this system is

Dg = D2

[

cos

(
x√
3

)
− 2

√
3

x
sin

(
x√
3

)]

+D1

[

sin

(
x√
3

)
+ 2

√
3

x
cos

(
x√
3

)]

(3.23)

V = −
3

4
D′

g (3.24)

Ψ =
−3Dg − (12/x)V

12 + 2x2
. (3.25)

Again, regularity at x = 0 requires D1 = 0.
In the super-horizon, x ≪ 1 regime we obtain

Ψ = Ψ0, Dg = D0 −
2

3
V0x

2, V = V0x (3.26)

with

D0 = −6Ψ0 = −D2 (3.27)

V0 =
1

2
Ψ0 = −

1

12
D0. (3.28)

On sub-horizon, x ≫ 1 scales we find oscillating solutions with constant amplitude
with a frequency of 1/

√
3:

V = V2 sin

(
x√
3

)
(3.29)

Dg = D2 cos

(
x√
3

)
, Ψ = −

3

2
x−2Dg (3.30)

D2 =
4V2√

3
. (3.31)
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3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):

D′
g = −

4

3
V (3.20)

V ′ = 2Ψ +
1

4
Dg (3.21)

−2x2Ψ = 3Dg + 12Ψ +
12

x
V (3.22)

The general solution of this system is

Dg = D2

[

cos

(
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3

)
− 2

√
3

x
sin

(
x√
3

)]

+D1

[

sin

(
x√
3

)
+ 2

√
3

x
cos

(
x√
3

)]

(3.23)

V = −
3

4
D′

g (3.24)

Ψ =
−3Dg − (12/x)V

12 + 2x2
. (3.25)

Again, regularity at x = 0 requires D1 = 0.
In the super-horizon, x ≪ 1 regime we obtain

Ψ = Ψ0, Dg = D0 −
2

3
V0x

2, V = V0x (3.26)

with

D0 = −6Ψ0 = −D2 (3.27)

V0 =
1

2
Ψ0 = −

1

12
D0. (3.28)

On sub-horizon, x ≫ 1 scales we find oscillating solutions with constant amplitude
with a frequency of 1/

√
3:

V = V2 sin

(
x√
3

)
(3.29)

Dg = D2 cos

(
x√
3

)
, Ψ = −

3

2
x−2Dg (3.30)

D2 =
4V2√

3
. (3.31)
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see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):

D′
g = −

4

3
V (3.20)

V ′ = 2Ψ +
1

4
Dg (3.21)

−2x2Ψ = 3Dg + 12Ψ +
12

x
V (3.22)

The general solution of this system is

Dg = D2

[

cos

(
x√
3

)
− 2

√
3

x
sin

(
x√
3

)]

+D1

[

sin

(
x√
3

)
+ 2

√
3

x
cos

(
x√
3

)]

(3.23)

V = −
3

4
D′

g (3.24)

Ψ =
−3Dg − (12/x)V

12 + 2x2
. (3.25)

Again, regularity at x = 0 requires D1 = 0.
In the super-horizon, x ≪ 1 regime we obtain

Ψ = Ψ0, Dg = D0 −
2

3
V0x

2, V = V0x (3.26)

with

D0 = −6Ψ0 = −D2 (3.27)

V0 =
1

2
Ψ0 = −

1

12
D0. (3.28)

On sub-horizon, x ≫ 1 scales we find oscillating solutions with constant amplitude
with a frequency of 1/

√
3:

V = V2 sin

(
x√
3

)
(3.29)

Dg = D2 cos

(
x√
3

)
, Ψ = −

3

2
x−2Dg (3.30)

D2 =
4V2√

3
. (3.31)
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3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):

D′
g = −

4

3
V (3.20)

V ′ = 2Ψ +
1

4
Dg (3.21)

−2x2Ψ = 3Dg + 12Ψ +
12

x
V (3.22)

The general solution of this system is

Dg = D2

[

cos

(
x√
3

)
− 2

√
3

x
sin

(
x√
3

)]

+D1

[

sin

(
x√
3

)
+ 2

√
3

x
cos

(
x√
3

)]

(3.23)

V = −
3

4
D′

g (3.24)

Ψ =
−3Dg − (12/x)V

12 + 2x2
. (3.25)

Again, regularity at x = 0 requires D1 = 0.
In the super-horizon, x ≪ 1 regime we obtain

Ψ = Ψ0, Dg = D0 −
2

3
V0x

2, V = V0x (3.26)

with

D0 = −6Ψ0 = −D2 (3.27)

V0 =
1

2
Ψ0 = −

1

12
D0. (3.28)

On sub-horizon, x ≫ 1 scales we find oscillating solutions with constant amplitude
with a frequency of 1/

√
3:

V = V2 sin

(
x√
3

)
(3.29)

Dg = D2 cos

(
x√
3

)
, Ψ = −

3

2
x−2Dg (3.30)

D2 =
4V2√

3
. (3.31)
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3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):

D′
g = −

4

3
V (3.20)

V ′ = 2Ψ +
1

4
Dg (3.21)

−2x2Ψ = 3Dg + 12Ψ +
12

x
V (3.22)

The general solution of this system is

Dg = D2

[
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(
x√
3

)
− 2

√
3

x
sin

(
x√
3

)]

+D1

[

sin

(
x√
3

)
+ 2

√
3

x
cos

(
x√
3

)]

(3.23)

V = −
3

4
D′

g (3.24)

Ψ =
−3Dg − (12/x)V

12 + 2x2
. (3.25)

Again, regularity at x = 0 requires D1 = 0.
In the super-horizon, x ≪ 1 regime we obtain

Ψ = Ψ0, Dg = D0 −
2

3
V0x

2, V = V0x (3.26)

with

D0 = −6Ψ0 = −D2 (3.27)

V0 =
1

2
Ψ0 = −

1

12
D0. (3.28)

On sub-horizon, x ≫ 1 scales we find oscillating solutions with constant amplitude
with a frequency of 1/

√
3:

V = V2 sin

(
x√
3

)
(3.29)

Dg = D2 cos

(
x√
3

)
, Ψ = −

3

2
x−2Dg (3.30)

D2 =
4V2√

3
. (3.31)
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3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):

D′
g = −

4

3
V (3.20)

V ′ = 2Ψ +
1

4
Dg (3.21)

−2x2Ψ = 3Dg + 12Ψ +
12

x
V (3.22)

The general solution of this system is

Dg = D2

[
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(
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3

)
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√
3

x
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(
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3
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+D1

[

sin

(
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3

)
+ 2

√
3

x
cos

(
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3

)]

(3.23)

V = −
3

4
D′

g (3.24)

Ψ =
−3Dg − (12/x)V

12 + 2x2
. (3.25)

Again, regularity at x = 0 requires D1 = 0.
In the super-horizon, x ≪ 1 regime we obtain

Ψ = Ψ0, Dg = D0 −
2

3
V0x

2, V = V0x (3.26)

with

D0 = −6Ψ0 = −D2 (3.27)

V0 =
1

2
Ψ0 = −

1

12
D0. (3.28)

On sub-horizon, x ≫ 1 scales we find oscillating solutions with constant amplitude
with a frequency of 1/

√
3:

V = V2 sin

(
x√
3

)
(3.29)

Dg = D2 cos

(
x√
3

)
, Ψ = −

3

2
x−2Dg (3.30)

D2 =
4V2√

3
. (3.31)
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see [Durrer, astro-ph/0109522] or  
[text book “The Cosmic Microwave Background” by Durrer]

with temperature perturbation

∆T (n)

T
=

[
1

4
D(r)

g + V (b)
j nj + Ψ − Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇− Φ̇)(η,x(η))dη , (4.13)

where x(η) is the unperturbed photon position at time η for an observer at x0,
and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 − η)n.). h The
first term in Eq. (4.13) describes the intrinsic inhomogeneities on the surface of
last scattering, due to acoustic oscillations prior to decoupling. Depending on the
initial conditions, it can contribute significantly on super-horizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (3.44), in a dust + radiation universe with Ω = 1, adiabatic initial conditions

imply D(r)
g (k, η) = −20/3Ψ(k, η) and V (b) = V (r) ≪ D(r)

g for kη ≪ 1. With Φ = −Ψ
the the square bracket of Eq. (4.13) gives

(
∆T (n)

T

)(OSW )

adiabatic

=
1

3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering surface

on very large scales is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been
derived for the first time by Sachs and Wolfe [23]. For isocurvature perturbations,

the initial condition D(r)
g (k, η) → 0 for η → 0 is satisfied and the contribution of Dg

to the ordinary Sachs–Wolfe effect can be neglected.

(
∆T (n)

T

)(OSW )

isocurvature

= 2Ψ(ηdec,xdec)

The second term in (4.13) describes the relative motions of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the sum of the acoustic and
Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the
first contribution determines the change in the photon energy due to the difference
of the gravitational potential at the position of emitter and observer. Together
with the part contained in D(r)

g they represent the “ordinary” Sachs-Wolfe effect.
The integral accounts for red-shift or blue-shift caused by the time dependence of
the gravitational field along the path of the photon, and represents the so-called
integrated Sachs-Wolfe (ISW) effect. In a Ω = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational potential is exactly canceled
by the redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full Sachs-
Wolfe contribution (SW).
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x “ k⌘

ap⌘qd⌘ “ dt

3.2 The pure radiation fluid, κ = 0, Λ = 0

In this limit we set w = c2
s = 1/3 and Π = 0. We conclude from ρ ∝ a−4 that a ∝ η

and Φ = −Ψ, and the perturbation equations become (with the same notation as
above):

D′
g = −

4

3
V (3.20)

V ′ = 2Ψ +
1

4
Dg (3.21)

−2x2Ψ = 3Dg + 12Ψ +
12

x
V (3.22)

The general solution of this system is

Dg = D2

[

cos

(
x√
3

)
− 2

√
3

x
sin

(
x√
3

)]

+D1

[

sin

(
x√
3

)
+ 2

√
3

x
cos

(
x√
3

)]

(3.23)

V = −
3

4
D′

g (3.24)

Ψ =
−3Dg − (12/x)V

12 + 2x2
. (3.25)

Again, regularity at x = 0 requires D1 = 0.
In the super-horizon, x ≪ 1 regime we obtain

Ψ = Ψ0, Dg = D0 −
2

3
V0x

2, V = V0x (3.26)

with

D0 = −6Ψ0 = −D2 (3.27)

V0 =
1

2
Ψ0 = −

1

12
D0. (3.28)

On sub-horizon, x ≫ 1 scales we find oscillating solutions with constant amplitude
with a frequency of 1/

√
3:
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Shortcut



Lensing
Secondary anisotropy

[Lewis & Challinor, 2006]
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Fig. 6. Top: the lensed temperature power spectrum (solid) and the unlensed spectrum (dotted),
compared to the large l asymptotic result of Eq. (4.16) (dashed). Bottom: the fractional change in
the power spectrum due to lensing. Both plots are for a typical concordance ΛCDM model.
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⎦ . (4.14)

The remaining integral is generally small, and the lensed spectrum only deviates from scale
invariant at the O(10−3) level. If there were no lensing power at l > l0, scale invariance would
be preserved on scales l > l0: a large-scale lensing mode magnifies and demagnifies small-
scale structures, which has no effect if the structures are scale invariant. Lensing of the CMB
is important because the acoustic oscillations and small scale damping give a well defined
non-scale-invariant structure to the power spectrum.
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• Late time universe 

• Dark Energy from 
CMB only!! 

• Massive Neutrinos



Reionization
• Photons rescatter at late time 

• Mixes CMB photons from different 
directions 

• Hence smoothes the anisotropies

Secondary anisotropy



• As reionization completes, ionization regions grow and fill the 
 space 

 

Inhomogeneous Ionization

Zahn et al. (2006) [Mortonson et al (2009)]

slide from Wayne Hu [http://background.uchicago.edu/~whu]

http://background.uchicago.edu/~whu


Sunyaev-Zel’dovich effect

• Photons rescatter in hot gas in galaxies / 
clusters 

• Produces spots in CMB 

• If cluster resolved: cut it out 

• If not: source of error 

• Anyaway source of information

Secondary anisotropy



Baryons

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]



Baryons

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]



Dark Matter

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]



Dark Matter

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]



Reionization
Secondary anisotropy

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]



Reionization
Secondary anisotropy

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]



Age of the universe
• Observe CMB peaks at some angle 

• Compute original length scale: ca 100 Mpc 
= 3x108 lightyear 

• Angular diameter distance to CMB 

• Remember its relation to expansion rate 

• That gives strong handle on age of universe



Age of the universe

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]



Age of the universe

from Wayne Hu [http://background.uchicago.edu/~whu/animbut/anim4.html]



Parameter constraints 
from Planck
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Parameter constraints from Planck



Dark Energy

Dark Matter

Baryons Photons

Neutrinos

Parameter constraints from Planck

H0=ȧ/a=68.65±0.93


