### Light as a messenger

Spectroscopic Diagnostics in Astronomy

Dr. Nadine Afram



### Contents

- Basics of Spectroscopy
- Information in Spectra
- Temperature and Spectral Classification
- Spectral Line Appearance
- Molecular Spectroscopy
- Magnetic Fields
- Applications in our work:
  - Sunspots, Starspots, Exoplanets

### What can we learn from imaging?



#### Andromeda galaxy

- blue light: regions where hot, young stars have formed, which is mostly out on the edges (in the spiral arms)
- pink and white regions toward the center: older, cooler stars
- dark regions: giant clouds of gas and dust ring the spiral arms

#### What can we learn from spectroscopy?

#### A typical spectrum:





#### Electromagnetic spectrum

### Interaction of Light and Matter

# Understanding infinitesimally large -> understand the infinitesimally small



### **Atomic Spectroscopy**

#### Different kinds of spectra:



http://www.astro.virginia.edu/class/majewski/astr313/lectures/spectroscopy/spec.html

### Different kinds of spectra

- A hot, opaque body produces a continuous spectrum
- A hot, transparent gas produces an emission line spectrum
- A cool, transparent gas produces an absorption line spectrum



#### Absorption spectrum



### Spectroscopy

#### Absorption spectrum



- Surface of star cooler than gas underneath
- The light from the hot dense gas inside produces continuous spectrum
- The cooler gas above it absorbes specific wavelengths => absorption spectrum

## Spectroscopy

- Spectral line diagnostics: deciphering a spectrum leads to information on different solar/stellar atmosphere parameters:
  - Line width: temperature and turbulent velocity, stellar wind speeds
  - Line depth: temperature and temperature gradient
  - Wings of strong lines: gas pressure
  - Equivalent width: element abundance, temperature
  - **Splitting of lin**es (and polarization): magnetic field

### Spectroscopy

- **Doppler shift of line:** (net) flows in LOS direction, rotation rates
- Line asymmetry: velocity gradient, v, T inhomogeneities
- => Atmospheric temperatures, compositions of stars and planets, planet surface properties (via absorbed and emitted light), stellar ages, chemical evolution of galaxies, etc



# 1860s: Systematic attribution of spectra to chemical elements:

physicist Gustav Kirchhoff (left) & chemist Robert Bunsen (right)



#### **Spectral Fingerprints**

| Ηα              |            |               | Нβ                     | 3             | Hγ | Нδ е | tc         |
|-----------------|------------|---------------|------------------------|---------------|----|------|------------|
|                 |            |               |                        |               |    |      |            |
| Hydrogen (Balme | er Series) |               |                        |               |    |      |            |
|                 |            |               |                        |               |    |      |            |
| Sodium          |            |               |                        |               |    |      |            |
|                 |            |               |                        |               |    |      |            |
| Helium          |            |               |                        |               |    |      |            |
|                 |            |               |                        |               |    |      |            |
| Neon            |            |               |                        |               |    |      |            |
|                 |            |               |                        |               |    |      |            |
| Mercury         |            |               |                        |               |    |      |            |
| 650 L           | 600        | 550           | 500<br>Wavelength (nm) | 450           |    | 400  | ل_ا<br>350 |
|                 |            | Copyright © 2 | 2005 Pearson Prentic   | ce Hall, Inc. |    |      |            |

#### **Energy Levels of Hydrogen**



#### **Temperature and Spectral Classification**

 Hydrogen: electrons in 2nd level absorb photons to produce Balmer series

• Temperature of gas in star affects spectrum of star

#### Star of cool temperature: most electrons lower than 2nd level: weak or invisible Balmer



#### **Temperature and Spectral Classification**

# Star of intermediate temperature: most electrons in 2nd level: strong Balmer



#### Star of high temperature: most electrons excited to higher than 2nd level: weak Balmer



#### **Temperature and Spectral Classification**





### **Spectral Line Appearance**





- Energy levels not infinitely sharp
- Atoms move relative to observer

### **Doppler broadening**

#### Light in Motion with spectroscopy

- Is the object moving away or towards us?
- Is the object spinning?
- Is the object expanding?
- Is the object orbiting another object?

### Doppler broadening

#### **Doppler Effect**



### **Doppler Broadening**

#### **Doppler Effect: Rotating object**



### **Doppler broadening**

#### **Doppler Effect: Rotating object**



Doppler broadening
-> Doppler profile
 (Gaussian)

#### moving towards us: blueshifted moving away: red-shifted



**Doppler broadening** -> Doppler profile (Gaussian) **Thermal Doppler broadening:** atoms/molecules in random thermal motion This kinetic energy is thermal: the hotter the gas of atoms, the faster they move about on average => the more the line is broadened



#### **Doppler width**

$$\Delta v_D = \frac{v_0}{c} \sqrt{\frac{2kT}{m}}$$

-> Doppler profile
 (Gaussian)

$$\phi(\mathbf{v}) = \frac{1}{\Delta v_D \sqrt{\pi}} e^{-((\mathbf{v} - \mathbf{v}_0)^2 / (\Delta v_D)^2)}$$



faster decay than Lorentzian

#### Natural (intrinsic) broadening

#### -> Lorentzian profile

Quantum-mechanical effect: the longer a state exists for, the greater the uncertainty in its energy  $\Delta E \Delta t \sim \hbar$ 

=> all photons emitted by an ensemble of atoms in identical excited states will not all be exactly at the same energy

=> range of possible frequencies cluster around average energy  $\Delta v \sim \frac{\Delta E}{h} \sim \frac{1}{2\pi\Delta t}$ 

=> naturally broadened line (in line wings, usually small effect, in low pressure environments, nebula)

Spontaneous decay of state n to all lower energy states n'

$$\gamma = \sum_{n'} A_{nn'}$$
  
-> Lorentzian profile  
$$\phi(v) = \frac{\gamma/4\pi^2}{(v - v_0)^2 + (\gamma/4\pi)^2}$$





- Convolution of Lorentzian (natural/ collisional) and Doppler (thermal) broadening
- -> Voigt profile (no analytic form) Curves show the profile as the natural (or collisional) linewidth is increased. Lorentz profile falls off slower than Doppler -> core Gaussian, wings Lorentzian



#### **Collisional broadening**

- Collisional (pressure) broadening
  - Collisions of atoms => exchange of energy (particularly in plasma)
  - => change of energy of electrons in excited atoms
  - => increase in spread of energies of emitted photons more collisions when atoms/molecules closer, i.e. when pressure higher, collision reduce effective lifetime of an energy state

=> "pressure broadening"
still Lorentz, but wider
dominate in high density
(dwarfs)



#### Molecular astrophysics - fields of study



NASA Spitzer Space Telescope, molecules in the planet WASP-12b - a super-hot gas giant that orbits tightly around its star. CO, CH4



In Eagle Nebula, cool molecular hydrogen gas, HST



Orion nebula, O<sub>2</sub>, ESA Herschel

# Why molecules?

- Why study molecules in Astrophysics?
  - molecules are ubiquitous
  - universe as laboratory for molecular physics
- Why study molecules in cool stars?
  - dominating species
  - large number of transitions
  - high temperature and pressure sensitivity
  - molecular spectra as diagnostics:
    - thermodynamic structure of cool stars
    - chemical composition
    - isotopic composition
    - stellar magnetic fields

### Molecular Spectroscopy

- In addition to the continuous and line spectra, spectra with entirely different structure: without single sharp lines but broad wavelength feature (bands): band spectra: sources are molecules
- Bands result from large number of blended individual molecular lines
- Molecular spectroscopy: study of the absorption, emission, and scattering of electromagnetic radiation by molecules
   Example 2
   Example 2

C<sub>2</sub> and CN (from Herzberg 1950)



### Molecular Spectroscopy

#### Bohr postulates:

- a molecule can exist only in states of definite energies, in the stationary states; as long as the molecule is in one of these states, it does not emit or absorb light;
- light absorption or light emission is possible only as a result of a transition between two stationary states.

For the interpretation of a spectrum: establish the terms/energy

levels of the stationary states

#### Molecular Spectroscopy (vs. Atomic spectroscopy)

- Much more complex because of greater complexity of internal motion in molecules
- In addition to motion of electrons, vibrational motion of the nuclei about equilibrium positions and rotational motion of the molecule as a whole
- Three types of energy levels and three types of spectra - electronic, vibrational, and rotational correspond to these three types of motion
- $m_{electron}/M_{nucleus} \simeq 10^{-3}-10^{-5}$ : rates of motion of nuclei small compared to the velocities of the electrons => dynamics of nuclei and electrons largely independent

### Molecular Spectroscopy

- Atoms/Molecules interact with electromagnetic-radiation to transition between energy levels
- Study transitions between energy levels
- Different transitions
  - Electronic: UV-visible
  - Vibrational: IR
  - Rotational: microwave



### Molecular Spectroscopy

 Depending on which radiation, the molecule will induce a transition corresponding to the wavelength of the radiation



#### Molecular Spectroscopy (diatomic molecules)

• Total energy of molecule (without spin and magnetic interactions):  $E = E_e + E_v + E_r + \Delta E_{ev} + \Delta E_{er} + \Delta E_{vr}$ 

 $E_{e}$ : electronic energy,  $E_{v}$ : vibrational energy,  $E_{r}$ : rotational energy,  $\Delta E_{ev}$ : electronic-vibrational interaction,  $\Delta E_{er}$ : electronic-rotational interaction,  $\Delta E_{vr}$ : vibrational-rotational interaction.

 $E_e \gg E_v \gg E_r$ .

=> changes in electronic configuration around nuclei give rise to the band systems

- the bands within the band systems come from transitions between different vibrational states of the nuclei
- the transitions between the different rotational states give rise to the lines within the bands.

#### Magnetic Fields and Molecular Spectra

- Spinning electrons induce magnetic fields
- Magnetic dipoles
- Magnetic dipoles interact with external magnetic field to split electronic energy levels that are normally degenerate

 $B \xrightarrow{M_{J}=1} \text{energy of each magn.dipole} M_{J}=0 \text{ will change with external} M_{J}=-1 \text{ magnetic field}$ 

Zeeman effect: splitting of energy levels in presence of magnetic field

#### Zeeman Effect in Molecular Spectra

 Change of electron configuration in presence of magnetic field:



#### Zeeman Effect in Molecular Spectra

 Change of electron configuration in presence of magnetic field:



### **Zeeman Diagnostics**

Direct magnetic field measurement with Zeeman effect:

 Observation of magnetically induced splitting (change of shape of spectral line)

 Measurement of polarization important for measuring solar magnetic fields

### **Magnetic Fields**

- Importance of magnetic fields
  - Solar magnetic field: variety of magnetic phenomena, laboratory, dynamo theories, Sun as star, source of activity, evolution
  - M-dwarfs: transition from stars with an outer convection zone to fully convective stars, where solar type dynamo is replaced by alternative mechanism to amplify magnetic fields
  - Exoplanets: magnetospheres as protective shields -> habitability

## **Applications in Solar Astrophysics**

#### **Sunspots**





2003/10/28 14:24







### **Molecules in Sunspots**

• Solar photosphere = G stars (5000K < T < 6000K)



#### Sunspot umbra = M stars (2000K<T<4000K)</li>



#### **Interiors of Sunspots - Inversions**

- The nonmagnetic component becomes as hot as the photosphere
- The field strength of the magnetic component drops towards higher layers
- The field direction corresponds well to the observed position of the sunspot on the solar disk



### **Interiors of Sunspots**



### Sunspots - 3D structure

# Simultaneous inversion of atomic and molecular lines





Mathew et al. (2004)

Mathew et al. (2003)

### Sunspots - 3D structure



 $\log \tau = 0, -1, -2, -3$ 

Berdyugina et al. (in prep)

### **Starspots**

#### • Direct Imaging

#### Doppler Imaging



#### **Molecular Polarization in Starspots**

TiO



#### Observations:

- 2005-2007, CFHT, ESPaDOnS
- Noise in V/I<sub>c</sub> ~  $10^{-3}$ , R~67′ 000
- $Max(V/I_c) \sim 1\%$
- First detections: TiO, CaH, FeH, MgH

Berdyugina et al. (2006,2008)

### **Starspots - Molecular Lines**



### **Exoplanet spectra**

- Search for bio-signatures in exoplanetary spectra
- Water features (HD209458b)
- Cloudy atmospheres



#### Molecules as probes of exoplanet atmospheres

- Clouds important in exoplanetary atmosphere (main opacity source)
- Formation and evolution of clouds not understood
- => Modeling of cloudy atmosphere in Hot Jupiters and Brown Dwarfs
- Hot Jupiters: exoplanet similar to Jupiter, higher surface temperatures (closer orbit)



 Brown dwarf: form similar to star, but not massive enough for Hydrogen fusion

### Method

- model molecular (reflectance) spectra (H<sub>2</sub>O, TiO, FeH) with/out clouds
- vary cloud parameters (dust density, dust size, cloud position, cloud extension)
- study changes in molecular signal due to cloud parameter change, as molecules are formed at different depths => info about cloud

#### Literature

- Tennyson ,Astronomical Spectroscopy'
- Herzberg ,Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules'
- Haken/Wolf ,Molecular Physics and Elements of Quantum Chemistry: Introduction to Experiments and Theory'
- Khristenko ,Molecules and their Spectroscopic Properties'