### Recherche de la double désintégration bêta sans émission de neutrinos par l'expérience GERDA: résultats et perspectives futures

Carla Macolino LAPP Annecy 20.02.15



### Je me présente

- 2010: PhD at Università degli Studi dell'Aquila INFN.
   Title of the thesis: Search for anisotropies in the arrival directions of UHECRs detected by the Pierre Auger Observatory.
   Study of anisotropy patterns in the arrival directions of Auger data.
- 2010-2012: Postdoc (CDD chercheur) at LPNHE-Paris, working in the Pierre Auger experiment.
   Study of the mass composition and radio detection of UHECRs (EASIER R&D).
- 2012-2014: Postdoc at LNGS (INFN), working in the GERDA experiment for the search for  $0\nu\beta\beta$  decay.
- 2014-today: Postdoc at GSSI and LNGS (INFN), working in the GERDA experiment for the search for  $0\nu\beta\beta$  decay. Search for  $0\nu\beta\beta$  decay,  $2\nu\beta\beta$  decay to excited states,  $0\nu$ ECEC of <sup>36</sup>Ar, data reconstruction, study of GERDA background.

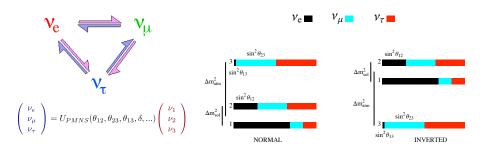

In total: 8 years of research activities in neutrino and astroparticle physics

### Outline

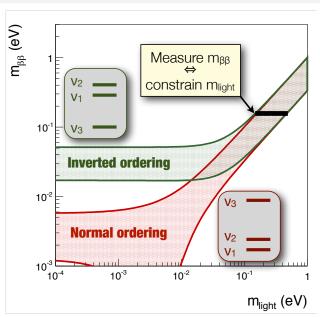
- Probing the nature of neutrino with neutrinoless double-beta decay
- The GERDA experiment
- The GERDA energy spectra
- The GERDA physics results from Phase I:
  - The background model for GERDA Phase I
  - Half-life of  $2\nu\beta\beta$  decay
  - Half-life of  $0\nu\beta\beta$  decay with Majorons
  - The Pulse Shape Discrimination of GERDA events
  - Half-life of  $0\nu\beta\beta$  decay
- On the way to GERDA Phase II
- Future perspectives for  $0\nu\beta\beta$  decay search

# Investigate existence of $0\nu\beta\beta$

- $0\nu\beta\beta$  decay probes fundamental questions:
  - Neutrino properties: the only practical technique to determine if neutrinos are their own anti-particles (Majorana or Dirac neutrino)
  - Lepton number violation: might leptogenesis be the explanation for the observed matter - antimatter asymmetry?
  - Smallness of neutrino mass could be naturally explained by requiring physics beyond Standard Model: see-saw mechanism,...



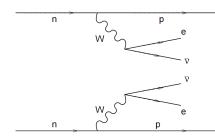




## Investigate existence of $0\nu\beta\beta$

#### • If $0\nu\beta\beta$ is observed:

- Measurements in a series of different isotopes can reveal the interaction process
- It is possible determine the absolute neutrino mass complementary to other techniques
- o It is possible to shed lights on the neutrino mass hierarchy
- It is possible to probe beyond Standard Model theories

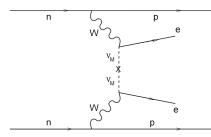



### Investigate existence of $0\nu\beta\beta$



# Search for $0\nu\beta\beta$ decay

### $2\nu\beta\beta$


$$(Z,A) \rightarrow (Z+2,A) + 2e^- + 2\overline{\nu}_e$$



 $\Delta L = 0$  2-nd order process predicted by the Standard Model

### 0 uetaeta

$$(Z, A) \rightarrow (Z + 2, A) + 2e^{-}$$



$$\Delta L = 2$$

$$Q=M_i-M_f-2m_e$$

not allowed within the Standard Model

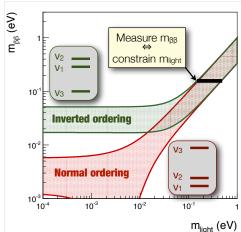
### Search for $0\nu\beta\beta$ decay

There are many possible underlying mechanisms for 0
uetaeta decay and in general:

$$(\mathit{T}_{1/2}^{0
u})^{-1} = \mathit{G}^{0
u} |\mathit{M}|^{0
u}|^2 \eta^2$$

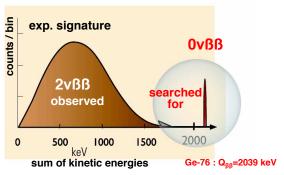
If light Majorana neutrino exchange is the dominant mechanism and no further sterile neutrino exists:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$


 $\langle m_{\beta\beta} \rangle \equiv$  effective neutrino mass  $\equiv$   $|U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{i\phi_2} + |U_{e3}|^2 m_2 e^{i\phi_3}$ 

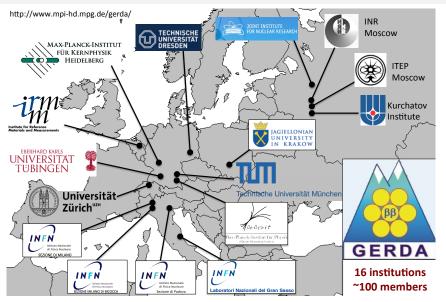
 $m_i$ =masses of the neutrino mass eigenstates

 $U_{ei}$ =elements of the neutrino mixing matrix


 $e^{i\phi_2}$  and  $e^{i\phi_3}=$ Majorana CP phases

→ information on the absolute mass scale!




## Search for $0\nu\beta\beta$ decay

Clear experimental signature in the energy spectrum of the two emitted electrons



- For  $^{76}$ Ge  $Q_{\beta\beta}=2039$  keV
- Observe the monochromatic line at  $\mathsf{Q}_{etaeta}$
- Reduce background as much as possible
- ullet Estimate half-life of the decay ( $>10^{25}$  yr)
- What is the mechanism beyond? (light Majorana neutrino exchange or other?)

### The GERDA collaboration



112 physicists, 16 institutions, 7 countries

### **GERDA @ LNGS**

Construction completed in 2009 - Inauguration 9 Nov. 2010







### **GERDA @ LNGS**



### **GERDA @ LNGS**



- Hall A of Gran Sasso Laboratory (INFN)
- 3800 m.w.e.

#### Background from:

#### External:

- $\gamma$ 's from Th and Ra chain
- neutrons
- cosmic-ray muons

#### Internal:

- cosmogenic  $^{60}$ Co ( $\mathsf{T}_{1/2} = 5.3 \; \mathsf{yr}$ )
- cosmogenic <sup>68</sup>Ge (T<sub>1/2</sub>=271 d)
- Radioactive surface contaminations

#### Background reduction and events identification

- · Gran Sasso suppression of  $\mu$  flux (10<sup>6</sup>)
- · Material selection
- · Passive or active shield (H<sub>2</sub>O LAr Cu)

- Muon veto
- · Detector anticoincidence
- Pulse-shape analysis

### The GERDA detectors in Phase I



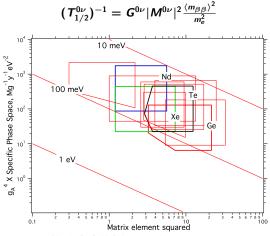


- 3 + 1 strings
- 8 enriched High Purity Ge detectors (coaxials): working mass 14.6 kg (2 of them are not working due to high leakage current)
- GTF112 natural Ge: 3.0 kg
- 5 enriched Broad Energy Ge detectors (BEGe): working mass 3.0 kg (testing Phase II concept in the real environment)

## **Experimental Sensitivity**

**Sensitivity** 
$$T_{1/2} \propto \epsilon \cdot rac{arepsilon}{A} \cdot \sqrt{rac{M \cdot T}{b \cdot \Delta E}}$$
 and  $T_{1/2} \propto rac{1}{m_{eta eta}^2}$ 

| $\epsilon$ | detection efficiency | ≳ 85%                            |
|------------|----------------------|----------------------------------|
| ε          | enrichment fraction  | high natural or enrichment       |
| М          | active target mass   | increase mass                    |
| Т          | measuring time       | increase time                    |
| b          | background rate      | minimize &                       |
|            | (cts/(keV kg yr))    | select radio-pure material       |
| ΔΕ         | energy resolution    | use high resolution spectroscopy |


#### Requirements:

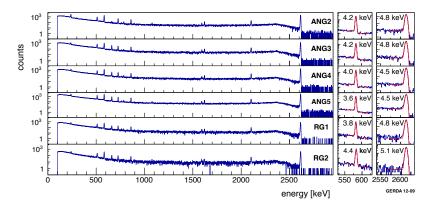
- high enrichment of isotope material
- M and T large
- very good energy resolution
   For GERDA ΔE < 0.2%</li>
- very good detection efficiency because GERDA detector  $\equiv$  source.  $\epsilon \sim 1$
- high-purity detectors  $\rightarrow$  low background For GERDA  $b < 10^{-2}$  cts/(keV kg yr)
- higher  $M^{0\nu}$  w.r.t. other isotopes

# Additional tools to distinguish from background:

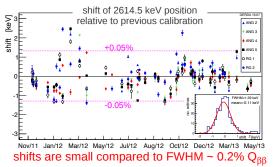
- Angular distribution
- Single electron spectrum
- Decay to excited states (gamma-rays)
- Identification of daughter nucleus

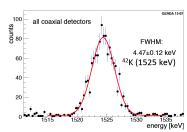
### Ge isotope w.r.t. other isotopes




Plot by R. G. H. Robertson, arXiv:1301.1323v1

- plot corresponding to  $0
  u\beta\beta$  rate of 1 count/(ton·yr)
- no clear golden candidate
- similar specific rates within a factor of 2
- <sup>76</sup>Ge important for historical reasons too


### Data processing and Energy calibrations

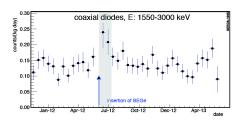

#### **Analysis**

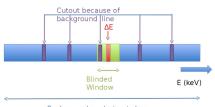
- Processing: diode o amplifier o FADC o digital filter o energy/pulse shape/etc...
- Selection: anti-coincidence muon/2nd Ge (20% rejected at  $Q_{\beta\beta}$ ), quality cuts (9% rej.), pulse-shape discrimination ( $\sim 50\%$  rej.)
- Calibration: <sup>228</sup>Th (bi)weekly and pulser every 20 seconds for short term drifts



## Data processing and Energy calibrations







#### Results

- peak pos. within 0.3 keV at correct position (from <sup>42</sup>K peak)
- $\bullet$  FWHM  $\sim$  4% larger than expected from calibration data
- exposure-weighted FWHM at  $Q_{\beta\beta}$  is:
  - 4.8 keV for coaxials (0.23%)
  - 3.2 keV for BEGes (0.16%)

## GERDA spectrum in fast motion

### **Energy spectra**





Background analysis window

# Phase I data divided in three subsets:

• Golden coax: 17.9 kg yr

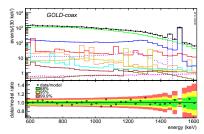
• Silver coax: 1.3 kg yr

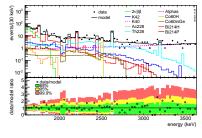
• BEGe: 2.4 kg yr

Silver coax: data from coaxial detectors during BEGe deployment (higher BI)

Golden coax: data from coaxial detectors

except Silver coax

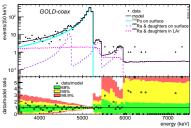

BEGe: data from BEGe detectors


- Events in  $Q_{\beta\beta}\pm$  20 keV kept BLINDED to not bias analysis and cuts
- Background level before PSD at  $Q_{\beta\beta}$  for Golden coax:  $0.018\pm0.002$  cts/(keV kg yr)

Background  ${\sim}10{\times}$  lower than previous Ge experiments!!

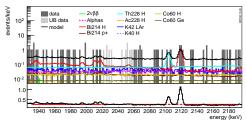
### The Background Model of GERDA Phase I

#### The GERDA collaboration, Eur. Phys. J. C 74 (2014) 2764

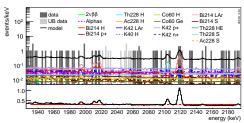





- Simulation of known and observed background
- Fit combination of MC spectra to data from 570 keV to 7500 keV
- Different combinations of positions and contributions tested


# Main contribution from close sources: <sup>228</sup>Th and <sup>226</sup>Ra in holders, <sup>42</sup>Ar

 $\alpha$  on detector surface




### The Background Model of GERDA Phase I

#### Minimum model fit



#### Maximum model fit



- No line expected in the blinded window
- Background flat between 1930 and 2190 keV
- $ilde{2}$  2104 $\pm 5$  keV and 2119 $\pm 5$  keV excluded
- Partial unblinding after fixing calibration and background model

In 30 keV window:

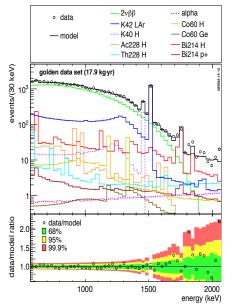
- · expected events:
  - 8.6 (minimum model) or 10.3 (maximum model)
- · observed events: 13

#### Golden coax:

BI =  $1.75^{+0.26}_{-0.24} \cdot 10^{-2}$  cts/(keV kg yr)

 ${\sf BI} = 3.6^{+1.3}_{-1.0} \cdot 10^{-2}~{\sf cts/(keV~kg~yr)}$ 

# Half-life of $2\nu\beta\beta$ decay of <sup>76</sup>Ge


# Consider the minimum background model to estimate the $2\nu\beta\beta$ half-life of $^{76}{\rm Ge}$

$$T_{1/2}^{2\nu} = \frac{(\ln 2) \ N_A}{m_{\text{enr}} \ N_{2\nu}^{\text{fit}}} \sum_{i=1}^{N_{\text{det}}} M_i \ t_i \ f_{76,i} \left[ f_{AV,i} \ \varepsilon_{AV,i}^{\text{fit}} + (1 - f_{AV,i}) \ \varepsilon_{DL,i}^{\text{fit}} \right]$$

| detectors | t [days]                   | M [kg]   | $f_{76}$ [%]   | $f_{AV} = [\%]$        |  |  |  |  |
|-----------|----------------------------|----------|----------------|------------------------|--|--|--|--|
|           | enriched coaxial detectors |          |                |                        |  |  |  |  |
| ANG2      | 485.5                      | 2.833    | $86.6 \pm 2.5$ | $87.1 \pm 4.3 \pm 2.8$ |  |  |  |  |
| ANG3      | 485.5                      | 2.391    | $88.3 \pm 2.6$ | $86.6 \pm 4.9 \pm 2.8$ |  |  |  |  |
| ANG4      | 485.5                      | 2.372    | $86.3 \pm 1.3$ | $90.1 \pm 4.9 \pm 2.9$ |  |  |  |  |
| ANG5      | 485.5                      | 2.746    | $85.6 \pm 1.3$ | $83.1 \pm 4.0 \pm 2.7$ |  |  |  |  |
| RG1       | 485.5                      | 2.110    | $85.5 \pm 1.5$ | $90.4 \pm 5.2 \pm 2.9$ |  |  |  |  |
| RG2       | 384.8                      | 2.166    | $85.5 \pm 1.5$ | $83.1 \pm 4.6 \pm 2.7$ |  |  |  |  |
|           | enr                        | riched B | EGe detector   | s                      |  |  |  |  |
| GD32B     | 280.0                      | 0.717    | $87.7 \pm 1.3$ | $89.0 \pm 2.7$         |  |  |  |  |
| GD32C     | 304.6                      | 0.743    | $87.7 \pm 1.3$ | $91.1 \pm 3.0$         |  |  |  |  |
| GD32D     | 282.7                      | 0.723    | $87.7 \pm 1.3$ | $92.3 \pm 2.6$         |  |  |  |  |
| GD35B     | 301.2                      | 0.812    | $87.7 \pm 1.3$ | $91.4 \pm 2.9$         |  |  |  |  |

- golden coaxial data
- Fit range: 570-7500 keV
- 17.9 kg·yr exposure
- 30 keV energy bin

# Half-life of $2\nu\beta\beta$ decay of <sup>76</sup>Ge

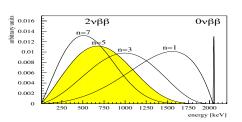


#### Binned maximum likelihood

Best fit result:

$$N_{2\nu}^{fit} = 25690_{-330}^{+310}$$

$$\mathsf{T}_{1/2}^{2
u} = (1.926^{+0.025}_{-0.022_{stat}-0.092_{syst}}^{+0.092}) \cdot 10^{21} \ \mathsf{yr}$$


Signal to background ratio 3:1 between 570 and 2039 keV.

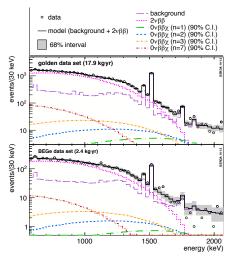
The GERDA collaboration
J. Phys. G: Nucl. Part. Phys. 40 (2013)

The GERDA collaboration submitted to Eur. Phys. J. C arXiv:1501.02345

# $0\nu\beta\beta\chi$ decays

#### Search for Majoron accompanied $0\nu\beta\beta$ decay of <sup>76</sup>Ge




| Model | n | Mode       | Goldstone<br>boson | L  |
|-------|---|------------|--------------------|----|
| IB    | 1 | χ          | no                 | 0  |
| IC    | 1 | χ          | yes                | 0  |
| ID    | 3 | χχ         | no                 | 0  |
| ΙE    | 3 | XX         | yes                | 0  |
| IF    | 2 | χ          | bulk field         | 0  |
| IIB   | 1 | χ          | no                 | -2 |
| IIC   | 3 | χ          | yes                | -2 |
| IID   | 3 | $\chi\chi$ | no                 | -1 |
| HE    | 7 | $\chi\chi$ | yes                | -1 |
| IIF   | 3 | X          | gauge boson        | -2 |

$$\frac{dN}{dK} \sim G \sim (Q_{\beta\beta} - K)^n$$

$$\lambda_{i}^{\alpha,0\nu\chi} = \frac{(\ln 2) \ N_{A}}{m_{\rm enr} T_{1/2}^{0\nu\chi}} M_{\alpha} f_{76,\alpha} \cdot \left[ f_{AV,\alpha} \sum_{j=1}^{N_{det}} t_{j} \varepsilon_{AV,j}^{\alpha} \varPhi_{AV,i,j}^{\alpha,0\nu\chi} + (1 - f_{AV,\alpha}) \sum_{j=1}^{N_{det}} t_{j} \varepsilon_{DL,j}^{\alpha} \varPhi_{DL,i,j}^{\alpha,0\nu\chi} \right]$$
$$\lambda_{i}^{0\nu\chi} = \sum_{\alpha=1}^{N_{det}} \lambda_{i}^{\alpha,0\nu\chi}$$

Golden coax + BEGe: total exposure 20.3 kg

# $0\nu\beta\beta\chi$ decays



| Model | n | Mode       | Goldstone   | L  | $T_{1/2}^{0\nu\chi}$ |
|-------|---|------------|-------------|----|----------------------|
|       |   |            | boson       |    | $[10^{23} yr]$       |
| IB    | 1 | χ          | no          | 0  | > 4.2                |
| IC    | 1 | X          | yes         | 0  | > 4.2                |
| ID    | 3 | $\chi\chi$ | no          | 0  | > 0.8                |
| IE    | 3 | $\chi\chi$ | yes         | 0  | > 0.8                |
| IF    | 2 | χ          | bulk field  | 0  | > 1.8                |
| IIB   | 1 | χ          | no          | -2 | > 4.2                |
| IIC   | 3 | X          | yes         | -2 | > 0.8                |
| IID   | 3 | $\chi\chi$ | no          | -1 | > 0.8                |
| IIE   | 7 | $\chi\chi$ | yes         | -1 | > 0.3                |
| IIF   | 3 | X          | gauge boson | -2 | > 0.8                |

#### Most stringest limits obtained for <sup>76</sup>Ge

- for n=1 and n=3 limits improved by a factor 6
- for n=7 limit improved by a factor 5
- for n=2 limit reported for the first time

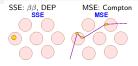
The GERDA collaboration, submitted to Eur. Phys. J. C

## $0\nu\beta\beta\chi$ decays

$$1/T_{1/2}^{0\nu\chi} = |\langle g \rangle|^2 \cdot G^{0\nu\chi}(Q_{\beta\beta},Z) \cdot |M^{0\nu\chi}|^2$$

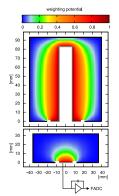
and

$$1/T_{1/2}^{0\nu\chi} = |\langle g \rangle|^4 \cdot G^{0\nu\chi\chi}(Q_{\beta\beta}, Z) \cdot |M^{0\nu\chi\chi}|^2$$

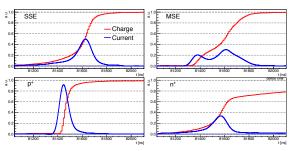

#### Results from GERDA Phase I

| Model | n | Mode       | Goldstone<br>boson | L  | $T_{1/2}^{0\nu\chi}$<br>[10 <sup>23</sup> yr] | $\mathcal{M}^{0 u\chi}$ | $G^{0\nu\chi}$ [yr <sup>-1</sup> ] | $\langle g \rangle$      |
|-------|---|------------|--------------------|----|-----------------------------------------------|-------------------------|------------------------------------|--------------------------|
| IB    | 1 | χ          | no                 | 0  | > 4.2                                         | (2.30 - 5.82)           | $5.86 \cdot 10^{-17}$              | $<(3.4-8.7)\cdot10^{-5}$ |
| IC    | 1 | χ          | yes                | 0  | > 4.2                                         | (2.30 - 5.82)           | $5.86 \cdot 10^{-17}$              | $<(3.4-8.7)\cdot10^{-5}$ |
| ID    | 3 | χχ         | no                 | 0  | > 0.8                                         | $10^{-3\pm1}$           | $6.32 \cdot 10^{-19}$              | $< 2.1^{+4.5}_{-1.4}$    |
| IE    | 3 | XX         | yes                | 0  | > 0.8                                         | $10^{-3\pm1}$           | $6.32 \cdot 10^{-19}$              | $< 2.1^{+4.5}_{-1.4}$    |
| IF    | 2 | χ          | bulk field         | 0  | > 1.8                                         | _                       | _                                  |                          |
| IIB   | 1 | χ          | no                 | -2 | > 4.2                                         | (2.30 - 5.82)           | $5.86 \cdot 10^{-17}$              | $<(3.4-8.7)\cdot10^{-5}$ |
| IIC   | 3 | χ          | yes                | -2 | > 0.8                                         | 0.16                    | $2.07 \cdot 10^{-19}$              | $< 4.7 \cdot 10^{-2}$    |
| IID   | 3 | $\chi\chi$ | no                 | -1 | > 0.8                                         | $10^{-3\pm1}$           | $6.32 \cdot 10^{-19}$              | $< 2.1^{+4.5}_{-1.4}$    |
| IIE   | 7 | XX         | yes                | -1 | > 0.3                                         | $10^{-3\pm1}$           | $1.21 \cdot 10^{-18}$              | $< 2.2^{+4.9}_{-1.4}$    |
| IIF   | 3 | χ          | gauge boson        | -2 | > 0.8                                         | 0.16                    | $2.07 \cdot 10^{-19}$              | $< 4.7 \cdot 10^{-2}$    |

The coupling constants allow a comparison with other isotopes


The GERDA collaboration, submitted to Eur. Phys. J. C arXiv:1501.02345

### Pulse shape discrimination of GERDA Phase I data




#### Pulse-shape analysis

- e signal: single site energy deposition
- γ signal: multiple site energy deposition

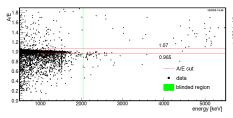


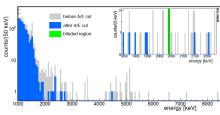
Current signal =  $\mathbf{q} \cdot \mathbf{v} \cdot \Delta \Phi$ q=charge, v=velocity (Schockley-Ramo theorem)



 $\mathbf{0}\nu\beta\beta$  events: 1 MeV electrons in Ge  $\sim$  1mm range one drift of electrons and holes SINGLE SITE EVENTS (SSE)

**Background from**  $\gamma$ 's: MeV  $\gamma$  in Ge  $\sim$  cm range several electron/holes drifts MULTI SITE EVENTS (MSE)


Surface events: only electron or hole drift Recherche de  $0\nu\beta\beta$  par GERDA

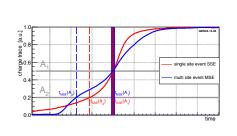

### Pulse shape discrimination of GERDA Phase I data

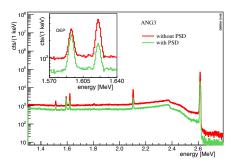
The GERDA collaboration, Eur. Phys. J. C 73, 2583 (2013)

#### PSD for BEGe detectors:

- A over E parameter (A/E) between 0.965 and 1.07
- Double Escape Peak of 2615 keV  $\gamma$  in <sup>228</sup>Th from calibrations (1593 keV)  $\rightarrow$  SSE for  $0\nu\beta\beta$
- FEP at 1621 keV or SEP at 2104 keV are MSE
- 80% background rejection at  $Q_{\beta\beta}$
- 0.92 $\pm$ 0.02 efficiency for 0 $\nuetaeta$  7/40 events kept in 400 keV window





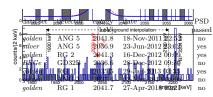


### Pulse shape discrimination of GERDA Phase I data

The GERDA collaboration, Eur. Phys. J. C 73, 2583 (2013)

#### PSD for coaxial detectors:

- Artificial Neural Network ANN
- ANN analysis of 50 rise-time info (1,3,5,...,99%) with TMVA/TMIpANN
- trained on signal SSE: <sup>208</sup>TI (2614 keV) DEP at 1592 keV
- MSE training with background-like <sup>212</sup>Bi FEP at 1621 keV






### Results on $0\nu\beta\beta$ decay

- Summed exposure: 21.6 kg yr
- Unblinding after calibration finished, data selection frozen. analysis method fixed and PSD selection fixed
- Consider the 3 data sets separately in the analysis
- BI = 0.01 cts/(keV kg yr) after **PSD**
- No events in  $\pm \sigma_E$  after PSD
- 3 events in  $\pm 2\sigma_E$  after PSD

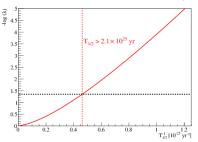
| data set  | $\mathcal{E}[\text{kg-yr}]$ | $\langle \epsilon \rangle$ | bkg | BI †)            | cts |
|-----------|-----------------------------|----------------------------|-----|------------------|-----|
| without P | SD                          |                            |     |                  |     |
| golden    | 17.9                        | $0.688 \pm 0.031$          | 76  | $18\pm 2$        | 5   |
| silver    | 1.3                         | $0.688 \pm 0.031$          | 19  | $63^{+16}_{-14}$ | 1   |
| BEGe      | 2.4                         | $0.720 \pm 0.018$          | 23  | $42^{+10}_{-8}$  | 1   |
| with PSD  |                             |                            |     |                  |     |
| golden    | 17.9                        | $0.619^{+0.044}_{-0.070}$  | 45  | $11\pm 2$        | 2   |
| silver    | 1.3                         | $0.619^{+0.044}_{-0.070}$  | 9   | $30^{+11}_{-9}$  | 1   |
| BEGe      | 2.4                         | $0.663 \pm 0.022$          | 3   | 5 <sup>+4</sup>  | 0   |

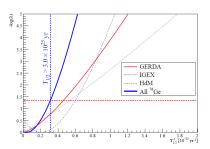
counts/keV background interpolation counts/(2 keV) energy [keV]



LAPP-Annecy 20.02.2015

31 / 43


†) in units of 10<sup>-3</sup> cts/(keV·kg·vr).


(GSSI-LNGS)

No peak in spectrum observed, number of events consistent with expectation from background → GERDA sets a limit on the half-life of the decay! Recherche de  $0\nu\beta\beta$  par GERDA

### Results on $0\nu\beta\beta$ decay

#### The GERDA collaboration, Phys. Rev. Lett. 111 (2013) 122503





- Frequentist analysis
   Median sensitivity:
   T<sub>1/2</sub> > 2.4·10<sup>25</sup> yr at 90% C.L.
- Maximum likelihood spectral fit (3 subsets, 1/T<sub>1/2</sub> common)
- Profile likelihood result:  $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25}$  yr at 90% C.L.
- $N^{0\nu} < 3.5$  Best fit:  $N^{0\nu} = 0$
- Combine with HdM and IGEX:  $T_{1/2}^{0\nu} > 3.0 \cdot 10^{25}$  yr at 90% C.L.
- independent of NME and physical mechanism for  $0\nu\beta\beta$



**Effective neutrino mass**: upper limit between 0.2 eV and 0.4 eV

### Results on $0\nu\beta\beta$ decay

Bayesian analysis based on Bayes theorem:

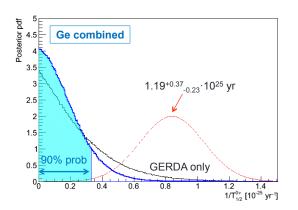
$$P(H|D) = \frac{P(D|H) \cdot P(H)}{P(D)}$$

$$\mu = \lambda + \nu \text{ Background } (\lambda) + \text{Signal}(\nu)$$

 $n_i$  = number of observed events in dataset i, D = total number of measured events

- **1**H = data fully explained by background processes
- 2  $\bar{H}=$  data explained by background plus signal

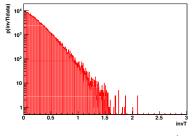
$$P(D|\vec{\lambda}, T_{1/2}, \bar{H}) = \prod_i \frac{e^{-(\lambda_i + \nu_i)}(\lambda_i + \nu_i)_i^n}{n_i!}$$

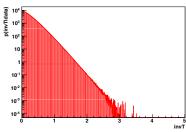

#### Power of Bayesian statistical method

the limit at 90% Credibility Interval, statistically means that  $T_{1/2}$  is greater than  $T_{lim}$  with 90% probability.

In the frequentist approach one can only state that, assuming  $0\nu\beta\beta$  exists, the value of  $T_{lim}$  derived will cover the true value of  $T_{1/2}$  in 90% of repetitions of similar experiment.

- Counting number of signal events
- Fitting signal + background


# Comparison with claim from Phys. Lett. B 586 198 (2004)




- Bayesian result (GERDA only)
- $T_{1/2}^{0
  u}>1.9\cdot 10^{25}$  yr at 90% C.redibility Interval
- Best fit  $N^{0\nu}=0$
- MC Median Sensitivity:  $T_{1/2}^{0\nu} > 2.0 \cdot 10^{25}$  yr at 90% C.I.

### Systematical uncertainties

# Influence of the systematical uncertainty on the estimation of the 90% C.I. limit on the half-life.

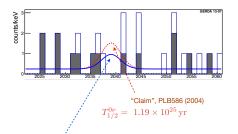




- Uncertainty on energy resolution (FWHM at  $Q_{etaeta}$ )
- Uncertainty on the total efficiency
- Error on the optimal window
- Uncertainty on  $\epsilon_{res}$ : this is the effciency for a signal event to fall within the energy window
- Systematic shift of the energy scale
- Uncertainty on PSD efficiency

# Comparison with claim from Phys. Lett. B 586 198 (2004)

#### Compare two hypotheses:

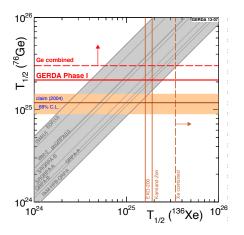

- $H_1$ :  $T_{1/2}^{0\nu} = 1.19_{-0.23}^{+0.37} \cdot 10^{25} \text{ yr}$
- H<sub>0</sub>: background only

#### Bayes factor:

$$BF(n, T_{1/2}) = \frac{P(\text{signal} + \text{background} | n, T_{1/2})}{P(\text{background})}$$
$$= \frac{1}{\nu_{max}} \int_{0}^{\nu_{max}} \exp(-\nu) \left(\frac{\lambda + \nu}{\lambda}\right)^{n} d\nu$$

# Bayes factor for GERDA only $P(H_1)/P(H_0) = 0.024$

$$P(H_1)/P(H_0) = 0.02$$
  
 $P(N^{0\nu}=0|H_1)=0.01$ 




Compatible with no signal events  $T_{1/2}^{0\nu}{>}2.1{\cdot}10^{25}$  yr

N.B.:  $\mathsf{T}_{1/2}^{0\nu}$  from Mod. Phys. Lett. A 21 (2006) 157 not considered because of inconsistencies (missing efficiency factors) pointed out in Ann. Phys. 525 (2013) 259 by B. Schwingenheuer.

### Combining with Ge and Xe previous results

The GERDA collaboration, Phys. Rev. Lett. 111 (2013) 122503
C. Macolino and the GERDA collab., Mod. Phys. Lett. A29 (2014) 1430001
Comparison with previous half-life limits from Ge and Xe experiments



#### GERDA+HdM+IGEX:

- $\mathsf{T}_{1/2}^{0\nu} > 3.0 \cdot 10^{25}$  yr at 90% C.I.
- Bayes factor  $P(H_1)/P(H_0) = 0.0002$
- best fit:  $N^{0\nu}=0$

#### GERDA+KamLAND+EXO:

• Bayes factor  $P(H_1)/P(H_0) = 0.0022$ 

# On the way to GERDA Phase II

#### How to get a higher sensitivity for the Phase II:

- reduce radiation sources and understand background sources
- improve background rejection
- increase mass and improve energy resolution

#### Strategy:

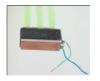
- Phase I ended on Sept. 30th 2013. Phase II transition currently ongoing at LNGS
- increase mass: additional 30 enriched BEGe detectors (about 20 kg)
- reduce background by a factor of 10 w.r.t. GERDA Phase I:
  - make things cleaner:
    - use lower background Signal and HV cables w.r.t. Phase I
    - reduce material for holders and special care in crystal production
  - 2 reject residual background radiation:
    - by Pulse Shape Analysis for high background recognition efficiency
    - by LAr scintillation light for background recognition and rejection
- First data in these days

### Liquid Argon instrumentation for Phase II

#### LAr scintillation veto in GERDA Phase II

- SiPM fiber curtain
- PMTs on top and bottom of the array

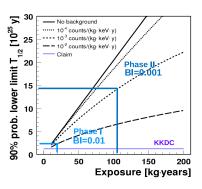


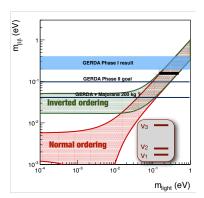



Top/bottom: PMTs






Central cylinder: SiPM/Fiber readout






LAr veto + PSA allows a strong reduction of the background at  $Q_{\beta\beta}$ !

### Experimental scenario





- Phase I result: BI  $\sim 10^{-2}$  cts/(keV kg yr) and  $\sim 20$  kg·yr exposure Claim from *Phys. Lett. B 586 (2004) 198* rejected with high probability
- Phase II goal: BI  $\sim 10^{-3}$  cts/(keV kg yr) and 100 kg·yr exposure sensitivity on  $T_{1/2}^{0\nu}\sim 1.4\cdot 10^{26}$  yr (factor 7 better than Phase I)
- GERDA + Majorana: discussion on possible 200 kg (1 ton) experiment

#### Latest results

#### Most stringent limits on $0\nu\beta\beta$ decay

| Isotope           | Experiment    | $T_{1/2}^{0 u}$ at 90% CL [yr] | $\langle m_{etaeta} angle$ [eV] | Ref. |
|-------------------|---------------|--------------------------------|---------------------------------|------|
| <sup>76</sup> Ge  | GERDA Phase I | $2.1 \cdot 10^{25} \text{ yr}$ | 0.25 - 0.42                     | (1)  |
| <sup>136</sup> Xe | EXO           | $1.1 \cdot 10^{25} \text{ yr}$ | 0.19 - 0.45                     | (2)  |
| <sup>136</sup> Xe | KamLAND-Zen   | 1.9 · 10 <sup>25</sup> yr      | 0.14 - 0.34                     | (3)  |
| <sup>130</sup> Te | CUORICINO     | 2.8 · 10 <sup>24</sup> yr      | 0.31 - 0.76                     | (4)  |
| <sup>100</sup> Mo | NEMO-3        | $1.1 \cdot 10^{25} \text{ yr}$ | 0.34 - 0.87                     | (5)  |

(1): Phys. Rev. Lett 111 (2013), 122503

(2): Nature 510 (2014), 229-234

(3): Phys. Rev. Lett. 110 (2013), 062502

(4): Astropart. Phys. 34 (2011) 822-831

(5): Phys. Rev. D 89, 111101 (2014)

In summary:  $\langle m_{etaeta} 
angle <$  0.4 eV (90% CL)

### Experimental scenario

#### Exciting time with running and upcoming experiments!!!

| Experiment  | Isotope           | Mass of      | Sensitivity          | Sensitivity       | Status      |
|-------------|-------------------|--------------|----------------------|-------------------|-------------|
|             |                   | Isotope [kg] | $T_{1/2}^{0 u}$ [yr] | $m_{etaeta}$ [eV] |             |
| GERDA       | <sup>76</sup> Ge  | 18           | $3 \times 10^{25}$   | 0.2 ÷ 0.4         | running     |
|             |                   | 40           | $2 \times 10^{26}$   | 0.1               | in progress |
|             |                   | 1000         | $6 \times 10^{27}$   | 0.03              | R&D         |
| CUORE       | <sup>130</sup> Te | 200          | $1 \times 10^{26}$   | 0.04 ÷ 0.1        | in progress |
| MAJORANA    | <sup>76</sup> Ge  | 40           | $2 \times 10^{26}$   | 0.1               | in progress |
|             |                   | 1000         | $6 \times 10^{27}$   | 0.03              | R&D         |
| EXO         | <sup>136</sup> Xe | 200          | $5 \times 10^{25}$   | 0.08 ÷ 0.3        | in progress |
|             |                   | 1000         | $8 \times 10^{26}$   | $0.01 \div 0.03$  | R&D         |
| SuperNEMO   | <sup>82</sup> Se  | 7            | $6.6 \times 10^{24}$ | $0.2 \div 0.5$    | in progress |
|             |                   | 100          | $1 	imes 10^{26}$    | $0.04 \div 0.11$  | R&D         |
| KamLAND-Zen | <sup>136</sup> Xe | 400          | $4 \times 10^{26}$   | 0.06              | in progress |
|             |                   | 1000         | $1 \times 10^{27}$   | 0.02              | R&D         |
| NEXT        | <sup>136</sup> Xe | 1000         | $5 	imes 10^{26}$    | $0.03 \div 0.07$  | in progress |
| SNO+        | <sup>130</sup> Te | 200          | $1 \times 10^{26}$   | $0.06 \div 0.1$   | in progress |
|             |                   | 800          | $1 \times 10^{27}$   | $0.02 \div 0.06$  | R&D         |

#### Conclusions

- Phase I data taking successful! Phase II ongoing
- total exposure of GERDA Phase I is 21.6 kg yr
- very low background 0.01 cts/(keV kg yr) after PSD
- half-life of  $0\nu\beta\beta$ :  $T_{1/2}^{0\nu}>2.1\cdot10^{25}$  yr (90% C.L.) for <sup>76</sup>Ge
- this translates in a limit on the effective neutrino mass:  $m_{\beta\beta}$  between 0.2 eV and 0.4 eV
- probability that the signal from the previous claim produces the GERDA outcome is 1%
- starting Phase II with improved sensitivity
- o exciting results to come from different experiments!

#### Remerciements

#### Merci de votre attention!!



GERDA Collaboration Meeting in MPI Heidelberg, Germany
June 2014