Centre de Physique des Particules de Marseille, 9th February 2015

In the Deep, Dark Lyman-α Forest: Exploring Dark Energy and Galaxy Formation using the Intergalactic Medium Mat Pieri

with the BOSS $Ly\alpha F$ Working Group

Outline

- What is the Intergalactic Medium and how is it observed?
- O Using the IGM to measure cosmology
- O Surveys present and future

Space is not a vacuum

• You all knew that though

- You all knew that though
 - O There is the interstellar medium

- O You all knew that though
 - O There is the interstellar medium
 - O ... oh and the gas around galaxies

- You all knew that though
 - O There is the interstellar medium
 - O ... oh and the gas around galaxies
 - O ... oh and the gas in filaments

- O You all knew that though
 - O There is the interstellar medium
 - O ... oh and the gas around galaxies
 - O ... oh and the gas in filaments
- No part of the universe is empty!

- You all knew that though
 - O There is the interstellar medium
 - O ... oh and the gas around galaxies
 - O ... oh and the gas in filaments
- No part of the universe is empty!
- O All that gas matters

The Universe on the Largest Scales

1.5 Gigaparsecs

Yellow/red shows gas between galaxies. Blue shows the galaxies!

Di Matteo et al. (2011), Feng et al (2011)

Google: "gigapan Massive Black" to explore this

Mass density of Intergalactic Medium

Gas collapses to form galaxies and accretes to grow them

Di Matteo et al. (2011), Feng et al (2011)

Gas collapses to form galaxies and accretes to grow them

Di Matteo et al. (2011), Feng et al (2011)

Quasar Spectra and Lyman & Forest

- O Line-of-sight probe
- O Gas with $1 \lesssim \frac{\rho}{\bar{\rho}} \lesssim 10$

O traces dark matter on large scales

O Largely photoionized

 $\circ \tau_{\rm HI} \propto \rho_{\rm H}^{0.4}$ and $f = CF = Ce^{-\tau_{\rm HI}}$

- O Departures from this
 - O UV background modulation
 - O Strong lines
 - O Small scale physics

Quasar Spectra and Lyman & Forest

- O Line-of-sight probe
- O Gas with $1 \lesssim rac{
 ho}{ar{
 ho}} \lesssim 10$
 - O traces dark matter on large scales
- O Largely photoionized

O $\tau_{\rm HI} \propto \rho_{\rm H}^{0.4}$ and $f = CF = Ce^{-\tau_{\rm HI}}$

- O Departures from this
 - O UV background modulation
 - O Strong lines
 - O Small scale physics

Other Absorption in the Forest

The composite spectrum of Ly α forest absorbers measured in SDSS ...

MP et al. (2010) and MP et al. (2014)

Outline

- What is the Intergalactic Medium and how is it observed?
- Using the IGM to measure cosmology
- O Surveys present and future

The Sloan Digital Sky Survey (SDSS)

- O Began in 2000
- O Dedicated 2.5m SDSS telescope at Apache Point, New Mexico, USA
- O On of the most highly cited endeavors in the history of astronomy
- O Imaging and spectra across ~1/3 the sky
- O Spectra of many million stars, galaxies and quasars
- O 1000 fibres per "field"
- O Resolution R = 2000
- O Began SDSS-III in 2009

Baryon Oscillation Spectroscopic Survey (BOSS)

O I of 4 surveys in SDSS-III
between 2009-2014
O I/4 of the sky (10,000

deg²)

O The goal: I.6M galaxies and >I60k forest quasars
O Resolution R = 2000

z<0.7 galaxies The final BOSS Lyα forest survey (DR12):

0 158k quasars with z > 2.15
0 ~550k visually inspected (Paris et al. 2014)
0 > 30k DLAs (Noterdaeme et al. 2012)
0 DR9 forest sample public (Lee et al. 2013)

2 < z < 3.4 forest

Baryon Acoustic Oscillations

- O A useful ruler on the sky measured in the CMB (Eisenstein et al 2005, Cole et al. 2005)
- O BIG ~100 Mpc/h comoving
- O Trace expansion over time

Baryon Acoustic Oscillations

- O A useful ruler on the sky measured in the CMB (Eisenstein et al 2005, Cole et al. 2005)
- O BIG ~100 Mpc/h comoving
- O Trace expansion over time

Measuring BAO in BOSS-LyaF

- Measure correlation between lines of sight (Slosar et al. 2011)
- Only small-scales along LOS (e.g. Palanque-Delabrouille et al 2013)
- BAO Ist measurement last year Busca et al. (2013) and Slosar et al. (2013)

Updated DRII results in Delubac et al (2014)

- O Measure $\xi(r) = <\delta\delta>$ where $\delta(z) = \frac{f}{C\bar{F}} 1$
- Compared with mocks (Bautista et al 2014, Font-Ribera et al. 2012)
 Can also measure BAO using metal absorption (MP 2014)

Calculating
$$\delta(z) = \frac{f}{C\bar{F}} - 1$$

maximum likelihood of mean quasar + absorption PDF + noise PDF continuum

Calculating $\delta(z) =$

Spectral Artifacts

Impact of Lya Strong Lines

Correlation Function Measurement

Mat Pieri - CPPM, 9th February 2015 Correlation Function Measurement

fit **peak model** and **no peak model**

 $\Delta \chi^2 = 18.1$ (significance ~ 4 sigma) in Busca et al. (2013) now $\Delta \chi^2 = 27.2$ (significance ~ 5 sigma) in Delubac et al. (2014)

Then vary:

$$\alpha_H \equiv r_s H / (r_s H)_{\text{fid}}$$
$$\alpha_{\text{d}_A} \equiv \frac{(d_A / r_s)_{\text{fid}}}{(d_A / r_s)}$$

where r_s is the WMAP BAO scale

Constrained at 2% level

Metal Absorption Contaminating BAO

- O Multiple metal lines add correlations in the data in ID
 - O Carries into 3D correlation function
- O Tests adding metals from stacking to mock data

Delubac et al. (2014) Bautista et al (2014)

Also Cross-correlation Quasars-Ly α F

Font-Ribera et al (2013)

¦r_{II}

Tension with Standard Models

Aubourg et al (2014)

Mat Pieri - CPPM, 9th February 2015

Monday, 9 February 15

Modifications to Cosmology?

No known models that bring $Ly\alpha$ Forest results into line without harming BOSS galaxy agreement

Aubourg et al (2014)

Current Limitations

- O X-correlation measurement no mocks nearly ready
- Metal forests BAO in Lyα forest are a currently untested systematic eBOSS solves this
- Subtle spectroscopic and data reduction artifacts latest reductions and tests show negligible impact
- O Large scale UV background fluctuations tested in mocks
- O Refinements of
 - \circ Ly α -metal and metal-metal correlation tests
 - O Addition of strong $Ly\alpha$ lines
- O BAO fitting unphysical new paper on the way

ID Power Spectrum

and constraint neutrino masses $\sum m_{\nu} < 0.15 \text{ eV}$

Current Cosmology Results

Dark energy from the $Ly\alpha$ forest works!

- 2% precision on line of sight BAO
- Highest precision on expansion rate since CMB
- Highest z observation of BAO peak (at z ~ 2.3)
- Matter domination epoch, measure H and so high-z deceleration
- 0 Novel
 - New redshift
 - New type of probe
 - Surprises?
- Perhaps seeing this in our 2.5σ tension with Planck
- With CMB provide best upper limits on neutrino masses
- Final BOSS results to come in 2015

Outline

- What is the Intergalactic Medium and how is it observed?
- O Using the IGM to measure cosmology
- Surveys present and future

Growth of Massive IGM Surveys 2014-2019: SDSS-IV/eBOSS

- O Improved Lyα forest BAO
 - O 60k new spectra and 60k reobserved
- Fill redshift gap between galaxy and LyαF
 BAO with clustering of ~600k I < z<2 quasars
- No Lyα forest but can use the carbon forest to trace BAO (MP 2014)
- Weaker signal than LyαF offset by x4 more quasars compared to BOSS
- If 2% precision on each tracer, x-corr is 1%
- Effectively turns I survey into 3 surveys
- $^{\rm O}$ Also metal BAO is a potential contaminant of Ly αF BAO

MP (2014)

Growth of Massive IGM Surveys 2019-2024: DESI

- Takes over the Mayall 4m at Kitt Peak Arizona, USA
- Not SDSS Cosmology sole focus, I/3 of the sky
- Resolution R=2000
- Quasar absorption survey co-chair
- 600k Lyα forest quasar spectra
- O I.4M intermediate redshift quasar spectra
- O 20M+ galaxies with z<1.6
- O Potential to cross-correlated quasars, galaxies and carbon absorption
 - O Effectively ~6 surveys
 - O X-corr powerful in the shot noise limit

Growth of Massive IGM Surveys 2018-2023:WEAVE

- O Takes over 4m William Herschel Telescope
- O 1000 robotically positioned fibres
- \circ 500k Ly α quasar spectra.
- Resolution R=20000 (with limited wavelength) or 5000
- O Quasar absorption survey lead
- O BAO with more precise continuum estimation
- O Probe of smaller scale effects
 - ID power spectrum, warm dark matter, varying fine structure constant, deuterium abundance, IGM heating

Power of Cross-correlation

- O Absorption and galaxy/quasar BAO both shot noise limited
- O Systematics cancel
- O Current quasar-forest results powerful
 - O but quasars to sparse to be useful alone
- First attempt to probe two BAO tracers in same structure in eBOSS
 - O but carbon is a weak tracer
- O During DESI/WEAVE high-z galaxies surveys (PFS and Euclid)
 ⇒ wealth of IGM-galaxy data for cross-correlations
- Cross-correlate weak lensing and BAO?
- O The future is bright for next generation LLS surveys

Fin