The production of light by matter from light bulbs to monolithic blue LEDs

Mathieu Gallart Institut de physique et chimie des matériaux de Strasbourg

Context

The Nobel Prize in Physics 2014

Hisamu Akasaki Hiroshi Amano

Shuji Nakamura

"
« for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources».

Outline

- Short review of white light sources
- Breaking down the light emitting diode
 - Electronic states in bulk semiconductors
 - Light-matter interaction
 - *PN-junction and electroluminescence*
 - Characterizing and improving light emitters
- Gallium nitride and the blue emitting diode
 - Nitride growth
 - Control of doping
 - The blue diode
 - Nanostructures and perspective

Comparing white light emitters

Luminous flux: measure of the perceived power of light.

Luminous flux (Lm) = radiant flux (W) × luminosity function

- Luminosity function: spectral sensitivity of human visual perception of brightness.
- In daylight, the maximum sensitivity is at 555 nm (in the green region). This type of vision is called (*photopic vision*).
- In low light conditions, maximum sensitivity is at 507 nm (in the blue-green region) and red light is almost invisible (*scotopic vision*).

Wavelength λ [nm]

Standard luminosity functions V(λ) and V'(λ)

White light sources

Comparing white light emitters

Luminous flux: measure of the perceived power of light.

Luminous flux (Lm) = radiant flux (W) × luminosity function

Luminous efficacy: ratio of flux to power consumption.

 Color rendering index (CRI) : characterize the quality of the white light produced by a source. A value of 100 corresponds to the natural day light.

White light sources

Incandescence light bulbs

- Invented by Joseph W. Swan in 1879, improved by Thomas Edison.
- Principle:
 - A tungsten filament is heated to a high temperature by an electric current passing through it until it glows.
 - The emitted light displays a "black body" spectrum: its shape is given by the Planck's law and depends only on temperature.

Figure 1 Spectre d'émission du corps noir pour différentes températures : soleil (5700 K), lampe à incandescence (2700 K) et 600 °C (870 K), ce qui correspond au début de l'émission dans le visible.

Efficacy (Im/W)	15
CRI	100
Lifetime(h)	1000

Gas-discharge lamps

Principle:

- A gas of atoms in a sealed tube is excited by an electric discharge.
- In the plasma, mobile electrons collide with atoms, transfer energy to the atoms and elevate them to an excited state.
- Atoms relax towards their ground state by emitting light.

Gas-discharge lamps

Principle:

- Electronic levels in atoms are discrete.
- The emission spectrum displays series of line the wavelengths of which satisfy the equation:

$$E_i - E_f = \frac{hc}{\lambda}$$

⇒ The emission spectrum is characteristic of the element.

Gas-discharge lamps

 Example: High pressure sodium lamp, motorway lighting.

Efficacy (Im/W)	90-140
CRI	25
Lifetime(h)	25000

www.marjoy.com

White light sources

Compact fluorescent tubes

Principle:

A gas discharge mercury lamp radiates ultraviolet light. The emitted ultraviolet light is converted into visible light as it strikes the phosphorescent coating on the bulb. Optical pumping of phosphorescent coating

W → Visible light

Efficacy (Lm/W)	100 (tubes), 40-60 (bulbs)
CRI	Up to 85
Lifetime (h)	~10000

LOW-PRESSURE GAS DISCHARGE FLUORESCENT LAMP OPERATING PRINCIPLE

http://www.osram.com

Electroluminescent diodes

Principle:

- Radiative recombination of negative (electrons) and positive charges (« holes ») that are electrically injected in a semiconductor diode.
- Build around a blue emitting diode.

White light sources

White LEDs

Efficacy (Lm/W)	100
IRC	80-90
Lifetime (h)	> 15000

- The blue LED has a double function:
 - It supplies the blue part of the spectrum at 450 nm.
 - It Optical pumps a yellow phosphorescent compound.
- White light=blue emission from a LED (450-460 nm) + yellow emission from a phosphor.

LED history

- 1907: H.J. Round (Marconi Electronics) discovers electroluminescence of SiC.
- **1961:** first infrared LED made of GaAs (Bob Biard and Gary Pittman, Texas instruments).
- 1962: using GaAsP alloy enable the of the first visible LED (710 nm)(Nick Holonyak Jr. and Sam Bevacqua, General electric).
- 1960-70: yellow and green LEDs.
- **1972:** GaN green emitting LED prototype (J.Pankove,RCA).
- 1989: GaN UV emitting LED prototype (380 nm) (H. Akasaki & H. Amano).
- **1994:** InGaN based blue diode(450 nm) S.Nakamura, Nishia.

⇒ Different materials emit light in distinct ranges of wavelength.

Semiconductor compounds / <mark>13</mark> III A $\geq \underbrace{1}_{IA} \underbrace{2}_{IIA} \underbrace{3}_{B} \underbrace{4}_{IVB} \underbrace{5}_{VB} \underbrace{6}_{VIB} \underbrace{7}_{VII} \underbrace{8}_{VIII} \underbrace{9}_{VIII} \underbrace{10}_{VIII} \underbrace{10}_{VIII}$ <u>17</u> VII <u>18</u> VIII $\begin{array}{c} \underline{11}\\ I B \end{array} \begin{pmatrix} \underline{12}\\ II B \end{pmatrix}$ <u>14</u> IV A $\begin{array}{c} \underline{15} \\ V A \end{array} \left(\begin{array}{c} \underline{16} \\ V I A \end{array} \right)$ Α V Si : [Ne] 3s² 3p² 2 Ga : [Ar]3d¹⁰ 4s² 4p¹ N : [He] 2s² 2p³ 1 н He 3 4 5 6 7 8 9 10 Cd : [Kr]4d¹⁰ 5s² Te : [Kr] 4d¹⁰ 5s² 5p⁴ <u>2</u> В C N Li Be <u>0</u> E Ne 15 16 12 11 13 14 17 18 <u>3</u> AI Si Ρ S <u>CI</u> Na Mg <u>Ar</u> 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 20 4 V Cr <u>Se</u> Κ Ca Sc Ti Mn Fe Co Ni Cu Zn Ga Ge As Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb <u>Zr</u> <u>Nb</u> <u>Mo</u> <u>Tc</u> <u>Rh</u> <u>Sn</u> <u>Sb</u> Sr Υ <u>Ru</u> Cd Te Ī Xe <u>Pd</u> Ag <u>In</u> * 74 83 84 55 56 73 75 76 82 85 86 72 77 78 79 80 81 <u>6</u> Cs Hf Та W Re Os Ir TL Pb Bi Po Ba Pt Au Hg At Rn ** 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 118 <u>Z</u> Rf Db <u>Uub</u> <u>Uut</u> Uup <u>Uuh</u> <u>Uus</u> Fr Ra Sq <u>Bh</u> <u>Hs</u> <u>Mt</u> <u>Ds</u> Rq Uuq <u>Uuo</u>

* Lanthanides	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	<u>La</u>	<u>Ce</u>	<u>Pr</u>	<u>Nd</u>	<u>Pm</u>	<u>Sm</u>	<u>Eu</u>	<u>Gd</u>	<u>Tb</u>	<u>Dy</u>	<u>Ho</u>	<u>Er</u>	<u>Tm</u>	<u>Yb</u>	<u>Lu</u>
** Actinides	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	<u>Ac</u>	<u>Th</u>	<u>Pa</u>	<u>U</u>	<u>Np</u>	<u>Pu</u>	<u>Am</u>	<u>Cm</u>	<u>Bk</u>	<u>Cf</u>	<u>Es</u>	<u>Fm</u>	<u>Md</u>	<u>No</u>	<u>Lr</u>

III-V compounds: GaN, GaAs, InPõ

II-VI compounds: ZnS, CdTeõ

Structure cristalline

- zinc-blende (cubic) and wurtzite (hexagonal) structures are the most common.
- The arrangement of atoms is periodic in real space.
- Crystal electrons evolve in the periodic Coulomb potential created by atoms..

Semiconductor	Structure	Lattice parameter
Si	Diamond	<i>a</i> = 5,430 Å
GaAs	Zinc- blende	<i>a</i> = 5,653 Å
GaN	Wurtzite	a = 3,189 Å c = 5,185 Å

From atomic states to energy bands

- The electronic states of the periodic lattice are built by coupling the valence states of the isolated atoms.
- The coupling lifts the degeneracy between the atomic states and opens bandgaps in the band structure.

⇒ The bandgap energy is characteristic of a semiconductor.

Electronic states in bulk semiconductors

Electronic states

- Cristal: periodic arrays of atoms, translational symmetry.
- Electrons can delocalize on crystal atoms and are characterized by a wavefunction:

⇒ Energy depends on quantum number **k**

Electronic states in bulk semiconductors

Band structure in reciprocal

Effective mass

Near the band maxima:

$$E(k) = E(k_0) + \underbrace{k \frac{\partial E}{\partial k}}_{=0} + \frac{k^2}{2} \frac{\partial^2 E}{\partial k^2} + \dots$$

By introducing the electron « effective mass »

$$m_e^* = \hbar^2 \left(\frac{\partial^2 E}{\partial k^2}\right)^{-1}$$

The energy dispersion is similar to the one of a free electron of mass m*.

$$E(k) \approx E(k_0) + \frac{\hbar^2 k^2}{2m^*}$$

 \Rightarrow Effective medium with mass m_e^* .

Intrinsic semiconductors

- At T= 0 K, all electrons occupy valence states.
- The crystal is insulant.

Intrinsic semiconductors

- For T ≠ 0, electrons can be thermally excited across the energy gap into the conduction band.
 - Conduction electrons = "free electrons"
- The probability that a state is occupied is given by the Fermi-Dirac distribution:

Intrinsic semiconductors

- The excited electron leaves behind one unoccupied states in the valence band that is equivalent to a quasi-particle carrying a positive charge.
- This lack of negative charge is called a "hole".
- ⇒ In semiconductors, electric current is mediated by electrons and holes.

1 "free" hole in valence band

Absorption:

A photon which energy is larger than the bandgap Eg can be absorbed to create one electron in the CB and one hole in the VB.

Spontaneous emission:

An electron at the bottom of the CB can recombine with a hole at the top of the VB to emit one photon which energy is close to the bandgap energy.

Selection rules

Quantum mechanics ⇒ probability of optical transition between from an initial state |i> to a final state |f>

Fermi's golden rule:

Application to semiconductors

Eigen functions:

Selections rules show vertical transitions $\Delta k=0$

Direct and indirect bandgaps

⇒ Bulk semiconductors with indirect bandgap are weak light emitters.

Excitons

- The electron and the hole are bound par Coulomb interaction.
- The exciton can freely propagate or localize on defects.
 ⇒ It is a very fine probe of matter, very sensitive to imperfections..

Hydrogen-like description

Exciton seen as an hydrogen atom in a effective medium (defined by m_e^* , m_h^* and)

$$E_{ex}(n,K) = E_{g} - \frac{R_{y}^{*}}{n^{2}} + \frac{\hbar^{2}K^{2}}{2M}$$

$$R_y^* = 13.6 \frac{\mu}{\varepsilon_r^2 m_0}$$
 Exciton binding energy

 $M = m_e + m_h$ $K = k_e + k_h$ Mass and wave vector of the exciton

 $\frac{1}{\mu} = \frac{1}{m_e} + \frac{1}{m_h}$ Reduced mass for the relative motion

$$a_B^* = a_B \frac{m_0}{\mu \varepsilon_r} = 0.052 \frac{m_0}{\mu \varepsilon_r}$$
 Bohr radius

Fig. 6.21. The energy states of a Wannier exciton showing both its bound states n = 1 to 3 and the continuum states. E_g is the bandgap and R^* the exciton binding energy

Crystal	Eg	R_X	a _X
	(eV)	(meV)	(nm)
GaN	3.5	23	3.1
ZnSe	2.8	20	4.5
CdS	2.6	28	2.7
ZnTe	2.4	13	5.5
CdSe	1.8	15	5.4
CdTe	1.6	12	6.7
GaAs	1.5	4.2	13
InP	1.4	4.8	12
GaSb	0.8	2.0	23
InSb	0.2	(0.4)	(100)

R_v increases with E_g

^{*c*} Coulomb interaction between e and h: bound states ^{*c*} Hydrogen-like lines $E_x = E_g \cdot R_y/n^2$ ^{*c*} Absorption increased if compared to the results of a simple band-to-band absorption model for > Eg^{*c*} Observable in good quality crystals ^{*c*} The excitonic signature disappears for kT > Ry

⇒ In good quality crystals, excitons are responsible for strong and sharp resonances in optical spectra (absorption, reflexion and photoluminescence).

["]For a free exciton, as well as for a confined exciton, one searches for an exciton which is stable at high temperature: high exciton binding energy or high confinement.

Application

- The emission wavelength depends on the bandgap energy that is an intrinsic property of a semiconductor.
- By synthetizing different semiconductor alloys it is possible to generate all wavelengths from the UV to infrared.

Doping

- Making optoelectronic devices requires the control of free carrier density.
- Addition of extrinsic atoms:
 - Impurity with one extra valence electron \Rightarrow *donor*
 - Impurity with one less valence electron ⇒ acceptor
- Typical impurity density ~10¹⁶-10¹⁸ cm⁻³

PN Junction electroluminescence

Zero bias

 A potential barrier hinders the diffusion of electron and hole across the depletion zone.

Forward bias

 Electron from n region n and holes from p region diffuse and meet in the depletion zone where they recombine to emit light.

Quantum efficiency = $\frac{\text{Number of emitted photons per unit time}}{\text{Number of emitted photons per unit time}}$

Number of injected electrons per unit time

Photoluminescence

⇒ Photoluminescence reveals the crystal purity and gives information on the presence of doping impurities .

Lifetime and radiative efficiency

Soit une population de n paires électron-trou :

radiative recombination

For light-emitting applications, need to maximize the radiative efficiency by decreasing τ_R / τ_{NR} :

 \Rightarrow improve crystalline quality

recombination

⇒ Localize carriers (excitons)

Heterojunctions, quantum structures

Heterojunctions, quantum structures

Heterojunctions, quantum structures

- ⇒ Electrons and holes are confined in the same region of the sample.
- ⇒ Energies of optical transitions depend on the well width.

Electronic states in QWs

Quantum well with infinite

barriers Envelope function equation : V(z) +- $\left| \frac{\hbar^2}{2m^*} \frac{\partial^2}{\partial z^2} - E_n \right| f_n(z) = 0$ Boundary condition : $f_n(0) = f_n(L) = 0$ Solutions : $f_n(z) = \sqrt{\frac{2}{L}} \sin k_n z$ avec $k_n = n\pi/L$ $E_{n} = \frac{\hbar^{2}k_{n}^{2}}{2m^{*}} = \frac{\hbar^{2}}{2m^{*}} \left(\frac{n\pi}{L}\right)^{2}$ →Z 0

Confinement: discretization of allowed \mathbf{k}_{z} and discretization of energy states.

Envelope function and energy levels

Optical transition in QWs

Fermics golden rule

$$P_{i\to f\cong} = \frac{2\pi}{\hbar} \left| \left\langle f \left| p \varepsilon \right| i \right\rangle \right|^2 g(\hbar w) \cong \frac{2\pi}{\hbar} \left| \left\langle u_c \left| p \varepsilon \right| u_v \right\rangle \right|^2 \left| \int f_e(z_e) f_h(z_h) dz \right|^2 g(\hbar w)$$

Envelope function overlap

QW with infinite barriers

$$\int f_n^e(z_e) f_m^h(z_h) dz = \frac{2}{L} \int_0^L \sin(k_n z) \sin(k_m z) dz = \delta_{n,m}$$

Alowed transition : $\Delta n = 0$

conduction band

valence band

Excitons in QWs

2D hydrogenoid function

$$\psi_1 = N_1 \cos \frac{\pi z_e}{L} \cos \frac{\pi z_h}{L} \exp \left[\frac{-\rho}{\lambda_1} \right]$$

Quantum confinement enhances the exciton binding energy. Energy spectrum of bound excitonic states

 $E_n = -R_y / (n - 1/2)^2$

Quantum well LED

Growth of bulk GaN

- GaN is extremely complicated to synthetize.
- Growth of bulk GaN :1600°C, 20kbar.

- Hetero-epitaxy:
 - In a reactor, the chemical constituents of the crystal are deposited on a heated monocrystalline substrate that acts as a germ to initiate an oriented crystalline growth.

Metal-Organic chemical vapor deposition

 The principle is to pyrolyze metal-organic compounds (triethyl-gallium or trimethyl-gallium) and hydrides (NH3, SiH4) in the flow of a carrier gas (N2 or H2) in the vicinity of a heated substrate.

http://www.physik.tu-berlin.de/institute/IFFP/richter/new/research/monitor.shtml

Hetero-epitaxy

	GaN	Al ₂ O ₃	6H-SiC	Si
a(Å)	3.189	4.758	3.08	5.430
a(T⁻¹)	5.6	7.5	4.2	3.59

a) commensurate growth

b) preudomorphic growth

b) dislocation growth

- No matching substrate
 - ⇒Strained layers
 - ⇒Structural defects (dislocations)

N. Grandjean, J. Massies, P. Vennéguès *et al.*, J. Appl. Phys. **83**, 1379 (1998)

Dislocations are known to act as non-radiative centers in semiconductors.

- Band gap measurement E_g=3,48 eV.
- Observation of excitonic transitions.
- Valence band structure.

Strain effect

B. Gil, F. Hamdani and H. Morkoç Phys. Rev. B **54**, 7678 (1996)

Strain effect:

- Shifts the energy bands.
- Modifies the coupling-strength between excitons and light.
- Observable in optical experiments.

Growth of GaN by MOVPE

 Hetero-epitaxy on sapphire (Al₂O₃)

- o Island growth.
- Rough polycrystalline layers, large density of structural defects.
- Strong residual n-doping.

I. Akasaki and H. Amano, Jpn. J. Appl. Phys. **36** 5393 (1997)

Buffer layer

Benefits:

- Supply of a high-density nucleation centers having the same orientation as the substrate.
- Promotion of the lateral growth of the epitaxial film due to the decrease in interfacial free energy between the substrate and the epitaxial film.
- Augmentation of grain size, diminution of dislocation density.

Control of doping

Control of p- doping

Using AIN buffer layers, the residual donor density was drastically decreased.

⇒ What about p-doping?

 First attempts to incorporate p-impurities, such as Zn, showed no change in resistivity measurements. Control of doping

Doping activation

Using AIN buffer layers, the residual donor density was drastically decreased.

⇒ What about p-doping?

- First attempts to incorporate p-impurities, such as Zn, showed no change in resistivity measurements.
- In 1987, H. Amano found that the intensity of Zn-related luminescence increases when Zn-doped GaN is irradiated with electron beam during CL measurement.
- Activation of Zn acceptors that were added during growth.

H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda and Y. Ishii, J. Lum. **40**&**41**, 121 (1988) H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989)

Doping activation

 In 1992, S. Nakamura found that a thermal annealing at 800°C enables to reduce the resistivity of Mg-doped GaN layers.

Interpretation: acceptors are passivated by an hydrogen excess. Post-growth annealing breaks the Mg-H bound and activates the doping.

Fig. 1. Resistivity of Mg-doped GaN films as a function of annealing temperature.

S. Nakamura, T. Mukai, M.Senoh and N. Iwasa, Jpn. J. Appl. Phys. **31**, L 139-L 142 (1992) S. Nakamura, N. Iwasa, M.Senoh and T. Mukai, Jpn. J. Appl. Phys. **31**, 1258-1266 (1992)

First GaN-based UV diode

Fig. 3. The structure of the p-n junction LED.

- Built around a GaN:Si–GaN:Mg homojunction.
- Emission wavelength ~380 nm at room temperature.
 ⇒Need to decrease the bandgap energy to achieve blue emission.

H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989)

The blue diode

How blue can you get?

- Adding indium in GaN should shift the bandgap towards the visible range.
- A blue emission at ~ 450 nm needs to master the growth the alloy In_xGa_{1-x}N for concentrations around 25-30%...

- In 1991, S. Nakamura develop a specific skill to growth InGaN using MOVPE.
- Strong photoluminescence whose wavelength depends on the indium fraction.

Advantage of InGaN

- The radiative efficiency of InGaN layers and quantum wells are not affected by dislocations.
- Localization of electron-hole pairs on potential fluctuations due to alloy disorder.
- Confirmed by the evolution of photoluminescence with T.

The blue diode

First blue diode

P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes

Shuji NAKAMURA, Masayuki SENOH and Takashi MUKAI

Department of Research and Development, Nichia Chemical Industries, Ltd., 491 Oka, Kaminaka, Anan, Tokushima 774

Fig. 1. The structure of the p-GaN/n-InGaN/n-GaN double-heterostructure blue LED.

Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting diodes

Shuji Nakamura, Takashi Mukai, and Masayuki Senoh Department of Research and Development, Nichia Chemical Industries, Ltd., 491 Oka, Kaminaka, Anan, Tokushima 774, Japan

(Received 2 December 1993; accepted for publication 5 January 1994)

⇒ Double heterostructure.

⇒ The next generation of components embeds quantum wells.

Quantum efficiency~3%

Quantum wells

Quantum wells & quantum dots

- Because of their wurtzite structure, nitride materials are piezoelectric.
- Existence of built in polarization fields in quantum wells that separate electrons and holes along the growth axis.

⇒ Quantum confined Stark-effect.

Effect of built-in electric field

P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allègre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean and J. Massies, Appl. Phys. Lett. **78** (9), 1252-1254 (2001) 65

Improving the CRI

E. .F Schubert and J. K. Kim, Science 27 May 2005: vol. 308 no. 5726 1274-1278

- Nitride based nanostructures are limited to light emission.
- Their wide bandgap and strong exciton binding energy makes them interesting for room temperature operation.
- The present degree of control of GaN-based heterostructures allows to consider a physics that was previously mostly restricted to conventional III-V.

- Nitride based nanostructures are limited to light emission.
- Their wide bandgap and strong exciton binding energy makes them interesting for room temperature operation.
- The present degree of control of GaN-based heterostructures allows to consider a physics that was previously mostly restricted to conventional III-V.

 \Rightarrow Here are some examples.

A. Balocchi, J. Renard, C. T. Nguyen, B. Gayral, T. Amand, H. Mariette, B. Daudin, G. Tourbot and X. Marie, Phys. Rev. B 84, 235310 (2011) J. Besbas, A. Gadalla, M. Gallart, O. Crégut, B. Hönerlage, P. Gilliot, E. Feltin, J. F. Carlin, R. Butte, N. Grandjean, Phys. Rev. B 82, 195302 (2010) 69

Polariton laser

R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, Phys. Rev. B 73, 033315 (2006)

R. Butté and N. Grandjean, Semicond. Sci. Technol. 26 (2011) 014030 (9pp)

Single photon emitters

Figure 1. Images of site-controlled nanowire-QDs. (a) SEM image showing a single nanowire grown on a patterned SiO₂ substrate by selective area MOCVD. The inset shows an array of nanowires separated by 2 μ m (a spacing of 20 μ m was used for the optical experiments). (b) TEM image clearly showing the formation of a single QD near the tip of a single nanowire. (c) Schematic of a nanowire containing a single QD.

Figure 2. Emission spectra from a single nanowire-QD measured at 3.9 K (a), 150 K (b), and 300 K (c) (measured with excitation powers of 5 mW, 10 mW, and 15 mW, respectively). The inset in (a) shows the power dependence of the peak intensity of the three peaks labeled with a hexagon, triangle, and square, respectively.

Figure 3. Coincidence counts histograms measured at 3.9 K (a), 150 K (b), and 300 K (c) from the same QD in Figure 2. The $g^{(2)}[0]$ values in parentheses are corrected for background and detector dark counts. The suppressed height of the peak at delay 0 is clear evidence of single photon emission, and the single photon statistics remain largely unaffected by temperature.

Summary

- Focus on different white light sources and more specifically on light emitting diodes.
- Fundamentals of electronic and optical properties of semiconductors and their quantum heterostructures.
- Optics as a sensitive probe of matter.
- Story of the blue LED as an illustration of different technological steps to be taken.
Summary

- The three laureates demonstrated intuition and perseverance that lead to a revolution in lighting and light display.
- The mass marketing of nitride based lighting devices did not kill the fundamental research related to these materials.
- The success of the blue diode created a dynamics that brought a class of materials to maturity and created new perspectives in fundamental and applied research.