

Negative refraction:

University of Strasbourg sylvain.lecler@unistra.fr Ass. Professor at ICube Lab. Co-supervisor of IPP Team

8th July 2015 – European Summer School: LIGHT! - Strasbourg

References

Physics of Negative Refraction and Negative Index Materials Krowne, Clifford, Zhang, Yong Springer 2007 http://91.216.243.21/fachbuch/leseprobe/9783540721314_Excerpt_001.pdf

• Negative Refraction?

Snell-Descarte law:

 $n_i \sin(\theta_i) = n_t \sin(\theta_t)$

Classical refraction

• Consequence:

A slab of negative refractive material in free space Can be used to achieve a lens

(Numerical aperture ~ 1 !)

• Condition to have a material with a negative refractive index:

ε < 0 **et** μ < 0

• What is the refractive index?

$$n = \sqrt{\epsilon \, \mu}$$

• What happens if ε or μ are negative?

• What can happen?

3

		+	_
μ	+	Transparent material	Electric plasma (absorbion)
	_	Magnetic plasma (absorbtion)	Material with negative refractive index

History

V. G. Veselago - (1968)

Theoretical introduction of the negative refraction concept

D.R. Smith - (2000)

• First proposal how to achieve a material with a negative refraction

J.B. Pendry - (2000)

Superlens concept

J.B. Pendry - (2006)

• Invisible Cloak concept [Science 312, 1780 (2006)]

M. Wegener - (2010)

• First invisible cloak for optical wavelength [Science 328, 337 (2010)]

Content

- Introduction
- 1- Negative refractive index concept
- 2- Why negative refraction material are dispersive
- 3- FDTD simulations
- 4- How to achieve such a materials?
- 5- Super lens application
- 6- Invisible cloak application

et

 $\mu < 0$

1- Negative refraction index concept

• Materials with: $\varepsilon < 0$

$$\nabla^{2}\mathbf{E}(\mathbf{r},t) - \epsilon\mu \ \frac{\partial^{2}}{\partial t^{2}}\mathbf{E}(\mathbf{r},t) = 0$$

• Solution: Monochromatic plane waves:

$$E(z,t) = E^0 e^{i(-\omega t \pm |k|z)}$$

Dispersion relation:

Phase velocity:

Refractive index:

$$\omega^{2} \varepsilon \mu = k^{2}$$

$$v_{\varphi} = \frac{\omega}{k} = \pm \frac{1}{\sqrt{\varepsilon \mu}}$$

$$n = \frac{c}{v_{\varphi}} = \pm \sqrt{\varepsilon_r \mu_r}$$

The refractive index is linked to the phase velocity

What sign has to be chosen?

1- Negative refraction index concept

If $\mu < 0$ the energy (**S**) propagates in the opposite direction of the phase (**k**)

1- Negative refraction index concept

Interface between free space and a material with $\varepsilon < 0$ et $\mu < 0$

2-Why negative refraction material are dispersive

• Group velocity

$$|v_g| = rac{d\omega}{dk}$$

If the material were non dispersive, its group velocity would be negative!

• Energy density

In a non dispersive material: $W = \epsilon < \mathbf{E}^2 > + \mu < \mathbf{H}^2 >$

In a dispersive material:

$$W = \frac{\partial(\omega \,\epsilon(\omega))}{\partial \omega} \,< \mathbf{E}^2 > \,+\, \frac{\partial(\omega \,\mu(\omega))}{\partial \omega} \,< \mathbf{H}^2 > \,$$

If the material were non dispersive, its energy density and group velocity would be negative!

3- FDTD simulations

FDTD: Finite-Difference Time-Domain

Numerical method using finite-differences to solve Maxwell equation and to simulate light propagation in a discretized area

Principle:

An iterative algorithm which computes the new electromagnetic field at a certain moment by using the previous values of the electromagnetic in the neighboring region

Used dispersion model:

$$\epsilon(\omega) = \epsilon_0 \left(1 - \frac{w_p^2}{w^2} \right)$$
$$\mu(\omega) = \mu_0 \left(1 - \frac{w_p^2}{w^2} \right)$$

No absorption

3-FDTD simulations

Negative refraction

n = -1 *n* = 1

3- FDTD simulations

Super lens n = -1 n = 1 *n* = 1 2 0.1 0.05 01 0 Distance y en unité de λ_o -0.05 -0.1 0-15 0 10 Distance x en unité de λ_0

4- How to achieve such a materials?

<u>Example of negative ε : high conductive material, electric plasma</u>

Drude model: electron gas

What's about μ ? $\mu = \mu_0$ in the visible range ...

4- How to achieve such a materials?

Metamaterial:

structure that behaves such as an homogeneous material with new "effective properties"

«Split ring resonators »to increase µ and create « magnetic dipoles »

RLC circuit: possible resonance

4- How to achieve such a materials?

Question:

Sub- λ structures are better to achieved metamaterial. Is it possible to have resonance with a sub- λ structures ? (no resonance in a cavity smaller than $\lambda/2$)

Yes using plasmonic resonance

[Zhang Phys. Rev. Lett. 101, 047401 (2008)]

5- Super lens application

• Super lens: propagative waves

A slab of negative refractive material in free space

5- Super lens application

•Super lens: evanescent waves

Evanescent waves are enhanced

Energy creation?

No: stationnary state inside the slab

No propagation through the slab but along the slab

Evanescent waves are also imaged

-> possibility to have a sub-diffraction limit

6- Invisible cloak application

•Spacial deformation (x,y) -> (u,v)

•Application to invisible cloak

•Equivalent to EM-properties modifications

$$\varepsilon'_{u} = \varepsilon_{u} \frac{Q_{u}Q_{v}Q_{w}}{Q_{u}^{2}},$$
$$\mu'_{u} = \mu_{u} \frac{Q_{u}Q_{v}Q_{w}}{Q_{u}^{2}}, \text{ etc.}$$

$$E'_u = Q_u E_u, \ H'_u = Q_u H_u, \ \text{etc.}$$

where,

$$Q_u^2 = \left(\frac{\partial x}{\partial u}\right)^2 + \left(\frac{\partial y}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial u}\right)^2$$
$$Q_v^2 = \left(\frac{\partial x}{\partial v}\right)^2 + \left(\frac{\partial y}{\partial v}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2$$
$$Q_w^2 = \left(\frac{\partial x}{\partial w}\right)^2 + \left(\frac{\partial y}{\partial w}\right)^2 + \left(\frac{\partial z}{\partial w}\right)^2$$

As usual,

$$\mathbf{B'} = \mu_0 \boldsymbol{\mu'} \mathbf{H'}, \quad \mathbf{D'} = \varepsilon_0 \boldsymbol{\epsilon'} \mathbf{E'}$$

Conclusion

- ε and μ are macroscopic descriptions of sub- λ behaviors
- Sub- λ structures can be achived to create metamaterials with new effective properties ε and μ (absorption, anisotropies, dispersion, etc.)
- Light can be manipulated using these metamaterials such as we already do with material
- Maxwell-equations have not finished to show us what we can do with light

Thank you for your attention

<u>Acknowledgements</u> Serge Habraken (ULg) Benjamin Frere (ULg)