People were at their own talk...

Others instead had too much coffee...

Notice the suspicious look :p

Investigated channels

Analyses

Name	single/pair	author	selections	iso/b-tag	cuts	optimised (yes/no)	MVA (yes/no)	in SVN (link/no)
tZ-3L	single	Ibasso	$\begin{array}{l} N(\ell) \equiv 3, \\ p_T(\ell) > 20 \ {\rm GeV} \\ \eta(e/\mu) < 2.5(2.4) \\ ; 1 \leq N(j) \leq 3, \\ p_T(j) > 40 \ {\rm GeV}, \\ \eta(j) < 2.4) \end{array}$	iso: ecal/track combined CONE03, I_rel = 10%; b-tag CVS medium	$M(\ell^+\ell^-) - MZ < 15$ GeV, $10 < M_T(\ell_W) < 150$ GeV, $M_T(l_W b) < 220$ GeV	yes	yes	no
tZ-3L	pair	Isis						
t-1L	single	Caro	$\begin{split} N(\ell) &= 1, \\ p_T(\ell) > 30, \\ \eta(\ell) < 2.5, \text{ no} \\ \text{other lepton with} \\ p_T > 20; \\ N(j) > 0 \\ p_T(J_1) > 35, p_T(\\ \text{other jet}) > 20, \\ \eta < 2.4 \end{split}$	combinedIso CONE04<0.2; btag Tight for J_1	MET > 30, $M_T(W) > 50$	yes	yes	yes : Analysis/SingleTop/FCNConeTop
tγ	single	Eric						
tH- $\gamma\gamma$	pair	Taejong						
tH-2b	single	Benj						
tH- 1L3b	pair	Kevin	$\begin{split} &N(\ell) = 1, \\ &p_T(e/\mu) > 15(10) \\ &\text{GeV} \\ &\eta(e/\mu) < 2.5(2.4) \\ &; N(j) \geq 3, \\ &N(b) \geq 3, \\ &p_{\tau(j_1/j_2/j_3/j_4,\ldots) > 40/40/35/20} \\ &\text{GeV}, \eta(j) < 2.4) \end{split}$	iso: ecal/track combined CONE04, b- tag CVS medium	only baseline selection	yes	yes (no sign improvement)	yes
tH- 2SSL	single	Jeremy						
tH- 2SSL	pair	Shimaa						
tH-3L	single	Adam/Jeremy						

Single-top couplings: SM predictions, anomalous couplings, FCNC

Lorenzo Basso IPHC, Strasbourg

2nd CMS single-top workshop

FCNC in the SM

EFT and effective Lagrangian

FCNC in the SM

SM prediction of FCNC is small: GIM suppressed (unitarity of CKM matrix).

 $\sum_{i} V_{ti} imes V_{iq} \simeq 0$, non-zero because quarks are not mass degenerate

SM predictions for top FCNC BRs

F. del Aguila, J. A. Aguilar-Saavedra and R. Miquel, Phys. Rev. Lett. **82** (1999) 1628 [hep-ph/9808400] J. A. Aguilar-Saavedra, Acta Phys. Polon. B **35** (2004) 2695 [hep-ph/0409342]

$t \rightarrow uZ$	$t \rightarrow u\gamma$	$t \rightarrow ug$	$t \rightarrow uH$	$t \rightarrow cZ$	$t \rightarrow c\gamma$	$t \rightarrow cg$	$t \rightarrow cH$
8×10^{-17}	3.7×10^{-16}	3.7×10^{-14}	2×10^{-17}	1×10^{-14}	4.6×10^{-14}	4.6×10^{-12}	3×10^{-15}

BSM predictions for top FCNC BRs

J. A. Aguilar-Saavedra, Acta Phys. Polon. B 35 (2004) 2695 [hep-ph/0409342]

BR	SM	QS	2HDM	FC 2HDM	MSSM	₽ SUSY
$t \rightarrow uZ$	8×10^{-17}	1.1×10^{-4}	_	_	2×10^{-6}	3×10^{-5}
$t \rightarrow u\gamma$	3.7×10^{-16}	7.5×10^{-9}	_	_	2×10^{-6}	1×10^{-6}
$t \rightarrow ug$	3.7×10^{-14}	1.5×10^{-7}	_	_	8×10^{-5}	2×10^{-4}
$t \to u H$	2×10^{-17}	4.1×10^{-5}	5.5×10^{-6}	_	10^{-5}	$\sim 10^{-6}$
$t \to c Z$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	2×10^{-6}	3×10^{-5}
$t \to c \gamma$	4.6×10^{-14}	$7.5 imes 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}
$t \to cg$	4.6×10^{-12}	1.5×10^{-7}	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	2×10^{-4}
$t \to c H$	3×10^{-15}	4.1×10^{-5}	1.5×10^{-3}	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$

Current BR limits

BR (BSM decay)	Best limits in the single top	Best limits in the $tar{t}$	Best limit	
g – c – t	 0.016% (ATLAS-CONF-2013-063 @ 8TeV) 0.034% (CMS-TOP-14-007 @ 7TeV) 		0.016%	
g – u – t	 0.0031% (ATLAS-CONF-2013-063 @ 8TeV) 0.035% (CMS-TOP-14-007 @ 7TeV) 		0.0031%	
Z – c – t	11.4% (CMS-TOP-12-021 @ 7 TeV)	• 0.05% (CMS-TOP-12-037 @ 7+8TeV)	0.05%	
Z – u – t	0.51% (CMS-TOP-12-021 @ 7 TeV)	• 0.73% (ATLAS:JHEP90(2012) @ 7TeV)	0.03%	
h – c – t		• 0.56% (CMS-HIG-13-034 @ 8TeV)	0.56%	
h – u – t		• 0.79% (ATLAS:JHEP06(2014) @ 7+8TeV)	0.50%	
γ−c−t	0.182% (CMS-TOP-14-003 @ 8TeV)		0.182%	
γ − u − t	0.016% (CMS-TOP-14-003 @ 8TeV)		0.016%	

Limits obtained at Tevatron, LEP and HERA are not competitive.

Lorenzo I	Basso (IPH	С
-----------	---------	-----	---

EFT intro

The top-quark couplings can be parametrised in an effective field theory.

The SM Lagrangian is extended by gauge-invariant (non-renormalisable) operators, obtained by integrating out heavy modes

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i O_i}{\Lambda^2}$$

One could consider any term, $\mathcal{O}\left(\frac{1}{\Lambda^2}\right)^n$

Here we consider only dimension 6 operators, the first non-vanishing terms in $1/\Lambda$ expansion

FCNC has no interference with SM, that starts from $\left(\frac{C_i O_i}{\Lambda^2}\right)^2$

Possible interference between FCNC; not more than 1 coupling per diagram

Not all possible dim-6 operators that one can write are independent

Redundant operators can be reduced by using equation of motions and other relations due to gauge invariance

Dim-6 operators - EW

Among all the 59 possible operators, 14 contribute to top-quark EW anomalous couplings W. Buchmuller, D. Wyler, Nucl.Phys. B268 (1986) 621

$$\begin{split} & O^{(3,ij)}_{\phi q} = i(\phi^{\dagger}\tau^{I}D_{\mu}\phi)(\bar{q}_{Li}\gamma^{\mu}\tau^{I}q_{Lj})\,, & O^{ij}_{Du} = (\bar{q}_{Li}\,D_{\mu}u_{Rj})\,D^{\mu}\,\tilde{\phi}\,, \\ & O^{(1,ij)}_{\phi q} = i(\phi^{\dagger}D_{\mu}\phi)(\bar{q}_{Li}\gamma^{\mu}q_{Lj})\,, & O^{ij}_{Du} = (D_{\mu}\bar{q}_{Li}\,u_{Rj})\,D^{\mu}\,\tilde{\phi}\,, \\ & O^{ij}_{\phi \phi} = i(\phi^{\dagger}D_{\mu}\phi)(\bar{u}_{Ri}\gamma^{\mu}d_{Rj})\,, & O^{ij}_{Dd} = (\bar{q}_{Li}\,D_{\mu}d_{Rj})\,D^{\mu}\,\phi\,, \\ & O^{ij}_{\phi u} = i(\phi^{\dagger}D_{\mu}\phi)(\bar{u}_{Ri}\gamma^{\mu}u_{Rj})\,, & O^{ij}_{Dd} = (D_{\mu}\bar{q}_{Li}\,d_{Rj})\,D^{\mu}\,\phi\,, \\ & O^{ij}_{uW} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^{I}u_{Rj})\tilde{\phi}\,W^{I}_{\mu\nu}\,, & O^{ij}_{qW} = \bar{q}_{Li}\gamma^{\mu}\tau^{I}D^{\nu}q_{Lj}W^{I}_{\mu\nu}\,, \\ & O^{ij}_{uB\phi} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^{I}d_{Rj})\phi\,W^{I}_{\mu\nu}\,, & O^{ij}_{uB} = \bar{q}_{Li}\gamma^{\mu}D^{\nu}u_{Lj}B_{\mu\nu}\,, \end{split}$$

Only three operators (up to flavour indices) contribute to strong interactions,

$$O_{uG\phi}^{ij} = (\bar{q}_{Li}\lambda^a \sigma^{\mu\nu} u_{Rj})\tilde{\phi} G_{\mu\nu}^a , \qquad O_{qG}^{ij} = \bar{q}_{Li}\lambda^a \gamma^\mu D^\nu q_{Lj}G_{\mu\nu}^a , O_{uG}^{ij} = \bar{u}_{Ri}\lambda^a \gamma^\mu D^\nu u_{Rj}G_{\mu\nu}^a .$$

Dim-6 operators - EW

Among all the 59 possible operators, 14 contribute to top-quark EW anomalous couplings J. A. Aguilar-Saavedra, Nucl. Phys. B812, 181 (2009) [0811.3842]

$$\begin{split} & O_{\phi q}^{(3,ij)} = i(\phi^{\dagger}\tau^{I}D_{\mu}\phi)(\bar{q}_{Li}\gamma^{\mu}\tau^{I}q_{Lj}), & O_{Du}^{ij} = (\bar{q}_{Li}D_{\mu}u_{Rj})D^{\mu}\check{\phi}, \\ & O_{\phi q}^{(1,ij)} = i(\phi^{\dagger}D_{\mu}\phi)(\bar{q}_{Li}\gamma^{\mu}q_{Lj}), & O_{Du}^{ij} = (D_{\mu}\bar{q}_{Li}u_{Rj})D^{\mu}\check{\phi}, \\ & O_{\phi q}^{ij} = i(\phi^{\dagger}D_{\mu}\phi)(\bar{u}_{Ri}\gamma^{\mu}d_{Rj}), & O_{Dd}^{ij} = (\bar{q}_{Li}D_{\mu}d_{Rj})D^{\mu}\phi, \\ & O_{\phi u}^{ij} = i(\phi^{\dagger}D_{\mu}\phi)(\bar{u}_{Ri}\gamma^{\mu}u_{Rj}), & O_{Dd}^{ij} = (\bar{q}_{Li}D_{\mu}d_{Rj})D^{\mu}\phi, \\ & O_{\mu W}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^{I}u_{Rj})\check{\phi}W_{\mu\nu}^{I}, & O_{qW}^{ij} = \bar{q}_{Li}\gamma^{\mu}\tau^{I}D^{\nu}q_{Lj}W_{\mu\nu}^{I}, \\ & O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^{I}d_{Rj})\phi W_{\mu\nu}^{I}, & O_{qB}^{ij} = \bar{q}_{Li}\gamma^{\mu}D^{\nu}u_{Rj}B_{\mu\nu}, \\ & O_{uB\phi}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}u_{Rj})\check{\phi}B_{\mu\nu}, & O_{uB}^{ij} = \bar{u}_{Ri}\gamma^{\mu}D^{\nu}u_{Rj}B_{\mu\nu}, \end{split}$$

Only three operators (up to flavour indices) contribute to strong interactions,

$$O_{uG\phi}^{ij} = (\bar{q}_{Li}\lambda^a \sigma^{\mu\nu} u_{Rj}) \tilde{\phi} G_{\mu\nu}^a ,$$

REDUNDANT

$$\begin{split} O_{qG}^{ij} &= \overline{q_{Li}} \lambda^a \gamma^\mu D^\nu \overline{q_{Lj}} G^a_{\mu\nu} ,\\ O_{uG}^{ij} &= \overline{u_{Ri}} \lambda^a \gamma^\mu D^\nu \overline{u_{Rj}} G^a_{\mu\nu} . \end{split}$$

Dim-6 operators - Higgs

The operators that contribute to the H - f - f' interaction are

$$\begin{split} O^{ij}_{u\phi} &= (\phi^{\dagger}\phi)(\bar{q}_{Li}u_{Rj}\tilde{\phi})\,,\\ O^{(3,ij)}_{\phi q} &= i(\phi^{\dagger}\tau^{I}D_{\mu}\phi)(\bar{q}_{Li}\gamma^{\mu}\tau^{I}q_{Lj})\,,\\ O^{(1,ij)}_{\phi q} &= i(\phi^{\dagger}D_{\mu}\phi)(\bar{q}_{Li}\gamma^{\mu}q_{Lj})\,,\\ O^{ij}_{\phi u} &= i(\phi^{\dagger}D_{\mu}\phi)(\bar{u}_{Ri}\gamma^{\mu}u_{Rj})\,, \end{split}$$

The last 3 can be decomposed in i + j and i - j (i < j) components J. A. Aguilar-Saavedra, Nucl. Phys. B 821, 215 (2009) [0904.2387]

$$\begin{split} O_{\phi q}^{(3,i+j)} &\equiv \frac{1}{2} \left[O_{\phi q}^{(3,ij)} + (O_{\phi q}^{(3,ji)})^{\dagger} \right], & O_{\phi q}^{(3,i-j)} \equiv \frac{1}{2} \left[O_{\phi q}^{(3,ij)} - (O_{\phi q}^{(3,ji)})^{\dagger} \right], \\ O_{\phi q}^{(1,i+j)} &\equiv \frac{1}{2} \left[O_{\phi q}^{(1,ij)} + (O_{\phi q}^{(1,ji)})^{\dagger} \right], & O_{\phi q}^{(1,i-j)} \equiv \frac{1}{2} \left[O_{\phi q}^{(1,ij)} - (O_{\phi q}^{(1,ji)})^{\dagger} \right], \\ O_{\phi u}^{i+j} &\equiv \frac{1}{2} \left[O_{\phi u}^{ij} + (O_{\phi u}^{ji})^{\dagger} \right], & O_{\phi u}^{i-j} \equiv \frac{1}{2} \left[O_{\phi u}^{(1,ij)} - (O_{\phi u}^{(1,ji)})^{\dagger} \right]. \end{split}$$

(4) E (4) E (4) E

Image: A matrix

Dim-6 operators - Higgs

The operators that contribute to the H - f - f' interaction are

$$\begin{aligned} O_{u\phi}^{ij} &= (\phi^{\dagger}\phi)(\bar{q}_{Li}u_{Rj}\tilde{\phi}) \,, \\ O_{\phi q}^{(3,ij)} &= i(\phi^{\dagger}\tau^{I}D_{\mu}\phi)(\bar{q}_{Li}\gamma^{\mu}\tau^{I}q_{Lj}) \,, \\ O_{\phi q}^{(1,ij)} &= i(\phi^{\dagger}D_{\mu}\phi)(\bar{q}_{Li}\gamma^{\mu}q_{Lj}) \,, \\ O_{\phi u}^{ij} &= i(\phi^{\dagger}D_{\mu}\phi)(\bar{u}_{Ri}\gamma^{\mu}u_{Rj}) \,, \end{aligned}$$

The last 3 can be decomposed in i + j and i - j (i < j) components J. A. Aguilar-Saavedra, Nucl. Phys. B **821**, 215 (2009) [0904.2387]

$$\begin{split} O_{\phi q}^{(3,i+j)} &\equiv \frac{1}{2} \left[O_{\phi q}^{(3,ij)} + (O_{\phi q}^{(3,ji)})^{\dagger} \right], \\ O_{\phi q}^{(1,i+j)} &\equiv \frac{1}{2} \left[O_{\phi q}^{(1,ij)} + (O_{\phi q}^{(1,ji)})^{\dagger} \right], \\ O_{\phi q}^{i+j} &\equiv \frac{1}{2} \left[O_{\phi q}^{(1,ij)} + (O_{\phi q}^{(1,ji)})^{\dagger} \right], \\ O_{\phi q}^{i+j} &\equiv \frac{1}{2} \left[O_{\phi q}^{ij} + (O_{\phi q}^{ji})^{\dagger} \right], \\ O_{\phi q}^{i-j} &\equiv \frac{1}{2} \left[O_{\phi q}^{(1,ij)} - (O_{\phi q}^{(1,ji)})^{\dagger} \right], \\ O_{\phi q}^{i-j} &\equiv \frac{1}{2} \left[O_{\phi q}^{(1,ij)} - (O_{\phi q}^{(1,ji)})^{\dagger} \right], \\ O_{\phi q}^{i-j} &\equiv \frac{1}{2} \left[O_{\phi q}^{ij} - (O_{\phi q}^{(1,ji)})^{\dagger} \right]. \end{split}$$

This shift affects the relation of some of the dim-6 EW operators on the previous slide

Effective Lagrangian

Dim-6 operators can be simplified by means of e.o.m and equalities, both for on- and off-shell particles. Equivalent interaction Lagrangian, with scalar, γ^{μ} and $\sigma^{\mu\nu}$ terms only, can be written J. A. Aguilar-Saavedra, 0811.3842 and 0904.2387

$$\mathcal{L} = -\sum_{q=u,c} \left[g_s \frac{\kappa_{gqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} T_a (f_{Gq}^L P_L + f_{Gq}^R P_R) q G_{\mu\nu}^a \right] \\ + \frac{g}{\sqrt{2}c_W} \frac{\kappa_{zqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{Zq}^L P_L + f_{Zq}^R P_R) q Z_{\mu\nu} \\ + \frac{g}{4c_W} \zeta_{zqt} \bar{t} \gamma^{\mu} (f_{Zq}^L P_L + f_{Zq}^R P_R) q Z_{\mu} \\ + e \frac{\kappa_{\gamma qt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{\gamma q}^L P_L + f_{\gamma q}^R P_R) q A_{\mu\nu} \\ + \frac{1}{\sqrt{2}} \bar{t} \kappa_{Hqt} (f_{Hq}^L P_L + f_{Hq}^R P_R) q H \right] + \text{h.c}$$

q = t \Rightarrow top anomalous couplings: ttZ, $tt\gamma$, ttg, ttHq = u/c \Rightarrow top FCNC: ztq, γtq , gtq, HtqValidity: OK for production of SM bosons both on- and off-shell Limitation: Heavy particles only in loops \Rightarrow No 4f operators

Lorenzo Basso (IPHC)

2nd single-top workshop

Partial widths and NLO

J. J. Zhang et al., Phys. Rev. D 82, 073005 (2010) [1004.0898] Top-quark partial widths $\forall q = u, c \ (\Gamma_{tot} = \Gamma_1 + \Gamma_{mix})$

$\Gamma(t \to qV/S)$) (MeV) / 0.1 TeV^{-1}	Γ_0	Γ_1	Γ_{tot}	Γ_1/Γ_0	Γ_{tot}/Γ_0
$\Gamma(t \to qg)$	(via κ_{gqt})	3.61	3.94	-	1.09	-
$\Gamma(t \to q\gamma)$	(via $\kappa_{\gamma q t}$)	0.20	0.18	0.16	0.91	0.82
$\Gamma(t \to qZ)$	(via κ_{Zqt})	0.163	0.148	0.153	0.91	0.94

QCD NLO: enhance $\Gamma(t \to qg)$ by $\mathcal{O}(10\%)$, reduce $\Gamma(t \to qZ/\gamma)$ by same amount. On top, operator mixing can change partial top-quark partial widths by another $\mathcal{O}(10\%)$.

The QCD NLO correction to $\Gamma(t \rightarrow qH)$ has been recently evaluated

C. Zhang et al. Phys. Rev. D 88, 054005 (2013) [1305.7386]

$$\frac{\alpha_s \Gamma_1}{\Gamma_0} = 0.018 - 0.049 \frac{C_{uG}}{C_{u\varphi}}$$

Enhance $\Gamma(t \to qH)$ by $\mathcal{O}(2\%)$, but could be $\mathcal{O}(10\%)$ due to operator mixing.

REVIEW OF ANOMALOUS COUPLINGS

Wtb anomalous coupling

J. A. Aguilar-Saavedra et al. Eur. Phys. J. C 50, 519 (2007) [hep-ph/0605190]

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^{-} -\frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} (g_L P_L + g_R P_R) t W_{\mu}^{-} + \text{H.c.}$$

with

$$\delta V_L = C_{\phi q}^{(3,3+3)*} \frac{v^2}{\Lambda^2} \qquad \qquad \delta g_L = \sqrt{2} C_{dW}^{33*} \frac{v^2}{\Lambda^2} \\ \delta V_R = \frac{1}{2} C_{\phi \phi}^{33} \frac{v^2}{\Lambda^2} \qquad \qquad \delta g_R = \sqrt{2} C_{uW}^{33} \frac{v^2}{\Lambda^2}$$

In the SM, $V_L = V_{tb} \simeq 1$ and $V_R = g_L = g_R = 0$. Non-zero V_R , g_L , g_R would alter the W helicity from the top decay:

$$\frac{\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{\ell}^{*}} = \frac{3}{8}(1+\cos\theta_{\ell}^{*})^{2}F_{L} + \frac{3}{8}(1-\cos\theta_{\ell}^{*})^{2}F_{R} + \frac{3}{4}\sin^{2}\theta_{\ell}^{*}F_{0}}{\frac{SM}{LO}} - \frac{\frac{F_{L}}{0.297} + \frac{F_{R}}{3.610^{-4}} + \frac{F_{0}}{0.703}}{0.304} - \frac{1000}{0.001} + \frac{1000}{0.695}}$$

$$\mathcal{L} = -\sum_{q=u,c} \left[\sqrt{2} g_s \frac{\kappa_{gqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} T_a (f_{Gq}^L P_L + f_{Gq}^R P_R) q G_{\mu\nu}^a \right] + \text{h.c}$$

with $(u: i = 1,$	c:i	= 2)	$\sigma(pb)/0.1~{\rm TeV^{-1}}$	κ_{gct}	κ_{gut}
Kaat I		$2 \sim vm_t$	$pp \rightarrow t$	86.7	398
$-\frac{gqv}{\Lambda}f_{Gq}^L$	=	$\frac{-C_{uG\phi}^{3i*}}{\Lambda^2}$	$pp ightarrow t\gamma$ (*)	1.3	6.8
11		g_s n	$pp \rightarrow th$	0.064	0.49
$\frac{\kappa_{gqt}}{1} f_{Ca}^R$	=	$\frac{2}{-}C_{uG\phi}^{i3}\frac{vm_t}{12}$	$pp ightarrow t\ell\ell$ (**)	0.030	0.33
Λ^{-r} Gq		$g_s \xrightarrow{u \cup \psi} \Lambda^2$	$pp \to t \nu \nu$	0.052	0.59

These couplings enter into any single-top process at the LHC. This topology though is the most sensitive: if coupling non zero, it will be seen here

NLO: MEtop generator can generate events with "matched effective NLO-QCD" precision (soft/collinear approx.): *k*-factors? 1303.5485

u, c

gqt anomalous coupling: pp ightarrow tj

The gqt anomalous coupling can also affect the single-top + jet production J. Gao et al. Phys. Rev. D 80, 114017 (2009) [0910.4349]

Inclusive cross sections

LO cross sections and NLO k-factor as a function of the jet p_T cut

$\gamma q t$ anomalous coupling: $pp ightarrow t \, \gamma$

Selecting a real photon in the final state can single out this coupling

γqt anomalous coupling: $pp ightarrow t \, \gamma @ \,$ NLO

Cross sections for $pp \rightarrow t \gamma$ have been evaluated at NLO (for γqt only) Y. Zhang et al. Phys. Rev. D 83, 094003 (2011) [1101.5346]

Inclusive cross sections with $p_T^{\gamma} > 40 \text{GeV}$ and $|\eta^{\gamma}| < 2.5$

LO cross sections and NLO k-factor as a function of the photon p_T cut

Mixing in $pp ightarrow t \, \gamma @$ NLO

The gqt and γqt anomalous couplings can mix and affect $\sigma(pp \to t \gamma)$ Y. Zhang et al. Phys. Rev. D 83, 094003 (2011) [1101.5346] Inclusive cross section with mixing (for $Re(g_{qL}g_{ZL}^*) = Re(g_{qR}g_{ZR}^*) = 1$)

zqt anomalous couplings: $pp \rightarrow t + \mathsf{MET}$

$$\mathcal{L} = -\sum_{q=u,c} \left[\frac{g}{\sqrt{2}c_W} \frac{\kappa_{zqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} \left(f_{Zq}^L P_L + f_{Zq}^R P_R \right) q Z_{\mu\nu} \right. \\ \left. + \frac{g}{4c_W} \zeta_{zqt} \bar{t} \gamma^{\mu} \left(f_{Zq}^{'L} P_L + f_{Zq}^{'R} P_R \right) q Z_{\mu} \right] + \text{h.c}$$

Via $pp \rightarrow t Z$ with $Z \rightarrow \nu \nu$. LO cross sections

$\sigma(fb)/0.1~{ m TeV^{-1}}$	κ_{gct}	κ_{gut}	κ_{zct}	κ_{zut}	ζ_{zct}	ζ_{zut}
$pp \rightarrow t \nu \nu$	52	593	4.1	34	21	149

Cross section at NLO (for undecayed Z) from B. H. Li et al. Phys. Rev. D 83, 114049 (2011) [1103.5122]

FCNC coupling	tuZ (LO)	tuZ (NLO)	tcZ (LO)	tcZ (NLO)
LHC $(\frac{\kappa/\Lambda}{0.01 \text{ TeV}^{-1}})^2$ (fb)	6.4	9.0	0.5	0.7
	tug (LO)	tug (NLO)	tcg (LO)	tcg (NLO)
LHC $\left(\frac{\kappa/\Lambda}{0.01 \text{ TeV}^{-1}}\right)^2$ (fb)	141	180	7.6	10.8
	tuV (LO)	tuV (NLO)	tcV (LO)	tcV (NLO)
LHC $(rac{\kappa/\Lambda}{0.01 { m TeV}^{-1}})^2$ (fb)	147	188	8.1	11.5

zqt vs γqt

Relation of zqt couplings to Dim-6 ones, with (u: i = 1, c: i = 2)

$$\begin{aligned} \zeta_{zqt} f_{Zq}^{'L} &= \left[C_{\phi q}^{(3,i+3)} - C_{\phi q}^{(1,i+3)} \right] \frac{v^2}{\Lambda^2} \\ \zeta_{zqt} f_{Zq}^{'R} &= - \left[C_{\phi u}^{i+3} \right] \frac{v^2}{\Lambda^2} \\ \frac{\kappa_{zqt}}{\Lambda} f_{\gamma q}^L &= \left[c_W C_{uW}^{3i*} - s_W C_{uB\phi}^{3i*} \right] \frac{v^2}{\Lambda^2} \\ \frac{\kappa_{zqt}}{\Lambda} f_{\gamma q}^R &= \left[c_W C_{uW}^{i3} - s_W C_{uB\phi}^{i3} \right] \frac{v^2}{\Lambda^2} \end{aligned}$$

Recall $\kappa_{\gamma qt}$:

$$\frac{\kappa_{\gamma qt}}{\Lambda} f^L_{\gamma q} = \frac{1}{e} \left[s_W C^{3i*}_{uW} + c_W C^{3i*}_{uB\phi} \right] \frac{vm_t}{\Lambda^2}$$
$$\frac{\kappa_{\gamma qt}}{\Lambda} f^R_{\gamma q} = \frac{1}{e} \left[s_W C^{i3}_{uW} + c_W C^{i3}_{uB\phi} \right] \frac{vm_t}{\Lambda^2}$$

At LO, they are independent. $pp \to t \gamma$ and $pp \to t Z$ can be combined to reconstruct the Dim-6 operators

 γqt –zqt anomalous couplings: $pp
ightarrow t\,\ell^+\,\ell^ (\ell=e,\,\mu,\, au)$

$$g \longrightarrow t \qquad g \longrightarrow$$

(**) $M(\ell \ell) > 10 \text{ GeV}$

pp -

Lorenzo Basso (IPHC)

- B - - B

$pp ightarrow t \, \ell^+ \, \ell^-$: mixing

So far, photon and Z in the final state (either on- or -off shell). However, new bosons could also give similar final state (i.e. FCN Z'). If heavy, their interactions can be contracted and give rise to 4-fermion operators, which are not included here.

C. Zhang, TOP 2014

Here, C_{eu} is 4f coupling: small but non-negligible around Z peak, dominant outside

Hqt anomalous couplings: pp ightarrow t H

$$\frac{\kappa_{Hqt}}{\Lambda} f_{Hq}^L = \frac{3}{2} C_{u\varphi}^{3i*} \frac{v^2}{\Lambda^2}$$
$$\frac{\kappa_{Hqt}}{\Lambda} f_{Hq}^R = \frac{3}{2} C_{u\varphi}^{i3} \frac{v^2}{\Lambda^2}$$

$\sigma(fb)/1$ (TeV $^{-1}$)	κ_{gct}	κ_{gut}	κ_{Hct}	κ_{Hut}
$pp \rightarrow tH$	6.4	49	9.2	74

Hqt anomalous couplings: $pp ightarrow t \, b ar{b}$ @ NLO

Y. Wang et al. Phys. Rev. D 86, 094014 (2012) [1208.2902]

Cross sections after cuts:

$M_H = 125 \; \mathrm{GeV}$	σ_{LO} [fb]	K_{pro}	K_{tot}
$\kappa_{Hut} = 0.2$	6.64	1.22	1.11
$\kappa_{Hct} = 0.2$	0.428	1.40	1.00

K_{pro} : NLO QCD k-factor only for production

 K_{tot} : k-factor also including NLO QCD correction to decay

However, $O_{uG\phi}^{ij} = (\bar{q}_{Li}\lambda^a \sigma^{\mu\nu} u_{Rj}) \tilde{\phi} G_{\mu\nu}^a$ gives Htqg vertex: to be included in QCD real corrections!

Conclusions

- LO couplings: reduced number of independent operator: minimal set of independent couplings in effective Lagrangian
- EFT: NLO mix couplins ⇒ "one-coupling-at-a-time" not justified
- However, not all signatures are equally sensitive. If non-zero, some couplings will appear sooner than others
- gqt at LHC appears in all signature, and mix with all couplings
- Global fit desirable, but what could be done meanwhile?
- *gqt* will be seen first in top-alone final state.
- If a signal in any other final state is observed, but not in top-alone, then *gqt* negligible
- 4f operators. To be included in $t \rightarrow q\ell\ell$, small contamination at Z peak. Account as sistematic error in zqt exclusion?
- Regarding Higgs, Htqg to be included in signal when at NLO or +1j (Notice: it is <u>not</u> the case for all other couplings, all Vtqg are reabsorbed in Effective Lagrangian)

・ロト ・同ト ・ヨト ・ヨ

Thank You

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >