

Light!

Jean Daillant

Strasbourg 07/07/2015

.....................

INTERNATIONAL YEAR OF LIGHT 2015

Synchrotron radiation

Radiation from a Moving Charge

Accelerated charge: Liénard, L'Eclairage Electrique, 1898

$$\mathbf{B}(\mathbf{r},t) = -\frac{q}{4\pi\epsilon_0 c^3 R} \mathbf{n} \times \mathbf{a}$$

$$\mathbf{E}(\mathbf{r},t) = \frac{q}{4\pi\epsilon_0 c^2 R} \mathbf{n} \times \mathbf{n} \times \mathbf{a}$$

$$\mathbf{S}.\mathbf{n} = \frac{q^2}{16\pi^2\epsilon_0 c^5} \frac{1}{R^2} |\mathbf{n} \times \mathbf{n} \times \mathbf{a}||^2 \xrightarrow{\boldsymbol{\theta}} \mathbf{n}$$

$$P = \frac{e^2}{6\pi\epsilon_0 c^3} |\mathbf{a}|^2$$
Larmor's formula

Relativistic Effects (I)

- Emission in a cone 1/ Υ with Υ =E/m_0c^2
- m_0^2 =511keV ; for E=2.75GeV, Y=5382
- $1/\Upsilon = 0.186$ mrad = 0.01°
- Polarization

Relativistic effects (II)

- Doppler effect
- Dilation of time

$$\lambda = (1 - \beta)\lambda_0 = \frac{1 - \beta^2}{1 + \beta}\lambda_0 = \frac{\lambda_0}{2\gamma^2}$$

• X-rays !

 $\beta = \mathbf{v}/c$

Liénard-Wiechert Potentials

$$\mathbf{B}(\mathbf{r},t) = -\frac{\mu_0 q}{4\pi} \left[\frac{c\mathbf{n} \times \beta}{\gamma^2 R^2 (1-\beta.\mathbf{n})^3} + \frac{\mathbf{n} \times [\dot{\beta} + \mathbf{n} \times (\beta \times \dot{\beta})]}{R(1-\beta.\mathbf{n})^3} \right]$$
$$\mathbf{E}(\mathbf{r},t) = \frac{q}{4\pi\epsilon_0} \left[\frac{\mathbf{n} - \beta}{\gamma^2 R^2 (1-\beta.\mathbf{n})^3} + \frac{\mathbf{n} \times [(\mathbf{n} - \beta) \times \dot{\beta}]}{cR(1-\beta.\mathbf{n})^3} \right]$$
$$\mathbf{S}.\mathbf{n} = \frac{q^2}{16\pi^2\epsilon_0 c} \frac{1}{R^2} \left| \frac{\mathbf{n} \times [(\mathbf{n} - \beta) \times \dot{\beta}]}{(1-\beta.\mathbf{n})^3} \right|^2$$
$$P = \frac{e^2}{6\pi\epsilon_0 c} \gamma^6 \left[\left| \dot{\beta} \right|^2 - \left| \beta \times \dot{\beta} \right|^2 \right]$$

Magnet

- Velocity \perp acceleration
- Emission during $\Delta t=2\rho/\gamma v$ When e⁻ reaches B, light has already travelled $\Delta x=2\rho c/\gamma v$
- Pulse duration is hence :

$$\frac{2\rho c}{\gamma v} - 2\rho \sin(1/\gamma) \approx \frac{4\rho}{3\gamma^3 c}$$

- Critical Energy : $E_c = \frac{3\gamma^3 \hbar c}{2\rho} = 8.6 \text{keV}$ for 2.5Gev and 1.7T
- $T_0 = 1/(2\pi Rc) = 0.3\mu s$ for R=56m

Undulator

- Magnetic field $B_z = B_0 \cos(2\pi x/\lambda_0)$ dv_u dv_u
- Lorentz force : $\gamma m_0 \frac{dv_y}{dt} \approx ev_0 B_0 \cos(2\pi x/\lambda)$
- Trajectory: $y = -\frac{K\lambda_0^2}{2\pi\gamma} \cos(2\pi x/\lambda_0)$ with $K = \frac{eB_0\lambda_0}{2\pi m_0 c}$
- K, undulator strength ; with E=2.75Gev, B₀=1T, λ_0 =20mm, K=1.9, the maximum deviation of the e⁻ beam is 1.1µm
- Over λ_0 , the e⁻ will travel an extra distance $\delta L = \int_{0}^{\lambda_0} \left(\sqrt{1 + \left(\frac{dy}{dx}\right)^2} 1 \right) dx = \frac{K^2 \lambda_0}{4 \gamma^2}$
- The time needed by the e^- to cover a period will be larger than the

time needed by the photon by $\delta t = \frac{\lambda_0 + \delta L}{v_0} - \frac{\lambda_0}{c} = \frac{\lambda_0}{2\gamma^2 c} \left(1 + \frac{K^2}{2}\right)$ e⁻ with $\delta t/n$ or $\frac{\lambda_0}{2n\gamma^2} \left(1 + \frac{K^2}{2}\right)$ will stay in phase and interfere constructively Harmonics of the fundamental wavelength

- Antenna emitting light of wavelength λ_0
- Doppler effect :

$$\lambda = (1 - \beta)\lambda_0 = \frac{1 - \beta^2}{1 + \beta}\lambda_0 = \frac{\lambda_0}{2\gamma^2}$$

• X-rays !

Synchrotron Radiation in astronomy

"Crab Nebula" by NASA, ESA, J. Hester and A. Loll (Arizona State University) -Hubble

- High magnetic fields
- Polarized light

First Synchrotrons

Goward F. K. and Barnes D. E., Nature, 158 413 (1946) General Electric, 1946 Gooden J.S., Jensen H.H and Symonds J.L., ``Theory of the proton synchrotron" Proc. Phys. Soc. 59, 677 (1947)

3GeV ``Cosmotron'', Brookhaven, 1952 Proton Synchrotron, Birmingham, 1953 ...ACO, 1965

http://sciences-aco.lal.in2p3.fr/

First Observation in a Synchrotron

General Electric 70MeV synchrotron, 1947 Elder F.R., Gurewitsch A.M., Langmuir R.V., Pollock H.C. ``Radiation from Electrons in a Synchrotron'' Physical Review 71, 829 (1947) Blewett J.P. Physical Review 69, 87 (1946).

Electron Beam Optics

SOLEIL Lattice

 ϵ_{x0} = 3.7 nm•rad @ 2.75 GeV

Circumference: **354 m** 24 straight sections (variable length) 4 x 12 m 12 x 7 m 8 x 3.6 m

Accelerating Cavities

Amplifiers

Insertion Devices

HU80

HU640

U20

HU256

In-vaccum Wiggler (WSV50)

Insertion Devices

Electromagnetic/Permanent Magnets Planar Helical Undulator

EMPHU

- Energy : monochromaticity, tunability or "white beam", from THz to hard X-rays
- Beam size : from 10 nm to cms
- Brightness : up to 10²¹ photons/sec/mm²/mrad²/0.1\% BW)
- Time structure : picoseconds
- Polarization: linear and circular

Stability

Synchrotrons in the World

- 9 orders of magnitude in wavelength !
- Structure, electronic and magnetic properties, vibrations...
- Complementary experiments to study processes

Applications

Applications

- Elastic (Thomson) scattering
- Absorption / Fluorescence
- Photoelectric effect
- Anomalous scattering / Resonant scattering
- Inelastic scattering / Raman scattering / Compton
- Magnetic scattering

Kirkpatrik-Baez mirrors

P. Kirkpatrick and V. Baez, J. Opt. Soc. Am. 38, 766 (1948)

Achromatic 7nm achieved @ 20keV H. Mimura et al. Nature Physics 6, 122 (2010)

Compound refractive lenses

A. Snigirev et al. Nature 384, 49 (1996)

Low Z materials Parabolic shape Small N.A. 10^{-4} to 10^{-3} < 50nm, 10^{8} ph/s

Fresnel construction

Neighboring zones interfere destructively

Fresnel lens

PSI-SOLEIL collaboration

Mohacsi et al., J. Sync. Rad. 2014, Optics Express 2015

Efficiency 80 % @ 200nm Efficiency 10 % @ 30nm

Protein Data Bank (PDB)

Also NMR (11000), electron microscopy (800)

Energy range 6 keV – 15.5 keV. Beam size at sample variable from 50 x 50 microns to 200 x 100 microns. CATS robot (48 samples) or plate screening. PILATUS 6M detector (25 Hz) Crystal Logic 3 circle goniometer

Structural basis for the inhibition of the eukaryotic ribosome

Nature 2014

Nicolas Garreau de Loubresse¹, Irina Prokhorova¹, Wolf Holtkamp², Marina V. Rodnina², Gulnara Yusupova¹ & Marat Yusupov¹

- 3.3 MDa yeast ribosome, significantly bigger than bacterial ribosomes.
- Optimisation of crystal treatment (cryo-protection, preparation in cold room). P2₁ 303 x 286 x 435 Å, β=99°.
- Soaking of different naturally occuring inhibitors, some broad spectrum, some eukaryotic specific.
- Structure of 16 ribosome inhibitor complexes determined on PROXIMA 1.
- When compared with inhibitor studies in bacterial ribosomes, sheds light on inhibitor specificity.

Data Collection

X-rays focussed « behind detector » to give almost parallel beam. Size of beam limited by succession of slits and apertures, which reduce background, limit volume of crystal exposed and limit overall beam intensity.

Careful reduction of air scattering background. Data collection with photon counting pixel array detector.

« Gentle data collection », translating small beam across large crystal.

Resolution of ribosome - inhibitor

Screening for the best crystals

Small, aggregated, fragile crystals

Automated Crystal Recognition Employing Artificial Intelligence Automated Grid & Helical Scans Finding the "sweet" spot of a crystal Merging Diffraction data From many zones of a larger crystal Improve multiplicity for SAD phasing From many small crystals Complete partial data sets In situ Data Collections From crystallisation plates From micro-fluidic chips

Modeling Detergent Organization around Aquaporin-0 Using Small-AngleX-ray ScatteringAlice Berthaud, John Manzi, Javier Pérez, and Stéphanie Mangenot (2012), J.A.C.S., 134, 10080-88.

0.4 '3.10⁻ (A) Zone 1 Zone 4 Zone 2 Zone 3 Excess of DDM Elution Aggregates solated in loading AQP0 buffer Duffer 0.0 0 22 18 10 12 20 14 16 Elution time (min) 2

Solubilization of integral membrane proteins in aqueous solutions requires the presence of amphiphilic molecules like detergents. The presence of the detergent corona has hampered studies of strongly structural solubilized proteins SAXS. membrane by Through the online combination of size exclusion chromatography, SAXS, and refractometry, The authors have determined a precise geometrical model of the n -dodecyl β - D-maltopyranoside corona surrounding aguaporin-0, the most abundant membrane protein of the eye lens. The present protocol is a crucial step toward future conformational studies of membrane proteins in solution

Number of detergent molecules in the corona independently determined refractive index measurements /UV vis and SAXS I(0)/ UV vis, converging to very similar values.

Small Angle X-ray Scattering

 \rightarrow Relevance of the model :

- Parameters physically meaningful
- N_{Det} = 270 ± 30 molecules per protein

 \rightarrow Accuracy of the model :

• The fit is very sensitive to a small variation

The belt model provides a structural basis to further study conformational changes \rightarrow can be generalized to other membrane proteins

In-situ analysis of carbon nanotubes growth

Landois et al. Phys. Status Solidi B 248, 2449 (2011)

- Furnace specially designed for diffraction on 6-circles
- Use of XPAD detector for time resolved studies (1 image/s)
- Aerosol assisted catalytic chemical vapour deposition of carbon nanotube forest
- Toluene and ferrocene precursors injected @4Hz in He flow @ 850°C
- Possible to follow both nanotube and catalyst

ANR : Lab. Francis Perrin, Lab. Physique des solides

In-situ analysis of carbon nanotubes growth

SEM of sample after 30s growth: Clean and well-aligned carbon nanotubes

- Growth can be followed quantitatively
- Induction time ~ 25s before nanotube growth
- $Fe_{3}C$ (cementite) appear first, 4s before CNT and may be the catalytic phase
- Order parameter increases from 0.3 to 0.8 after 60s

Extreme Conditions

Infrared microscope

Boehler-Almax high pressure cell

Horizontal microscope designed at SOLEIL

Small sample zone for materials <10 mm) and to attain pressures > 200 Gpa

Extreme Conditions

Metallic Hydrogen ?

December 2014 new pressure record : 387 Gpa But not yet the expected metallic transition of H2.

New non-metallic phase IV

Extreme Conditions

Another path to metallization : Lithium hydrides

Evidence for LiH_2 and perhaps LiH_6 above 133 GPa, existence predicted in 2002.

Ch. Pepin, F. Occelli, P. Dumas and P. Loubeyre (PNAS, 2015)

A little bit of lithium does a lot for hydrogen

Eva Zurek^{a,1}, Roald Hoffmann^{a,2}, N. W. Ashcroft^b, Artem R. Oganov^{c,d}, and Andriy O. Lyakhov^c

In the 1920's Bohr and Einstein discussions led to a Gedanken experiment involving a double slit with a moving slit

The 2 slits are decoupled :

The asymmetric momentum transfer distinguishes the path (which slit the e⁻ has emerged from)

Electron-ion coicidence allows the measurement of the momentum exchange between the Auger e^- and the atomic or molecular ion

In complete agreement with Bohr's complementarity principle

Liu et al., Nature Photonics 2014

Intensity (cm⁻¹)

Synthesis of Gold Nanorods

Rapid deposition

 $HAuCI_4 + CTAB + AgNO_3 + Ascorbic Acid$ Seeds formed in-situ NaBH₄

CTAB micelles in the solution

F. Hubert et al. Cryst. Growth Des. 2012

Synthesis of Gold Nanorods

SAXS allows the determination of :

- Total amount of gold in solution
- Size, shape and distribution of nanorods

Anisotropy acquired during growth phase

Regrowth experiment : AR increases from 3.6 to 4.4

Synthesis of Gold Nanorods

Yield, % of rods and time of reaction against ascorbic acid concentration

Influence of Borohydride on reaction yield

Reduction of Au(III) to Au(0) in a 2 step process (Ascorbic acid only gives 2 electrons

Synthesis of Gold Nanorods

XANES

- No Au(0) in solution
- Surface reaction of Au(1) to Au(0). Surface catalyzes the oxidation of ascorbic acid

- 6 points Fermi surface
- Dirac equation, zero mass $E(\delta k) = \hbar v_F \delta k$

First Direct Observation of a Nearly Ideal Graphene Band Structure

Angle Resolved PhotoEmission Spectroscopy (ARPES)

GeorgiaInstitute

M. Sprinkle et al., Phys. Rev. Lett. 103 226803 (2009)

Gap opening in armchair graphene nano-ribbons

Need of a gap to use graphene in electronic devices

400 nm

Growth of graphene on pre-patterned SiC surfaces Control of graphene-substrate interaction Georgialnstitute of Technology

E.H. Conrad et al., Georgia Tech Atlanta

ARPES measurements performed on different areas (corresponding to different orientations by rotating the samples)

J. Hicks et al., Nat. Phys. 9, 49 (2013).

Gap opening in armchair graphene nano-ribbons

One-dimensional metallic–semiconducting–metallic junction made entirely from graphene.

J. Hicks et al., Nat. Phys. 9, 49 (2013).

ANTARES : NanoARPES Beamline

20eV-900eV 30nm resolution Interferometric control

- Nano-Core Levels
- Nano-ARPES
- Nano-Photodiffraction
- Nano-X-ray absorption

Photoelectron detection, Zone Plate focalisation and sample nano-scanning

Imaging exfoliated Graphene/SiO₂ using nanoARPES and nano-core levels

Graphene becomes visible in an optical microscope if placed on top of a Si wafer with a carefully chosen thickness of SiO_2 , owing to a feeble interference-like contrast with respect to an empty wafer.

Lightares Highly Oriented Pyrolitic Graphite (HOPG)

a)

Fermi surface

HOPG crystals are composed of µm grains

Graphene on SiC

Coll. IEMN, Lille

- Si-face: only a few graphene layers (FLG) growth
- C-face: graphene multilayers (MLG) growth with grains Higher mobility

Fermi surface on SiC C-face

Bernal stacking

Johansson et al., Nature Scientific Reports 4 (2014) 4157

Graphene grains oriented along $<10\overline{1}0>$

Si flux assisted MBE

antares

SYNCHROTRON

E-E_F (eV)

Graphene grains oriented along <2130>

Only one band: twisted bilayer or single layer

Intensity of the electronic states at the Fermi level as a function of x and y.

SYNCHROTRON

antares

Grains oriented along the step edges or <10-10> directions grow as multilayer graphene films.

Grains oriented along the two equivalent <21-30> directions provide only monolayer and bilayers graphene films.

Coherence of the Beam

Synchrotron beams are partially coherent

Phase problem, Oversampling

Constraints on support Reconstruction algorithms

After J. Miao

Trace Elemental Imaging of Fossils

Interpretation of flattened fossils difficult

- Late cretaceous shrimp and fish
- Fossilization is a complex process
- Fluorescence mapping of rare-earth elements helps in identifying skeletal elements
- Statistical analysis of full spectra

Gueriau et al., PlosOne 2014

5 mm

Free Electron Lasers

Linac Coherent Light Source (LCLS) Stanford, Ca

Free Electron Lasers

Thank you!

F. Sirotti, P. Lagarde, M.-C. Ascencio, E. Elkaim, A. Coati, P. Fontaine, D. Thiaudière, E. Otero, P.Ohresser, H. Tissot, R. Belkhou

